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Abstract

Retrosynthetic planning aims to devise a com-
plete multi-step synthetic route from starting ma-
terials to a target molecule. Current strategies
use a decoupled approach of single-step retrosyn-
thesis models and search algorithms, taking only
the product as the input to predict the reactants
for each planning step and ignoring valuable con-
text information along the synthetic route. In
this work, we propose a novel framework that
utilizes context information for improved ret-
rosynthetic planning. We view synthetic routes
as reaction graphs and propose to incorporate
context through three principled steps: encode
molecules into embeddings, aggregate informa-
tion over routes, and readout to predict reac-
tants. Our approach is the first attempt to uti-
lize in-context learning for retrosynthetic plan-
ning. The entire framework can be efficiently
optimized in an end-to-end fashion and produce
more practical and accurate predictions. Com-
prehensive experiments demonstrate that by fus-
ing in the context information over routes, our
model significantly improves the performance of
retrosynthetic planning over baselines that are
not context-aware, especially for long synthetic
routes. Code is available at https://github.
com/SongtaoLiu0823/FusionRetro.

1. Introduction
Retrosynthetic planning is a fundamental problem in or-
ganic chemistry (Coley et al., 2018; Genheden et al., 2020).

*Equal contribution 1Pennsylvania State University
2Massachusetts Institute of Technology 3Stanford Univer-
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Figure 1. Performance of retrosynthesis prediction and multi-step
planning on USPTO dataset. We report the search success rate of
retrosynthesis models combined with Retro* at the limit of 500
calls and 5 expansions. The search success rate is much higher
than the accuracy of the top-5 retrosynthesis prediction.

The goal of retrosynthetic planning is to find a viable set of
starting materials and a sequence of reactions, that lead to
a given target molecule. It is crucial for process chemistry,
which aims to design efficient routes to synthesize desired
target products at a low cost, as well as for materials and
molecule discoveries that are contingent on the targets being
synthesizable. In the past few years, with the advancement
in deep learning, there has been increasing interest in apply-
ing machine learning to retrosynthetic planning, a sub-topic
of Computer-Aided Synthesis Planning (CASP).

Existing strategies (Segler et al., 2018; Kishimoto et al.,
2019; Chen et al., 2020; Lin et al., 2020; Schwaller et al.,
2020; Kim et al., 2021; Xie et al., 2022; Yu et al., 2022) gen-
erally model retrosynthetic planning as a search problem. In
a typical formulation, the synthetic route is treated as a tree
or a graph, and the molecules as nodes. Starting from the
target as the root node, these approaches employ some (pos-
sibly learned) search algorithms to select the most promising
node to expand, and then expand it into reaction precursors
with a one-step retrosynthesis model, until a viable route is
found in which all the leaf nodes are commercially available.
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It was not until recently that the evaluation criteria for multi-
step search have somewhat converged to a few. One of the
most heavily used metrics is the success rate of finding a
viable route given an iteration limit (generally up to 500).
However, the search success rate is overly lenient without
checking whether the searched set of starting materials can
go through a sequence of reactions to synthesize the target
molecule at all. This is especially problematic for the targets
requiring long routes to synthesize, in which case the errors
can multiply. As a quantitative illustration in Figure 1, when
we combine existing one-step models with top-5 accuracies
between 60 and 80 percents with Retro* (Chen et al., 2020),
an established search algorithm, the search success rates
easily reach over 85 and 94 percents respectively. This is
counterintuitive as we would expect the route to be less
likely to succeed as more synthesis steps are added, which
also throws concerns about the quality of proposed routes
that the multi-step planner deems as “successful”.

In this work, we therefore introduce the set-wise exact match
of proposed starting materials to the ground truth as an
alternative metric that better reflects reality. The underlying
assumption is that if we can get the set of building blocks
right, recovering all the reactions that ultimately lead to
the target is a much easier process, possibly with the help
of powerful reaction outcome predictors that can have a
high accuracy of more than 90% (Irwin et al., 2022; Tetko
et al., 2020). We construct a new benchmark with 58,099
synthetic routes retrieved from the public USPTO dataset for
evaluation, in which we study the performance of multiple
single-step retrosynthesis models in the context of multi-
step planning, an important comparison that has not yet been
done to the best of our knowledge. In addition, with our
new framework of evaluation, it is now possible to consider
and thereby improve the performance of all pieces in the
CASP workflow in an integrated and holistic manner.

Under this view, it becomes immediately apparent that a
missed opportunity by previous work is the explicit model-
ing of the contextual information of in-context reactions and
intermediates along the partial synthetic routes preceding
any given node, which we subsequently explore. We pro-
pose a novel and principled context-aware model by fusing
in the context embeddings, named FusionRetro, which is
the first attempt to exploit in-context learning (Min et al.,
2022) for retrosynthetic planning. Specifically, we view the
synthetic routes as reaction graphs and formulate our model
as an end-to-end framework which: 1) encodes molecules
on the synthetic routes into embeddings through molecule
encoders; 2) aggregates the embeddings of molecules on
the synthetic route (reaction graph) by message passing and
fuses in the representations of informative contexts; and 3)
readouts to predict the reactants on the current retrosyn-
thetic step based on both the product and context represen-
tations learned in the previous stage.

Extensive experimental results on retrosynthetic planning
tasks show that FusionRetro can achieve significantly bet-
ter performance over template-free baselines, with up to a
6% improvement in top-1 test accuracy. The surprisingly
superior performance demonstrates the effectiveness of ex-
ploiting the context information and opens up room for
future research in this direction.

Our contribution can be summarized as follows:

• We introduce a new evaluation protocol for assessing
the performance of single-step retrosynthesis models
in the context of multi-step planning, and for this pur-
pose, we curate a new benchmark dataset. Our empir-
ical analysis confirms the pivotal role of single-step
accuracy in multi-step planning.

• We propose a novel fusion framework that enables
single-step models to leverage the contextual informa-
tion in the reaction graph. Our method serves as the
pioneering effort to exploit in-context learning (Dong
et al., 2022) for solving scientific problems, which led
to impressive success in recent large language models
such as ChatGPT (Brown et al., 2020).

• Extensive experimental results demonstrate that our
proposed module can enhance the performance of the
baseline model noticeably, providing insightful guid-
ance for future research in this direction.

2. Related Work
Single-step Retrosynthesis Model. Existing machine
learning approaches for single-step retrosynthesis predic-
tion can be classified into template-based and template-free
models based on whether they rely on the use of reaction
templates.

Template-based algorithms (Chen et al., 2020; Coley et al.,
2017; Dai et al., 2019; Segler & Waller, 2017; Chen & Jung,
2021; Seidl et al., 2021) first extract these patterns from
the training data, and then formulate the task as template
classification or template retrieval. One of the intrinsic
limitations of template methods is the need to find the right
level of specificity for template definition so that they can
capture sufficient chemical information without being overly
specific to any reaction. As a remediation, researchers have
come up with template-free methods, which have become
more and more popular recently.

Template-free approaches generally use an end-to-end
translation-based (Liu et al., 2017; Zheng et al., 2019; Chen
et al., 2019; Karpov et al., 2019; Sun et al., 2021) or a
graph-edit based formulation (Sacha et al., 2021). The for-
mer models the product-to-reactants transformation as a
sequence-to-sequence task by representing molecules with
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SMILES string, and the latter as a sequence of graph edits
to atoms and bonds.

A special family of template-free methods, which are com-
monly referred to as semi-template-based methods (Shi
et al., 2020; Yan et al., 2020; Somnath et al., 2021), adopts
a two-stage formulation to first identify the reaction cen-
ter(s). The target is subsequently broken into several dis-
connected subgraphs (i.e., the synthons), based on which
the full molecule structures of reactants are recovered either
by attaching the leaving group (Somnath et al., 2021) or
by generative modeling (Shi et al., 2020; Yan et al., 2020).
For a more comprehensive understanding of the retrosynthe-
sis literature, readers are encouraged to refer to the survey
paper (Meng et al., 2023).

Search Algorithm in Retrosynthetic Planning. Exist-
ing deep learning-based CASP models treat retrosynthetic
planning as a search problem, which can be classified into
Monte Carlo Tree Search (MCTS) (Segler et al., 2018;
Hong et al., 2021), Proof-Number Search (PNS) (Kishi-
moto et al., 2019), A*-like Search (Chen et al., 2020; Han
et al., 2022; Xie et al., 2022), and Reinforcement Learning
(RL) based Search (Yu et al., 2022). Segler et al. (2018)
integrates MCTS with policy networks to guide multi-step
planning. Drawing inspiration from search techniques in
two-player zero-sum games, DFPN-E (Kishimoto et al.,
2019) combines Depth-First Proof-Number (DFPN) with
Heuristic Edge Initialization for chemical synthesis plan-
ning. Retro* (Chen et al., 2020) introduces a neural-based
A*-like algorithm to estimate solution costs and select the
most promising one. GRASP (Yu et al., 2022) leverages
reinforcement learning to guide the search process. Both
GNN-Retro (Han et al., 2022) and RetroGraph (Xie et al.,
2022) employ graph neural networks (Kipf & Welling, 2017)
to aggregate information from the synthetic route, thereby
enabling more accurate estimation of costs in Retro*. All
works thus far, however, treat the selection policy and the
expansion policy (i.e., the single-step model) as two disjoint
pieces. Usage of context information of partially explored
synthesis trees is non-existent in the single-step predictor,
and to a minimal extent in the search phase in the form of
some cost functions that are updated as planning proceeds.

In contrast, our work explicitly integrates reactions along the
synthetic routes as in-context examples into our single-step
model. We achieve this by fusing in the product embedding
directly into the model inputs. Compared with context-
aware A*-like search algorithms (Han et al., 2022; Xie et al.,
2022), our proposed approach, focusing on retrosynthesis
prediction, is a modular framework comprising encoding,
fusion, and readout components. Our fusion leverages in-
context learning to maximize the use of in-context reactions.
Importantly, it is not limited to GNNs alone and can incor-
porate various aggregation methodologies, such as Trans-

former (Vaswani et al., 2017) and Graph Transformer (Ying
et al., 2021). This framework lays a solid foundation for
future explorations in the design of retrosynthesis models
for retrosynthetic planning, specifically targeting three key
aspects: encoding, fusion, and readout modules.

Evaluation of Retrosynthetic Planning. The de facto
standard for evaluating single-step retrosynthesis models
has been the top-k accuracy, or whether the ground truth
reactants appear in the top-k suggestions. Alternatives such
as accuracy for the largest predicted fragment (Tetko et al.,
2020) and round-trip accuracy based on how likely the pro-
posed reactants can lead to the product (Schwaller et al.,
2020) have been proposed and sometimes used in parallel
with top-k accuracy. All of these metrics solely evaluate
the models in the single-step context, but how the single-
step performance translates into the likelihood of success
in multi-step planning remains an open question. The eval-
uation of multi-step planning, on the other hand, tends to
have two distinct focuses, either on efficiency or on quality.
Search efficiency has been measured in the success rate of
finding pathways with buyable starting materials, as well
as average numbers of iterations and node visits. However,
as we demonstrate in Figure 1, efficiency metrics like the
success rate give little insight into route quality. To evaluate
route quality, simple proxies such as route length (Chen
et al., 2020; Kishimoto et al., 2019) and average complex-
ity of molecules (Shibukawa et al., 2020) have been used,
and so have more complicated heuristics such as tree edit
distance to a reference route (Genheden & Bjerrum, 2022).

However, some existing benchmarks (Chen et al., 2020;
Genheden & Bjerrum, 2022; Tripp et al., 2022) based on
these metrics do not verify if the searched materials can
synthesize the target molecule. Although the ideal method
for validating the feasibility of starting materials would in-
volve chemical laboratory testing or expert evaluation, these
approaches are frequently cost-prohibitive. Consequently,
we introduce a complementary matching metric to evaluate
retrosynthesis models and search algorithms by comparing
predicted starting materials with those retrieved from the
dataset during testing. The set-wise exact match of starting
materials, as we propose in this work, finds a balance be-
tween simplicity and data awareness. It is cheap to compute,
easy to implement, and yet provides a good indication of
how probable the suggested set will successfully lead to the
target. Note that our introduced evaluation metric does not
restrict prediction diversity. Although Tripp et al. (2022)
propose a metric to evaluate prediction diversity, it does not
verify whether the searched starting materials can indeed
synthesize the target molecule. As such, a trade-off exists
between our metric and theirs. We believe this open prob-
lem could stimulate future research to develop new metrics
and methods that effectively address both aspects.
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Figure 2. Illustration of synthetic route. Given the definition in
Eq. (2), the depth of this route is 3, which means the depth of the
longest path is 3. A is the desired target molecule to be synthesized.
B, C, and D are the intermediates. E, F, G, and H are the starting
materials.

3. Background
In this section, we formally define important terminologies
used in the rest of the paper, including starting materials and
synthetic routes, based on which we define the formulation
of retrosynthetic planning.

Starting Material. We denote the space of all chemical
molecules as M. Following AiZynthFinder (Genheden
et al., 2020), we define the starting materials as a set of
commercially purchasable molecules, denoted as S ⊆M.
ZINC (Sterling & Irwin, 2015) releases the open-source
databases of purchasable compounds. We define this list of
compounds in these databases as our starting materials.

Synthetic Route. Given the above definitions, a synthetic
route can also be organized as a graph-like structure, called
reaction graph (Shibukawa et al., 2020; Nguyen & Tsuda,
2021). In the rest of the paper, we use the terminology
“reaction graph” instead of “synthetic route”. An illustration
of a reaction graph (denoted as G) is shown in Figure 2.
Here, G = {T,R, I, τ}, where T ∈ M \ S is the target
molecule we desire to synthesize (A in Figure 2), R =
{r1, r2, . . . , rn} ⊆ S is the set of starting materials (E, F,
G, H in Figure 2) that go through a series of reactions τ
to synthesize A, and I = {m1,m2, . . . ,mu} ⊆ M \ S is
the set of intermediates (B, C, D in Figure 2) formed from
molecules represented by their child nodes, which can react
further to produce the molecule represented by their parent
nodes. A reaction graph consists of multiple paths from the
target molecule to any starting material in the reaction graph.
According to the definition, the number of paths is equal to
the number of starting materials. We denote paths as l, the
set of paths as L = {l1, l2, . . . , ln}, and we have

τ = τl1 ∪ τl2 ∪ · · · ∪ τln , (1)

where τli is the set of reactions accompanying path li. As
illustrated in Figure 2, A → B → D → E is one of the
paths in this graph. We denote the depth DG of a reaction
graph as the length of the longest path in this graph, where

DG = max
i
Dli . (2)

The depth of a reaction graph is also the number of steps
required to synthesize a molecule from a fixed set of com-
mercially purchasable compounds. Note that in this paper,
the default order of the path is in the retrosynthetic (rather
than forward) direction.

Single-Step Retrosynthesis. Given a target product
molecule T ∈ M, the goal of one-step retrosynthesis is
to predict a set of reactants R = {r1, r2, . . . , rn} ⊆ M
that can react to synthesize this product, which can be for-
mulated as:

T → R.

Retrosynthetic Planning. Given a target molecule T ∈
M, the goal of retrosynthetic planning is to search for the
starting materials R = {r1, r2, . . . , rn} ⊆ S that can syn-
thesize the target molecule through a set of chemical reac-
tions τ = {R1, R2, . . . , Rm}, which can be formulated as
follows:

T → I → R, (3)

where I ⊆M \ S is the set of intermediates.

4. FusionRetro
In this section, we delve into the specifics of our proposed
FusionRetro method. We commence by describing how we
construct our reaction graphs in Section 4.1, drawing upon
the synthetic routes depicted in Figure 2. We then proceed
to elaborate on our systematic approach for utilizing infor-
mative in-context examples (reactions) from the reaction
graph in Section 4.2. This framework involves three princi-
pled steps: encode molecules into embeddings, aggregate
the embeddings of molecules through message passing over
reaction graphs, and readout to predict reactants on current
retrosynthesis step. We conclude this section by briefly
outlining the practical aspects of our training and inference
algorithm in Section 4.3. Figure 3 offers a high-level visual
representation of our proposed framework.

4.1. Reaction Graph

In this section, we describe the details of how to construct
the reaction graph from the synthetic route.

Task Nodes. First, we introduce the concept of task
molecules, which serve as the nodes in our reaction graphs.
Specifically, we designate the target molecule T and inter-
mediates I as task molecules, as these will be expanded
during the multi-step planning process. Importantly, be-
cause our search process halts when the molecules on the
synthetic route are commercially available, these leaf nodes
in Figure 2 are not included in our constructed reaction
graph.
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Figure 3. Illustration of our framework. Our framework consists of three modules: encode, aggregation, and readout. The process begins
with the construction of a reaction graph from the given synthetic route. After encoding the molecules present in this reaction graph, we
utilize the aggregation module to generate the fused molecule representations (FMR). This FMR is used for retrosynthesis prediction.

Graph Construction. In order to explicitly model the
contextual information of reactions and intermediates along
the synthetic routes, we build reaction graphs among task
molecules. We first remove non-task molecules on the
leaf nodes in Figure 2. Then, inspired by the dense con-
nection (Huang et al., 2017) between tokens in Trans-
former (Vaswani et al., 2017), we link each task molecule
and its ancestors to construct our reaction graph, which
enables us to explicitly model the relational information
between task molecules.

4.2. Molecule Representation Fusion

As depicted in Figure 3, a given path consists of several
chemical reactions. Inspired by the recent advancements in
in-context learning within large language models, we utilize
in-context examples/learning—specifically, the reactions
preceding the current one—to boost the accuracy of our
current prediction. To this end, we propose a well-founded
fusion framework. This framework is designed to regulate
the information flow and distill representations that seize
essential contextual information from the reaction graph.

Another part of our motivation stems from the discrepancy
between machine learning methods prevalent in existing
works and the actual thought process of chemists. Chemists
don’t typically think like a search engine – by iteratively
applying some rigid one-step expansion with some search
criteria. Instead, many of them think in a more holistic way,
for example, by taking into account all the intermediate
steps when planning the next, for reasons including but not
limited to ease of purification. A purely one-step model
would likely miss most, if not all, of this contextual infor-
mation. Thus, in this section, we delve into the specifics of

molecule representation fusion. Particularly, we employ the
attention mechanism to generate representations that capture
the contextual information of reactions and intermediates
along the reaction graph.

Molecule Encoding. Given the reaction graph depicted
in Figure 3, the first step involves encoding the molecules
in the reaction graph into embeddings using molecule en-
coders. These encoders can be broadly categorized into
sequence-based and graph-based methods. Graph-based
models (Shi et al., 2020; Yan et al., 2020; Somnath et al.,
2021; Sacha et al., 2021) employ a Message Passing Neural
Network (Gilmer et al., 2017) to translate the molecule
graph into an embedding vector. On the other hand,
sequence-based models (Karpov et al., 2019) leverage the at-
tention mechanism to transform the SMILES representation
of the molecule into an embedding matrix. Note that our
proposed method is a general framework, and we intention-
ally omit the details of the encoding process. Instead, we
represent the encoder as a function, denoted as φ. Therefore,
the encoding process can be formulated as follows:

hm = φ(m), (4)

where m ∈ {T} ∪ I and hm denotes the representation of
molecule m.

Representation Fusion. Upon encoding, we carry out a
message-passing operation to aggregate the molecule em-
beddings. This allows us to create fused representations that
encapsulate contextual information. Rather than directly
employing the weights in the adjacency matrix, we compute
the correlation coefficient (Zhang & Zitnik, 2020) to assess
the relevance between molecule nodes u and v. Based on
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Figure 4. Illustration of our architecture. Our architecture consists of the encoder, decoder, and fusion modules, each of which is composed
of several stacked attention layers. In the encoder, we employ self-attention layers to transform the embeddings of input SMILES into
latent representations, known as encoder outputs. Subsequently, we utilize the fusion module to attain a fused molecule representation.
This fused representation is then fed into the decoder, which yields the final prediction.

these correlation coefficients, we can propagate messages
across the weighted reaction graph in a more meaningful
manner. To quantify the correlation between two molecule
nodes, we make use of an attention mechanism (Veličković
et al., 2018; Sukhbaatar et al., 2015; Weston et al., 2015),
deriving the coefficients as follows:

c(hu,hv) = hu � hv, (5)

where � stands for the dot product. In a manner akin to
GAT (Veličković et al., 2018), we also normalize the co-
efficients across all neighbors using the softmax function:

α(hu,hv) = softmaxv (c(hu,hv))

=
exp (c(hu,hv))∑

k∈Nu
exp (c(hu,hk))

,
(6)

where Nu represents the neighborhood of molecule u in the
reaction graph. With this approach, we can quantify the
message transmitted along the weighted reaction graph and
derive the fused representation as follows:

h
′

u =
∑
v∈Nu

α(hu,hv)hv, (7)

where h
′

u denotes the fused molecule representation, which
captures the contextual information and thus enables more
accurate retrosynthesis predictions in multi-step planning,
as will be demonstrated in the experimental section.

Readout. Upon obtaining the fused molecule represen-
tation (FMR), we employ both the FMR and the original
molecule representation as input to predict the reactants us-
ing the decoder. The specifics of the readout process are not
discussed here, but we represent it as a function ψ. Thus,
the readout process can be expressed as follows:

p = ψ(hu,h
′

u), (8)

where p stands for the prediction.

Implementation Details. We implement our proposed
module based on Transformer (Karpov et al., 2019) given
its use of an end-to-end training paradigm, as depicted in
Figure 4. It’s important to note that our method is a general
framework and can inspire future work to incorporate our
framework into other retrosynthesis models.

4.3. Training and Inference

Training. During the training phase, we use the entire
reaction graph as input, facilitating parallel computation.
Given the SMILES representations of molecules (A, B, C,
D) present on the reaction graph, the output should corre-
spond to the SMILES representations of (B+C, D, G+H,
E+F). Notably, while predicting B+C, input A is regarded
as informative, but the information of (B, D) are not consid-
ered. Therefore, during training, the information on child
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Figure 5. Overview of the inference process. We start from the
target molecule A and perform backward chaining to do a series
of one-step retrosynthesis predictions until all the final reactants
are starting materials.

molecules is excluded when making the current prediction.
Thanks to the attention mechanism, our predictions for all
reactions along the reaction graph are parallelized during
the training phase. This can be achieved by leveraging the
adjacency matrix and masking the inputs of child molecules.
The loss function can be expressed as follows

L(y, p) = −
n∑

i=1

K∑
j=1

yij log (pij) , (9)

where yij and pij are the predicted and ground truth values
at the j-th position for the i-th target molecule sequence. In
other words, the training is parallelized on all the retrosyn-
thesis reactions in the reaction graph.

Inference. During the inference phase, we initiate the
process with the target molecule T and apply backward
chaining to conduct a series of one-step retrosynthesis pre-
dictions until all reactants have been identified as starting
materials. After predicting the reactant molecules for each
retrosynthesis step, we cross-reference the set of starting
materials to verify whether the predicted reactants are in-
deed starting materials. If they are, we add them to the
predicted reactant set. If not, we establish a new path and
predict the output for the next step. The inference process
concludes once the path set is emptied. This inference pro-
cess is graphically depicted in Figure 5 and procedurally
detailed in Algorithm 1.

5. Experiments
In this section, we evaluate the performance of different
retrosynthesis models on our constructed dataset for ret-
rosynthetic planning.

5.1. Dataset Construction

We construct a benchmark for retrosynthetic planning using
the public USPTO-full dataset, which consists of 906,164
valid reactions from the original 1,808,937, after remov-
ing invalid and duplicate ones. These reactions are used to
construct a reaction network (Li & Chen, 2022), treating
molecules with an out-degree of zero as target molecules.
We use dynamic programming and backtracking to identify

Algorithm 1 Inference given a target molecule
1: Input: Target molecule T , starting material set S
2: Initialize reactant setR = {}, path set L = {}
3: Put the initial path [T ] into L
4: while L is not a empty set do
5: Take an path l from L
6: Predict the reactants rl for expansion given l
7: for reactant r(i)l in rl do
8: if r(i)l ∈ S then
9: Put r(i)l intoR

10: else
11: Generate a new path l′ = l + [r

(i)
l ]

12: Put l′ into L
13: end if
14: end for
15: end while
16: return predicted reactant setR

all synthetic routes for each target, and following the ap-
proach in Chen et al. (2020), we extract the shortest-possible
synthetic routes with leaf nodes as starting materials. This
process yields synthetic routes for 128,469 molecules. We
disregard routes that synthesize target molecules in one step
and split the remaining molecules into training, validation,
and test datasets in an 80%/10%/10% ratio. This results in
46,458 samples for training, 5,803 for validation, and 5,838
for testing. Note that the target molecules in the training
set, validation set, and test set do not intersect. We call our
benchmark RetroBench. Detailed statistics of the dataset
can be found in Appendix A.

5.2. Experiment Setup

Evaluation Protocol. As previously discussed, current
search algorithms (Segler et al., 2018; Kishimoto et al.,
2019; Chen et al., 2020; Kim et al., 2021; Xie et al., 2022;
Yu et al., 2022) primarily utilize search success rate as their
evaluation metric, without verifying if the identified starting
materials can indeed synthesize the target molecule. In this
study, we propose a new evaluation metric: the set-wise
exact match between the proposed starting materials and
the ground truth. For a given target molecule, we carry
out a series of one-step retrosynthesis predictions and em-
ploy search algorithms to select the most promising reactant
candidates for expansion, until all leaf nodes have been
identified as starting materials. We use the starting materi-
als sourced from our constructed reaction network as the
ground truth and compare them to the starting materials
identified through the search. The match is based on a basic
comparison of the InChiKey of the molecule, as used by
AiZynthFinder (Genheden et al., 2020). It’s important to
note that a particular target molecule may have multiple
synthetic routes in the test set. We consider it an accurate

7



FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning

Table 1. Summary of retrosynthetic planning results in terms of exact match accuracy (%).

Search Algorithm Retro* Retro*-0 Greedy DFS

Top-1 Top-2 Top-3 Top-4 Top-5 Top-1 Top-2 Top-3 Top-4 Top-5 Top-1

Template-based

Retrosim (Coley et al., 2017) 35.1 40.5 42.9 44.0 44.6 35.0 40.5 43.0 44.1 44.6 31.5
Neuralsym (Segler & Waller, 2017) 41.7 49.2 52.1 53.6 54.4 42.0 49.3 52.0 53.6 54.3 39.2
GLN (Dai et al., 2019) 39.6 48.9 52.7 54.6 55.7 39.5 48.7 52.6 54.5 55.6 38.0

Template-free

G2Gs (Shi et al., 2020) 5.4 8.3 9.9 10.9 11.7 4.2 6.5 7.6 8.3 8.9 3.8
GraphRetro (Somnath et al., 2021) 15.3 19.5 21.0 21.9 22.4 15.3 19.5 21.0 21.9 22.2 14.4
Megan (Sacha et al., 2021) 18.8 29.7 37.2 42.6 45.9 19.5 28.0 33.2 36.4 38.5 32.9
Transformer (Karpov et al., 2019) 31.3 40.4 44.7 47.2 48.9 31.2 40.5 45.1 47.3 48.7 26.7
FusionRetro 37.5 45.0 48.2 50.0 50.9 37.5 45.0 48.3 50.2 51.2 33.8

match when the predicted starting material set aligns with at
least one of the multiple ground truths. Additionally, we im-
plement a pruning search, halting the search when the length
of the predicted synthetic route surpasses the depth of the
ground truth synthetic route. Utilizing our evaluation metric
allows us to compare the performances of different retrosyn-
thesis models in conjunction with various search algorithms,
thereby providing a benchmark for future studies.

Setting and Baselines. We evaluate the effectiveness of
our proposed retrosynthesis method in conjunction with
three different search algorithms for retrosynthetic planning.
This approach is benchmarked against existing single-step
retrosynthesis models, which can be broadly categorized
into two groups: template-based and template-free models.
Each model is trained using the reactions in our training
dataset. Upon completion of the retrosynthesis training,
we employ the Retro* (Chen et al., 2020), Retro*-0, and
Greedy DFS search algorithms. For all baselines, except for
Transformer, we adhere to their original experimental setups,
including hyperparameters and data processing, as described
in their respective papers. These experiments are conducted
using their publicly available codes. Transformer is imple-
mented using Pytorch (Paszke et al., 2019), and we re-tuned
the learning rate due to the spike phenomenon observed
with the learning rate reported in the original paper. The
template-based baseline approaches we consider include
Retrosim (Coley et al., 2017), Neuralsym (Segler & Waller,
2017), and GLN (Dai et al., 2019). We also evaluate end-to-
end template-free approaches such as Transformer (Karpov
et al., 2019) and Megan (Sacha et al., 2021), as well as
semi-template-based models like G2Gs (Shi et al., 2020)
and GraphRetro (Somnath et al., 2021). Our framework is
depicted in Figure 4. For all hyperparameters, except for
the learning rate (due to the spike phenomenon), we adhere
to the settings reported in the publicly released Transformer

code and do not perform any additional hyperparameter tun-
ing. Detailed information on the hyperparameters can be
found in Appendix B.1. Our proposed model, FusionRetro,
is trained using 2 NVIDIA Tesla V100 GPUs.

5.3. Results

Comparison with Template-free Baselines. The pri-
mary results are presented in Table 1. It’s clear that our
proposed model, FusionRetro, outperforms other template-
free baseline methods. Further insights can be drawn from
Figure 6, which shows that as the depth of the ground truth
synthetic routes increases, the performance gap between
the Transformer and FusionRetro generally widens. This
demonstrates the value of incorporating context information
for representation fusion. In essence, these results indicate
that our proposed model consistently performs better than
Transformer, particularly in predicting long synthetic routes.

Analysis of the Benchmark. The performance of base-
line models on our benchmark does not align well with
single-step retrosynthesis predictions on the USPTO-50K
dataset. Current two-stage semi-template-based models (Shi
et al., 2020; Somnath et al., 2021) either outperform or
match template-based and template-free models on USPTO-
50K single-step retrosynthesis prediction, yet perform
poorly on our benchmark. One main factor is that approx-
imately 95% of reactions in the USPTO-50K dataset have
only one reaction center due to heavy filtering, whereas
in our constructed dataset, around 30% of reactions have
multiple reaction centers. Upon examining the open-source
code of G2Gs, we found that it can only handle cases with
one reaction center, which explains its weak performance on
our benchmark. The performance of template-free models
is not impacted by the number of reaction centers. Addi-
tionally, we present the results of single-step retrosynthesis
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Figure 6. The test accuracy of retrosynthesis models combined
with Greedy DFS at different depths of the ground truth synthetic
routes. Red stars (H) denotes our method (FusionRetro) and Black
circles (•) represents Transformer.

Table 2. Summary of retrosynthesis prediction results in terms of
exact match accuracy (%).

Methods Top-k accuracy %

1 3 5 10

G2Gs 16.5 27.8 33.1 40.4
GraphRetro 48.3 58.4 60.5 62.4
Transformer 55.8 70.3 74.8 78.9

Retrosim 56.5 65.8 69.0 73.1
Megan 59.5 73.9 77.9 81.7

Neuralsym 63.0 73.3 76.0 78.6
GLN 62.9 74.1 78.4 82.7

predictions on our constructed test dataset in Table 2. These
results align with those of retrosynthetic planning in Table 1,
leading us to conclude that single-step accuracy plays a
crucial role in multi-step planning as well.

Analysis for the Depth of Routes. As illustrated in Fig-
ure 6, the accuracy of prediction tends to decrease as the
depth of synthetic routes increases. However, our model
exhibits a slower rate of performance degradation compared
to other baseline models. This indicates the strength of our
approach, which uses contextual information for represen-
tation fusion, particularly when predicting long synthetic
routes.

5.4. Case Study

Figure 7 provides a visual comparison of predictions made
by FusionRetro and Transformer. The upper section of the
figure displays accurate predictions made by FusionRetro,
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Figure 7. We split the predicted synthetic route into individual
reactions. The correct synthetic route predicted by FusionRetro is
depicted at the top, while the route predicted by the Transformer
model is displayed at the bottom.

while the lower section shows incorrect predictions made by
Transformer. It is evident from the figure that Transformer
inaccurately predicts the third-step retrosynthesis reaction.
Although a search can still identify starting materials, these
materials may not be capable of synthesizing the target
molecule. Therefore, the performance of retrosynthesis
prediction is crucial for effective retrosynthetic planning.

6. Conclusion and Future Work
In this paper, we propose FusionRetro, a novel framework
for retrosynthetic planning that exploits crucial context in-
formation on the synthetic route by principled representation
fusion. FusionRetro is the first method in this field that takes
context information into account, greatly boosting the per-
formance for realistic multi-step planning. We further intro-
duce new benchmarks for better evaluation of retrosynthesis
models, especially for practical multi-step planning settings.
Extensive experiments demonstrate FusionRetro can con-
sistently achieve significantly superior performance across
several measurements. We hope our approach can shed light
on the research of data-driven retrosynthetic planning, and
inspire more studies toward the practical multi-step scenario.
Besides, our approach can be viewed as in-context learning
and can inspire more works to further explore in-context
learning techniques in large language models for multi-step
planning. In this way, we can enrich the decision-making
process with valuable context-driven inputs.
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A. Datasets Details

Table 3. The number of target molecules in training/validation/test datasets in term of the shortest depths to synthesize the target molecules.

Dataset

#Molecules Depth
2 3 4 5 6 7 8 9 10 11 12 13

Training 22,903 12,004 5,849 3,268 1,432 594 276 107 25 0 0 0
Validation 2,862 1,500 731 408 179 74 34 13 2 0 0 0
Test 2,862 1,500 731 408 179 74 34 13 2 32 2 1

B. Reproducibility
B.1. Implementation Details

We use Pytorch (Paszke et al., 2019) to implement FusionRetro. The codes of baselines are implemented referring to the
implementation of Retrosim1, Neuralsym2, GLN3, G2Gs4, GraphRetro5, Transformer6, and Megan7. All the experiments of
baselines are conducted on a single NVIDIA Tesla V100 with 32GB memory size. The software that we use for experiments
are Python 3.6.8, pytorch 1.9.0, pytorch-scatter 2.0.9, pytorch-sparse 0.6.12, numpy 1.19.2, torchvision 0.10.0, CUDA
10.2.89, CUDNN 7.6.5, einops 0.4.1, and torchdrug 0.1.3.

B.2. Hyperparameter Details

Table 4. The hyper-parameters for FusionRetro.

max length 200
embedding size 64
encoder layers 3
decoder layers 3
fusion layers 3
attention heads 10
FFN hidden 512
dropout 0.1
epochs 4000
batch size 64
warmup 16000
lr factor 20

C. More results

1https://github.com/connorcoley/retrosim
2https://github.com/linminhtoo/neuralsym
3https://github.com/Hanjun-Dai/GLN
4https://torchdrug.ai/docs/tutorials/retrosynthesis
5https://github.com/vsomnath/graphretro
6https://github.com/bigchem/synthesis
7https://github.com/molecule-one/megan
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Figure 8. The top-1, top-2, and top-3 test accuracy in terms of depth.
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Figure 9. The top-4 and top-5 test accuracy in terms of depth.
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