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Abstract. Graph neural networks (GNNs) rely on the assumption of
graph homophily, which, however, does not hold in some real-world sce-
narios. Graph heterophily compromises them by smoothing node rep-
resentations and degrading their discrimination capabilities. To address
this limitation, we propose H2GNN, which implements Homophilic and
Heterophilic feature aggregations to advance GNNs in graphs with
homophily or heterophily. H2GNN proceeds by combining local feature
separation and adaptive message aggregation, where each node separates
local features into similar and dissimilar feature vectors, and aggregates
similarities and dissimilarities from neighbors based on connection prop-
erty. This allows both similar and dissimilar features for each node to be
effectively preserved and propagated, and thus mitigates the impact of
heterophily on graph learning process. As dual feature aggregations intro-
duce extra model complexity, we also offer a simplified implementation of
H2GNN to reduce training time. Extensive experiments on seven bench-
mark datasets have demonstrated that H2GNN can significantly improve
node classification performance in graphs with different homophily ratios,
which outperforms state-of-the-art GNN models.

Keywords: Graph Neural Networks · Heterophily · Node
Classification

1 Introduction

Graph neural networks (GNNs) have emerged as prevalent models to address
diverse graph-based tasks [10–12,16]. Their impressive learning capabilities can
be attributed to the utilization of the message-passing mechanism, which allows
for neighborhood aggregation through graph structure. In other words, GNNs
rely on the assumption of graph homophily suggesting that nodes tend to connect
with others sharing similar features [19,27,28]. However, this assumption does
not hold in some real-world graph learning problems, such as fraud and bot
detection [3,7], where attackers tend to build the relationships between malicious
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and benign nodes for stealth, leading to graphs with heterophily. When neighbors
in a graph significantly differ, conventional aggregation mechanisms used by
GNNs that directly blend neighborhood features may result in smoothed or
indistinct representations, and degrade the discrimination capabilities of GNNs.

To address this limitation, recent methods have been proposed to handle
graph heterophily, which broadly falls into three categories: neighbor extension
[1,15,21], inter-layer connections [5,17,28], and adaptive message aggregation
[4,8,18,26]. The neighbor-extension approach captures long-range dependencies
to complement node representations, while the inter-layer connection approach
capitalizes residuals to alleviate the disruptions caused by low-level abnormal
connections. However, their efficacy is limited when tackling graphs with high
levels of heterophily. In contrast, the adaptive message aggregation method trains
separate filters to manipulate homophily and heterophily, and aggregates the
outputs from these filters to derive node representations. This formulation is
more adept at managing local homophily and heterophily but may compromise
long-range information propagation in heterophilic graphs [2].

This naturally leads to a pivotal insight to address the heterophily issue:
both similar and dissimilar features from neighbors contribute to node charac-
terization, which need to be locally extracted, separately preserved, and further
propagated to higher orders to prevent aggregations from blending distinguish-
able information associated with different labels. As such, we propose H2GNN,
which implements Homophilic and Heterophilic feature aggregations to advance
GNNs in graphs with homophily or heterophily. Specifically, instead of mixing
features from neighbors as a single feature vector, H2GNN proceeds by combin-
ing the ideas of local feature separation and adaptive message aggregation. Each
node separates local features into similar and dissimilar feature vectors, and
aggregates corresponding features from neighbors based on connection property:
when the connection is homophilic, the neighbor’s similar and dissimilar features
would respectively flow into the target node’s similar and dissimilar feature vec-
tors; conversely, in heterophilic connections, the neighbor’s two sets of features
would be amalgamated into the target node’s opposite feature vectors.

By maintaining two distinct feature vectors side by side, both similar and dis-
similar features for each node can be effectively preserved and propagated, and
thus mitigate the impact of heterophily on the graph learning process. For each
aggregation operation, we further elaborate an edge identifier that determines
whether a given node pair is homophilic or heterophilic to selectively extract
neighborhood features, promoting adaptive message aggregation. Moreover, con-
sidering that dual feature aggregations in H2GNN introduce extra model com-
plexity, we offer a simplified implementation to significantly reduce training time.

2 Problem Statement

We denote a given graph as G = (V,E,X), where V (n = |V |) is the set of
nodes, E is the set of edges, and X ∈ R

n×d is the feature matrix. Edges E
can be encoded as an adjacency matrix A ∈ R

n×n and Aij = {0, 1}. The
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Fig. 1. Overview of our proposed model H2GNN.

neighbors for vi is represented as N (vi) = {vj |(vi, vj) ∈ E)}. Each labeled node
is associated with a ground truth y ∈ Y = {0, 1, · · · , k−1}. GNN models enforce
each node to aggregate information from its neighbors and generate higher-level
embedding for downstream node classification. These graphs exhibit different
degrees of homophily (or heterophily). Homophily is a concept that describes
the tendency of nodes to associate with similar others [27]. In this paper, we
focus on homophily in class labels [28], where a graph with high homophily
indicates that connected nodes share the same label with a high probability.
Heterophily is the opposite of homophily to describe the status of connected
nodes belonging to different labels.

3 Proposed Model: H2GNN

In this section, we present our proposed GNN model H2GNN to deal with graph
heterophily, the overview of which is illustrated in Fig. 1.

3.1 Feature Separation

To restore the discrimination capability in heterophilic graphs, GNN models need
to harness the information of neighborhood differences [18]. Following this idea,
various adaptive message aggregation methods [4,8,18,21] have been deployed
that train separate filters to extract similar and dissimilar signals from neigh-
bors, enriching node representations while mitigating the impact of heterophily.
Nevertheless, these approaches have one limitation: though dissimilarities from
neighbors are extracted, they are still mixed with similarities to be formulated
as a single feature vector; such straightforward preservation may not be helpful
for propagating dissimilarities to higher-order nodes [2].

To address this limitation, we propose to preserve these similarities and dis-
similarities separately. Specifically, we devise two distinct feature vectors for
each node v ∈ V to facilitate feature aggregation: similar feature vector h1

v, and
dissimilar feature vector h2

v. h1
v is used to aggregate and preserve similar sig-

nals from neighborhood features, while h2
v is used to preserve dissimilar signals

extracted from neighbors. In this respect, the representation for each node v ∈ V
during aggregation can be formalized as hv = {h1

v,h2
v}, which is initialized as

hv = {Xv,0}. Such a bi-vector feature setting can collaboratively preserve local
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neighborhood similarities and dissimilarities, and promote long-range informa-
tion propagation, which, in turn, boosts node representation expressiveness and
model discrimination power. The details about the feature aggregations on h1

v

and h2
v will be elaborated in the subsequent section.

3.2 Dual Feature Aggregations

Dual feature aggregations significantly rely on edge property specified by the
labels of connected nodes, which is not always available in real-world graphs, as
most of the nodes are not pre-annotated. To tackle this issue, we introduce an
edge identifier to discriminate if a node pair is homophilic or heterophilic.

Edge Identifier. Similar to node classification using node representations, here
we devise an edge identifier using the representations of its connected nodes to
determine the property of the edge. Considering that node representations vary
at each aggregation layer, edge identification is performed in a layer-wise manner.
Specifically, at aggregation layer l, the edge identifier can be formalized as:

αij = σ((h(l−1)
vi

||h(l−1)
vj

)W(l)
e ) (1)

where σ(·) is a non-linear activation function and W(l)
e is a learnable weight

matrix at layer l. αij (0 ≤ αij ≤ 1) is a prediction score, indicating how possible
an edge evivj

is homophilic.

Feature Aggregation. Generally, the normalized adjacency matrix Ã is con-
sidered a low-lass filter in GNNs to retain the commonality of neighboring fea-
tures [4,20], while I − Ã provides diversification operation, which is considered
as high-pass filter to extract neighborhood differences [18]. This inspires us to
directly employ the soft prediction of edge identifier, i.e., prediction score αij

(0 ≤ αij ≤ 1) instead of hard prediction to perform dual feature aggregation,
which enables αij and 1 − αij to act like advanced dual filters that flexibly
control the number of similarities and dissimilarities from each neighbor to be
aggregated and thus further refine the learned node representations. Formally,
for a given node vi, the dual feature aggregations are implemented as follows:

h1,(l)
vi =σ(h1,(l−1)

vi W0 +
1

|N (vi)|
∑

vj∈N (vi)

αh1,(l−1)
vj W1 + (1 − α)h2,(l−1)

vj W2) (2)

h2,(l)
vi =σ(h2,(l−1)

vi W0 +
1

|N (vi)|
∑

vj∈N (vi)

(1 − α)h1,(l−1)
vj W1 + αh2,(l−1)

vj W2) (3)

where σ(·) is specified as ReLU, W0, W1, and W2 are learnable weight matri-
ces to promote feature aggregations. For node vi at layer l, h1,(l)

vi aggregates
neighboring features and produces its new similarity feature vector, while h2,(l)

vi

produces its new dissimilarity feature vector, both of which contribute to the
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new hidden representation. By leveraging dual feature aggregations, features
contributing to the node’s ground truth can be effectively preserved in h1

v, while
features correlated to other classes can be explicitly saved in h2

v to support
higher-order enhancement, where heterophily can barely impact on the outputs
from different classes.

3.3 Loss Optimization

After multi-layer dual feature aggregations, h1
v and h2

v are concatenated and
fed to a fully-connected layer for node classification, which results in a cross-
entropy loss Lc between predictions and nodes’ true labels. In addition, for each
feature aggregation layer l, edge identifier needs to be optimized as well. We
select those edges whose connected nodes are labeled to construct homophilic
and heterophilic edge samples for facilitating edge identifier training, which leads
to another cross-entropy loss L(l)

e . Accordingly, the final training objective can
be formulated as follows:

L = Lc + γ

L∑

l=1

L(l)
e (4)

where γ is a balance parameter to trade off two losses, and L is the number of
feature aggregation layers. All the weights can be updated by minimizing L.

3.4 Simplified Model

We refer to our proposed GNN model as H2GNN-W, since it resorts to different
weight matrices for dual feature aggregations. This naturally introduces extra
model complexity that increases the training time cost. To keep a better trade-off
between model effectiveness and efficiency, we offer a simplified implementation
of our framework called H2GNN-S. H2GNN-S reduces training time using a
similarity metric αij = sim(h(l−1)

vi ,h(l−1)
vj ) as the edge identifier. To exclude

the weight matrix updates and multiplications during feature aggregations, we
assemble all weights into a single linear layer that maps the original feature
matrix X to X(0) = fθ(X) ∈ Rd×m (m � d), such that hv(v ∈ V ) is initialized
as hv = {X(0)

v ,0}, where h1
v = X(0)

v , h2
v = 0. Afterward, feature aggregations

are performed without any weighted operations:

h1,(l)
vi = σ(h1,(l−1)

vi +
1

|N (vi)|
∑

vj∈N (vi)

αh1,(l−1)
vj + (1 − α)h2,(l−1)

vj ) (5)

h2,(l)
vi = σ(h2,(l−1)

vi +
1

|N (vi)|
∑

vj∈N (vi)

(1 − α)h1,(l−1)
vj + αh2,(l−1)

vj ) (6)

The outputs are also concatenated and fed to a fully connected layer for node
classification. Since there’s no necessity to train edge identifiers, the loss function
L can be reduced to L = Lc. This simplified model sustains potent learning
capability while also yielding the additional benefit of reduced time consumption.
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4 Experimental Results and Analysis

4.1 Experimental Setup

Datasets. We evaluate H2GNN on seven public datasets with different
homophily ratios. Cora and Citeseer [25] are benchmark citation networks; Texas
and Wisconsin [21] are subdatasets of WebKB collected from different universi-
ties; Actor [22] is a subgraph induced from the film-director-actor-writer network;
Penn94 and Genius [14] are two large-scale online social networks. For Penn94
and Genius, we use 50%-25%-25% random split to match the experimental set-
ting in related works [13,14]. For all other datasets, we use the 48%-32%-20%
data-split as provided by [8,21]. Table 1 summarizes the data statistics.

Table 1. Statistics of the datasets

Dataset #Nodes #Edges #Features #Classes

Cora 2,078 5,429 1,433 7

Citeseer 3,327 9,228 3,703 6

Texas 183 309 1,703 5

Wisconsin 251 499 1,703 5

Actor 7,600 30,019 932 5

Penn94 41,554 1,362,229 5 2

Genius 421,961 984,979 12 2

Baselines. We use 3 GNN variants and 9 advanced GNNs for graph heterophily
as baselines. Conventional GNNs includes GCN [9], GAT [23], and GIN [24];
advanced GNNs includes GCNII [5], Geom-GCN [21], CPGNN [27], MixHop [1],
H2GCN [28], GPRGNN [6], GBK-GNN [8], LinkX [14], and GloGNN [13].

Implementation Details. The number of aggregation layers L is set to 2.
Models are trained for 2,000 epochs with patience of 200 using Adam optimizer
with learning rate lr = 0.01 and 5e − 4 L2 regularization. For H2GNN-S, sim(·)
is specified as cosine similarity, and the feature dimension is set to m = 16. We
further introduce consistency loss to provide an advantage of smoothing decision
boundaries, which is adjusted by a balance parameter λ. The impacts of λ and
γ on the performance of H2GNN are evaluated in Sect. 4.3.

4.2 Comparison with Baselines

We compare H2GNN with 12 selected baselines over seven different datasets.
Table 2 presents these comparative results. We observe that: (1) Traditional
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GNN models perform relatively well in homophilic graphs, but suffer from drastic
drops in heterophilic graphs. (2) By contrast, enhanced models tailored for het-
erophilic graphs manage to bring up the accuracy to a higher level in graphs with
extremely low homophily ratios, due to their enhancement in neighbor exten-
sion, inter-layer connections, or adaptive message aggregation, but some of these
models sacrifice the performance in homophilic graphs. (3) Our proposed model
delivers the best or second-best results, outperforming most of the baselines
across all graph datasets. Among enhanced GNN models, H2GNN-W achieves
the best performance on most of the datasets. Even the simplified version of our
model, H2GNN-S, offers comparable results on all datasets. In summary, H2GNN
achieves state-of-the-art performance on all seven benchmarks (both homophily
and heterophily) and outperforms the leading GNN models in most cases.

Table 2. Comparison of baselines (classification accuracy (%)) on both homophily and
heterophily graph datasets. The best result for each dataset is highlighted in blue color.

Cora Citeseer Texas Wisconsin Actor Penn94 Genius

H. ratio r 0.82 0.70 0.11 0.14 0.20 0.46 0.61

GCN 86.81±0.7973.96±1.0249.52±5.29 46.78±5.36 26.96±1.2582.47±0.2787.42±0.37

GAT 84.31±1.2171.89±1.4041.94±5.33 63.04±5.33 26.56±0.9881.53±0.5555.80±0.87

GIN 81.93±0.5768.08±0.6229.03±4.42 45.65±4.71 23.61±0.7681.78±0.3987.16±0.51

GCNII 87.22±0.9875.11±1.1851.61±5.47 58.70±3.25 28.72±0.6082.92±0.5989.82±0.49

GeomGCN 84.10±1.1276.28±2.0667.57±5.35 68.63±4.92 30.00±1.2683.01±0.3889.75±0.41

CPGNN 79.40±1.3969.41±0.4575.68±5.12 76.47±6.16 35.59±0.8679.76±0.3985.33±0.92

H2GCN 82.70±0.8743.70±0.2472.97±4.53 70.59±5.76 35.39±1.3481.31±0.60 OOM

MixHop 87.61±0.8576.26±0.3377.84±7.73 75.88±4.90 32.22±2.3483.47±0.7190.58±0.16

GBK-GNN 88.69±0.4279.18±0.9681.08±4.87 84.21±4.33 38.97±0.9781.99±0.4790.13±0.50

GPRGNN 87.95±1.1877.13±1.6778.38±4.36 82.94±4.21 34.63±1.2281.38±0.1690.05±0.31

LinkX 84.64±1.1373.19±0.9974.60±8.37 75.49±5.72 36.10±5.5584.71±0.5290.77±0.27

GloGNN 88.31±1.1377.41±1.6584.32±4.15 87.06±3.53 37.35±1.3085.57±0.3590.66±0.11

H2GNN-S 89.64±1.2080.59±1.3783.15±5.67 84.43±5.32 37.41±1.8685.03±0.4190.25±0.46

H2GNN-W 89.97±1.2381.60±1.9585.01±5.98 85.11±6.10 38.53±1.4685.61±0.5690.80±0.42

4.3 Parameter Evaluation

The performance of H2GNN can be potentially affected by λ, which is the coef-
ficient controlling the weight of consistency loss, and γ, which is the coefficient
controlling the weight of edge identification loss. In this section, we evaluate
the impacts of these parameter settings. The experimental results are reported
in Fig. 2(a) and (b). It can be observed that different parameters contribute to
slightly different results. However, these fluctuations are insignificant, implying
that our model’s performance is stable across various parameter settings.



Graph Neural Networks with Dual Feature Aggregations 349

Fig. 2. Impact of parameters and model variants on model performance: (a) accuracy
of H2GNN-W with different λ; (b) accuracy of H2GNN-W with different γ; (c) time
cost of H2GNN-W and H2GNN-S; (d) accuracy of H2GNN-W and H2GNN-S.

4.4 Comparison Between H2GNN-W and H2GNN-S

In this section, we analyze the advantages and disadvantages between weighted
H2GNN (H2GNN-W) and simplified H2GNN (H2GNN-S). We illustrate the com-
parative results in Fig. 2(c) and (d). Compared to H2GNN-W, H2GNN-S signif-
icantly reduces the training time per epoch on all tested datasets by over 20%,
while not compromising the node classification performance. Specifically, the
accuracy of node classification using H2GNN-S only drops by less than 2% across
all tested datasets. The reduced time consumption comes from the removal of
weights in the aggregation layers and the exclusion of the edge identifier train-
ing. The preserved dual feature aggregations enable H2GNN-S to maintain its
potent learning capability. Overall, H2GNN-S provides a better trade-off between
effectiveness and training efficiency than H2GNN-W.

4.5 Ablation Study

In this section, we set up an ablation study to investigate how different compo-
nents contribute to the performance of our model. We investigate three compo-
nents in our model design: (1) Feature separation, which refers to the combina-
tion of local feature separation and dual feature aggregation; (2) Edge identifica-
tion, which refers to the utilization of α to identify homophilic and heterophilic
edges; (3) Weighted operation, which refers to the inclusion of all weight matri-
ces in feature aggregation operation. As illustrated in Table 3, all three compo-
nents contribute to the performance of H2GNN. Among these three components,
the impact of weighted operation is the smallest. However, removing either fea-
ture separation or edge identification leads to significant performance drops on
heterophilic graphs. This outcome aligns with our expectations. The core func-
tionality of aggregation layers in H2GNN relies on the collaboration of feature
separation and edge identification. Therefore, the exclusions of either feature
separation or edge identification may enforce a drastic performance drop.
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Table 3. Ablation study: Feature Separation (FS), Edge Identification(EI), and
Weighted Operation (WO)

FS EI WO Cora Cite. Texa. Wisc.

86.59 73.04 48.03 48.20

� 88.04 70.16 48.35 65.41

� � 87.77 72.83 69.08 66.37

� � 88.06 72.13 49.22 66.18

� � 89.64 80.59 83.15 84.43

� � � 89.97 81.60 85.01 85.11

4.6 Case Study

To validate our claim that H2GNN provides more distinguishable node embed-
dings, we present a brief case study on two datasets, Cora (homophilic) and
Texas (heterophilic), to showcase the difference between embeddings generated
by GCN and H2GNN. We map node embeddings into a two-dimensional space
using t-SNE, and the resulting embeddings are visualized in Fig. 3. In both cases,
H2GNN either generates clusters with better-distinguished boundaries or redis-
tributes nodes more cohesively. These observations reaffirm the effectiveness of
H2GNN in learning meaningful and distinguishable node representations.

Fig. 3. Visualization of node embeddings: (a) Cora processed by GCN, (b) Cora
processed by H2GNN, (c) Texas processed by GCN, (d) Texas processed by H2GNN.

5 Conclusion

In this paper, we introduce a new model H2GNN for node classification in graphs
with homophily or heterophily. H2GNN employs feature separation and dual
feature aggregation guided by edge identification to better preserve and prop-
agate both similarities and dissimilarities for each node, which not only boosts
the expressiveness of node representations but also mitigates the impact of het-
erophily on the graph learning process. Evaluation through extensive experi-
ments demonstrates that our model achieves state-of-the-art performance, which
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affirms its effectiveness in node classification, superiority over baselines, and
practical significance in handling both heterophilic and homophilic graphs.

Acknowledgments. L. Chen’s work is partially supported by the NSF under grant
CNS-2245968.
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