
7232 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Enhancing Malware Classification via
Self-Similarity Techniques

Fangtian Zhong , Member, IEEE, Qin Hu , Member, IEEE, Yili Jiang , Member, IEEE,
Jiaqi Huang , Member, IEEE, Cheng Zhang , and Dinghao Wu

Abstract— Despite continuous advancements in defense mecha-
nisms, attackers often find ways to circumvent security measures.
Windows operating systems, in particular, are vulnerable due
to fewer restrictions on downloading software from unknown
sources, facilitating the spread of malware. To address this
challenge, researchers have focused on developing techniques
to identify Windows malware, crucial for mitigating potential
damage. Traditional approaches typically categorize threats into
broad classes such as trojans or adware, often failing to capture
the full spectrum of malicious behaviors exhibited by diverse
malware variants. In response, we propose a novel approach
to malware categorization that incorporates both the general
malware family and subfamily for each sample. Our method
leverages self-similarity techniques to extract local semantics
and similarities within the blocks of malware binaries while
preserving correlations between these blocks. We utilize a VGG11
model to capture these features, enabling accurate classifica-
tion. Central to our approach is the conversion of malware
binaries into self-similarity descriptors, facilitating space savings
while capturing essential semantics within blocks. By focusing
on local self-similarities and their geometric layouts across
malware, our method effectively identifies repetitive patterns
indicative of malware behavior. Our proof-of-concept implemen-
tation demonstrates the effectiveness of our framework, achieving
an impressive average precision of 98.2% on a newly gathered
dataset with over 25,000 samples. Moreover, our method offers
significant space savings, outperforming recent research efforts
by a factor of over 96. These results underscore the efficacy of
incorporating self-similarities and correlations within blocks for
robust malware classification, making our approach a promising
solution for real-world malware detection and prevention.

Index Terms— Malware classification, malware family, vari-
ants, self-similarity.

Manuscript received 16 March 2024; revised 25 June 2024; accepted 11 July
2024. Date of publication 25 July 2024; date of current version 1 August
2024. This work was supported in part by startup funds from Montana State
University. The associate editor coordinating the review of this article and
approving it for publication was Dr. Xiaojing Liao. (Corresponding author:
Dinghao Wu.)

Fangtian Zhong is with the Gianforte School of Computing,
Montana State University, Bozeman, MT 59718 USA (e-mail:
fangtian.zhong@montana.edu).

Qin Hu and Yili Jiang are with the Department of Computer Science,
Georgia State University, Atlanta, GA 30303 USA (e-mail: qhu@gsu.edu;
yjiang27@gsu.edu).

Jiaqi Huang is with the Department of Computer Science and Cybersecurity,
University of Central Missouri, Warrensburg, MO 64093 USA (e-mail:
jhuang@ucmo.edu).

Cheng Zhang is with the Department of Computer Information and Decision
Management, West Texas A&M University, Canyon, TX 79016 USA (e-mail:
czhang@wtamu.edu).

Dinghao Wu is with the College of Information Sciences and Technology,
The Pennsylvania State University, University Park, PA 16802 USA (e-mail:
dinghao@psu.edu).

Digital Object Identifier 10.1109/TIFS.2024.3433372

I. INTRODUCTION

MALWARE attacks have become the most potent auto-
mated tool for hackers to launch different cyberattacks

targeting individuals, as well as small, medium, and large
businesses around the world. These attacks can result in
financial losses, data breaches, disruption of services, and
damage to reputation. Cybercrime Magazine [1] reported that
cybersecurity ventures expect global cybercrime costs to grow
by 15% per year over the next year, reaching $10.5 trillion
annually by 2025, up from $3 trillion in 2015. This represents
the greatest transfer of economic wealth in history, risks
the incentives for innovation and investment, is exponentially
larger than the damage inflicted by natural disasters in a year,
and will be more profitable than the global trade of all major
illegal drugs combined.

To avoid great economic loss, cybersecurity researchers
have made significant contributions to detecting malware.
Their techniques are primarily based on two dimensions:
features and algorithms. The most popular techniques [2], [3],
[4], [5], [6], [7] utilize static analysis, dynamic analysis, and
hybrid analysis to extract features, such as opcodes, API calls,
control flow graphs, n-gram byte sequences, and assembly
code frequency. Static analysis requires security profession-
als to have a good command of the structure of malware
binaries. For instance, to extract an imported Dynamic Link
Library (DLL) in a Windows program, developers must first
understand the Portable Executable (PE) format [8]. They then
need to parse two structures in the order of DataDirectories
followed by Import or Import Address Table (IAT). Although
dynamic analysis can obviate the conundrums of static anal-
ysis, it can only collect the behaviors of specific execution
paths since it is hardly possible to traverse all of them.
Hybrid analysis seeks to strike a balance between static and
dynamic approaches, yet encounters similar obstacles as both
methods. Algorithms utilized for malware classification can
be categorized into signature-based and AI-driven algorithms.
Malware signatures are usually the hash values of features
extracted by static analysis, dynamic analysis, or hybrid anal-
ysis. Signature-based algorithms [9], [10], [11], [12] look
for these similar signatures for malware classification. Obvi-
ously, signature-based techniques are only capable of detecting
malware that does not undergo significant changes in the
order of features and codes [13]. Artificial intelligence-driven
approaches [14], [15], [16], [17] are applied to automatically
learn the features from the analysis techniques or abstract

https://orcid.org/0000-0002-1125-7472
https://orcid.org/0000-0002-8847-8345
https://orcid.org/0000-0003-0340-1152
https://orcid.org/0000-0002-9794-2103
https://orcid.org/0000-0002-7196-9463

ZHONG et al.: ENHANCING MALWARE CLASSIFICATION VIA SELF-SIMILARITY TECHNIQUES 7233

useful features from neural network embeddings for malware
classification.

To conclude, the performance of signature-based algorithms
and AI-driven algorithms largely depends on feature extrac-
tion and the learning abilities of machine learning models.
Building on this fact, some researchers are redirecting their
focus towards applying data visualization techniques to mal-
ware classification. The advantages of data visualization in
this context include the incorporation of domain knowledge,
enhanced efficiency, and simplified validation of performance.
To acquire these benefits, data visualization aims to understand
the essence of malware similarity and to train small machine
learning models for correct classification. Unlike existing
works [8], [18], [19], [20], [21] that apply data visualization
directly to a malware dataset more than 10 years old without
much domain knowledge and work on the general catego-
rization, we have recollected a new dataset that combines
general categorizations with their variants by relying on a
set of third-party antivirus products that reflect the current
trend of malware attacks. This study aims to understand
malware similarity and discover underlying repetitive patterns
for malware classification. It’s important to note that our study
is not intended to replace existing dynamic-behavior-based
systems but to complement them, enabling more efficient
malware analysis and broader coverage of malware programs.
Since more than 85% of the malware samples received by
a company belong to a known family or subfamily [22],
removing these known malware executables can greatly reduce
the consumption of resources and manpower. Our multi-fold
contributions can be summarized as follows.

1. We propose the block based self-similarity (BBSS),
a context-sensitive malware visualization classification
framework, to effectively distinguish different types of
malware families and their variants while in the meantime
maintaining high accuracy.

2. We collect a new malware dataset of over 25,000 sam-
ples, meticulously categorized with finer granularity. This
dataset has undergone validation by more than 70 third-
party anti-virus products, dynamic analysis and manual
analysis, offering a more accurate representation of the
prevailing trends in malware attacks.

3. We provide visualizations of Windows feature maps to
aid in the analysis and confirm the efficacy of both
self-similarities within blocks and correlations between
blocks for accurate malware classification.

4. Our methodology ensures the preservation of similarities
among malware samples from the same family and sub-
family while reducing the size of the training dataset by a
factor of 96 compared to other approaches. Additionally,
we find that most antivirus products in VirusTotal [23] do
not distinguish malware samples from their families and
subfamilies simultaneously.

The rest of this paper is organized as follows. Section II
introduces related work. Section III details the system design
and implementation. Section IV introduces the experiment
setup. Section V reports the evaluation results and describes

the limitations of the latest research. We conclude the paper
in Section VI.

II. BACKGROUND AND RELATED WORK

A. Malware Classification by Data Visualization

IBM provides a formal definition of data visualization as the
portrayal of data using familiar graphics, such as charts, plots,
infographics, and animations. These visual representations
effectively convey intricate data relationships and insights in
an easily understandable manner. The Vision Research Lab at
the University of California, Santa Barbara, is a pioneer in this
field, being the first to introduce the idea of data visualization
into malware classification [24]. Their methodology is to con-
vert a malware binary into an image by numeric conversion,
which outputs an array consisting of numbers with a scope
between 0 and 255; then the array is reshaped according to its
file size and written to the disk as an image.

Since the initial release of the work “Malware Images:
Visualization and Automatic Classification [24],” thousands
of works applying data visualization to malware classification
have been coming out within only twelve years. The superior-
ity of techniques applied in these works can be mainly divided
into three dimensions: advanced image processing, advanced
machine learning algorithms and advanced feature extraction
algorithms.

B. Advanced Image Processing for Malware Classification

VisMal [25] applies a contrast-limited adaptive histogram
equalization algorithm to capture local patterns in the data
and enhance the discernibility of malware samples by improv-
ing local contrasts of the regions. This technique enhances
the correlation between byte codes for final classification.
Nataraj et al. [24] primarily exploit the Global Image Struc-
ture Tensor image processing technique [26], [27] to transform
images based on their global structural characteristics. This
technique provides a compact and informative representation
of an image’s spatial layout. Makandar and Patrot [28] intro-
duced a method for malware classification based on wavelet
statistical features. The proposed model consists of three
stages. In the first stage, pre-processing is conducted by apply-
ing wavelet transforms. In the second stage, feature extraction
is performed using the Discrete Wavelet Transform (DWT),
which decomposes the image into four levels. By leverag-
ing wavelet analysis, this method captures both frequency
and time-domain characteristics of malware data, enabling
effective discrimination between different malware classes.
Cui et al. [21] introduced data augmentation techniques to
improve the quality of malware images. They empirically
adjusted parameters relevant to quality, including rotation
range, horizontal translation, vertical translation, image mag-
nification, projection transformation, random zooming, and
nearest padding.

C. Advanced Machine Learning Algorithms for Malware
Classification

Hsiao et al. [29] made use of a set of deep convolutional
neural network architectures and Residual networks to extract

7234 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

features from malware images and classify them. Vasan et al.
[30] utilized Siamese neural networks and one-shot learning
to learn representations of malware images in an unsupervised
manner and uses these representations to classify new malware
samples with minimal labeled data. Singh et al. applied deep
neural network architectures, ResNet-50, including a dense
Convolutional Neural Network (CNN) for classifying images.
Jin et al. [18] introduced a different approach for imaged
malware detection by an autoencoder that embeds convolu-
tional neural networks. They trained autoencoder models to
reconstruct these images and learn the functional character-
istics of malware. The reconstruction error is then used as
a measure of anomaly, enabling the detection of previously
unseen malware samples. TL-CNN presents a method for
malware classification on Android devices utilizing transfer
learning and deep convolutional neural networks (CNNs) [31].
The authors leveraged pre-trained CNN models on large-scale
image datasets and fine-tune them using malware images
to classify them into different categories. By transferring
knowledge learned from general image recognition tasks to
the specific domain of malware classification, the proposed
approach achieves high accuracy and efficiency in identifying
malware samples on Android devices.

D. Advanced Feature Extraction Algorithms

MDMC [32] converts a malware binary into byte sequences
and calculates byte transfer probability matrices. These
matrices are created by correlating neighboring bytes and
computing the probability of each byte pair across all byte
pairs. The transfer probability matrices are then transformed
into Markov images, which are analyzed using a CNN to
capture sequential dependencies. Liu et al. [33] extracted
features at various locations and scales within a malware
image, which is divided into small patches. Each patch is
further subdivided into smaller bins. As a sliding window
moves across the image, it computes gradient histograms for
each local bin. The image feature descriptors are then obtained
using cascaded connection functions. These descriptors are
organized into multiple blocks, with each block containing m
× m sub-blocks. All feature blocks from the training images
are clustered into k centers, and each feature block is encoded
using the index of its closest center. Finally, the encoded
feature blocks are processed by a histogram operator to form
the feature vector. Chen et al. [34] disassembled a malware
executable into assembly code, which is further divided into
basic blocks. They collect opcodes from these basic blocks
and then apply the Simhash algorithm to obtain hash bits,
which are used as features for each basic block. Each hash
bit is converted into a pixel, where 0 is converted to 0 and
1 is converted to 255. Finally, these pixels form an image.
Adkins et al. [35] adopted similar methods to extract features
but replaced registers with “REG”, locations with “LOC”,
constant memory references with “MEM”, constant values
with “CONST”, and variable references with “VAR”. Then,
every four instructions are grouped to generate n-grams, which
are further processed by MD5. The lowest truncated bits of
the MD5 sum are used as the feature hash index.

E. Summary

Although the above methods have achieved good results in
malware classification, most of them primarily focus on the
distribution of bytecode within the program as a whole [18],
[21], [24], [28], [29], [30], [31]. Fortunately, another set of
methods takes into account the local correlations between
bytecodes [25], [32], [33], [34], [35]. However, for some
malware families with a large number of variants, their
methods are greatly discounted. Therefore, we need to return
to the essence of malware classification. For the general
malware categorization, it is based on the behavior of malware.
However, these behaviors can vary significantly in the form
of code across different variants. A variant refers to a new
version of malware based on existing malware with modifi-
cations. Therefore, we should focus on finding these similar
code sequences, their inherent semantics, and their relative
geometric positions. In this paper, we collected more than 25k
malware samples and obtained their family labels as well as
variant labels (subfamily labels) by grouping the results from
more than 70 antivirus products in VirusTotal. We present
BBSS, which converts malware binaries into byte codes that
are divided into blocks. It uses the self-similarity technique to
construct semantics similarity within blocks and VGG11 [36]
to capture these similarity descriptors as well as their geo-
correlations. VGG11 is a convolutional neural network (CNN)
architecture that is part of the Visual Geometry Group (VGG)
family of models, which were developed by researchers at the
University of Oxford. It is a foundational CNN architecture
that combines simplicity with competitive performance and
makes it a valuable model in the field of computer vision.

III. DESIGN

A. Overview of the BBSS Framework

The four primary objectives of BBSS are: i) Effectively
classify malware samples into their respective families and
subfamilies, ii) Resist the influence of non-rigid deformation
within blocks for recognizing malware variants, iii) Preserve
similarities for malware belonging to the same family and
subfamily while significantly reducing the overhead on model
training, and iv) Provide a data visualization validation method
to assist in malware analysis. The BBSS framework, illustrated
in Fig. 1, integrates several key components to achieve its
objectives. Third-party antivirus products provide family and
subfamily labels, which are refined and consolidated by the
label cleanser using algorithms such as the longest common
subsequence and MalwareBazaar malware family dictionary
matching [37], alongside dynamic and manual analysis. The
program analysis framework disassembles malware samples
into instructions, identifies functions and basic blocks, and
extracts essential program metadata. The semantics and fea-
ture engineering processor then converts malware binaries
into byte sequences, organizes them into blocks, employs
context-sensitive self-similarity techniques to extract their
local semantics and similarities, preserves their geo-correlation
between blocks, resizes them for input into the classifier, and
generates Windows feature maps to aid in analysis. Finally, the
classifier utilizes a VGG11 model to capture local and global

ZHONG et al.: ENHANCING MALWARE CLASSIFICATION VIA SELF-SIMILARITY TECHNIQUES 7235

Fig. 1. The overview of BBSS framework.

features in a global ensemble of self-similarity descriptors,
enabling accurate malware classification based on a hierarchy
of concepts.

Once the VGG11 model is fully trained, it can be used to
classify malware samples through a multi-step process. First,
the malware program is processed by the semantics and feature
engineering processor, which calculates self-similarity descrip-
tors for each block. These descriptors are then processed using
a binned log-polar representation, followed by concatenation
and normalization. The resulting normalized descriptors are
resized to a fixed size and then fed into the VGG11 model for
classification.

B. The Components of the BBSS Framework

1) Third-Party Anti-Virus Products: In our study, we utilize
VirusTotal as the third-party antivirus product provider. It is
a website launched in June 2004, developed by the Spanish
security company Hispasec Sistemas, a subsidiary of Google
Inc. It aggregates numerous antivirus products and online
scan engines to check for malware. The virtualization solution
employed by VirusTotal is the Cuckoo sandbox. Users can
submit files up to 650 MB to the VirusTotal website through
the provided API by specifying the file path and a hash
value calculated based on the file using SHA256, SHA1,
or MD5 as arguments. Once the file is submitted, VirusTotal
runs it through a series of checks, including scanning with
a large number of antivirus engines and other security tools.
These engines check for known malware signatures, suspicious
behavior, and other indicators of compromise. VirusTotal
aggregates the results from all the scanning engines and tools
into a single report, which provides information about the file’s
detection status across different engines, as well as additional
details such as file metadata. The detection outcomes are
stored as a dictionary and can be saved to a JSON file.
Due to the limitations of the free API, which allows only
500 samples to be submitted per day, it took us nearly two
months to collect all the labels. Presently, VirusTotal handles
approximately one million submissions each day. The results
of each submission are then shared with the entire community
of antivirus vendors who contribute their tools to the Virus-
Total service. In return, vendors benefit by incorporating into
their products the malware signatures of new variants that their
tools have missed but a majority of other tools have flagged
as malicious [23]. Popular tools such as McAfee, F-Secure,
Tencent, 360, and Microsoft are included in VirusTotal and

widely adopted on both laptops and mobile devices. In this
study, we leverage VirusTotal to ensure the reliability of our
datasets and to provide family labels and subfamily labels for
the label cleansing process.

2) Label Cleanser: To counteract the inaccuracy of a
single antivirus product in detecting malware executables,
we integrate the results from more than 70 antivirus prod-
ucts to ensure the reliability of our dataset. VirusTotal
aggregates results from all antivirus products into a sin-
gle report for a submitted malware sample. However, each
antivirus product provides labels in different formats. For
instance, for the same malware sample, Bkav may label
it as “W32.FamVT.CoinminerFLDTTc.Worm,” Lionic might
label it as “Trojan.Win32.Generic.4!e,” Elastic could mark
it as “malicious (high confidence),” and MicroWorld-eScan
might identify it as “Trojan.GenericKD.43163708.” Due to this
inconsistency, direct utilization of these labels is not feasible
and may yield insufficient information. Instead, we employ
a regular expression to split the label strings by non-
alphanumeric characters. This process breaks down each label
string into a set of substrings. Subsequently, we filter out
substrings that are not alphabetic and have lengths smaller than
3. This filtering process excludes numeric values and short
substrings, which are typically less informative for describing
malware families or subfamilies.

Moreover, for each malware sample, it will have a set of
substrings representing possible family labels or subfamily
labels. Although these labels may differ slightly, they should
represent the same underlying concept, such as “ransom”,
“ransomkd”, “ransomgen”. To determine precise labels, we use
the longest common subsequence algorithm to calculate the
similarity rate among these labels and establish an appropriate
threshold thr to integrate them. To guarantee that they are
replaced by the same labels, we sort the labels by their
lengths and use the shortest ones as replacements. We then
consolidate similar names with identical meanings below the
threshold, such as “pua” and “pup”, both denoting potentially
unwanted applications. We filter labels that are not related
to describing a malware family or subfamily by matching
them to the MalwareBazaar dictionary, such as “generic”,
“application”, etc. We use substrings with the top t frequencies
as potential malware family or subfamily labels. Next, we pair
the substring with the highest frequency with each of the
remaining t − 1 substrings to generate candidate malware
family-subfamily labels for each sample. This approach helps

7236 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

in excluding categories like “trojan.adware” and “pua.adware”
and specifying a more specific category as “trojan”, “adware”,
and “pua” lack specific subfamily distinctions. After collecting
candidate malware family-subfamily labels for all malware
samples, we employ the same algorithm to combine their
labels. This yields a set of malware family-subfamily labels.
Finally, after collecting and processing the malware sam-
ples, we classify them into their respective family-subfamilies
categories, thus completing the creation of our dataset. Fur-
thermore, we validate our datasets through random sampling,
dynamic analysis using a prominent open-source malware
analysis system for 5 minutes (Cuckoo sandbox [38]), and
manual analysis like reverse engineering. This validation fol-
lows a similar method akin to [22], sampling 10 instances from
categories with fewer than 150 samples and 15 from clusters
with more than 150, ensuring the reliability of our dataset.

3) Program Analysis Framework: angr is a
multi-architecture binary analysis toolkit capable of
performing dynamic symbolic execution and various
static analyses on binaries, making it very popular among
researchers. We utilize angr [39] as our program analysis
framework to disassemble malware binaries, generate
instructions, divide them into basic blocks and functions,
and extract important program metadata. angr translates
binary code into human-readable assembly instructions based
on the architecture’s instruction set, with a direct mapping
between binary codes and instructions. This process includes
both opcode and operand decoding. For example, the binary
sequence “83 C2 03” is disassembled into the assembly
instruction “add edx, 3” based on the x86 instruction set,
where “83” specifies the encoding for the “add” opcode, “C2”
specifies “edx” as the destination operand, and “03” specifies
“3” as the source operand. Once the instructions are recovered,
angr identifies sequences of instructions with a single entry
point and a single exit point as basic blocks. The entry point
of a basic block is typically the first instruction in a function,
the target of a jump or branch instruction, or the instruction
following a jump or branch instruction. The exit point of a
basic block usually includes jumps, calls, and branches.

During the generation of function metadata, we notice that
some function names start with “sub” and “loc”. It’s important
to note that all malware samples are stripped binaries, meaning
their symbol tables are removed. Consequently, we cannot
directly recover their original user function names; instead,
they are replaced by combining “sub” or “loc” with func-
tion addresses. The remaining functions typically represent
internal functions added by the framework or compiler for
better analysis and program optimization, as well as Windows
system functions that are not publicly available. Therefore,
we only collect basic block and instruction metadata within
the user functions, as the remaining functions are either not
publicly available or do not affect the program’s functionality.
This program metadata includes the average instruction length
(avg_instr), and average basic block size (avg_bb) in bytes.
These metrics will be used by the semantics and feature
engineering processor for further analysis.

4) Semantics And Feature Engineering Processor: Variants
of malicious programs from the same family often reuse

code [40], [41], [42]. Using functions as the basic unit for
malware classification significantly reduces accuracy because
functions can replace a function call site with the body of
the called function due to compiler or manual optimizations.
Additionally, accurately identifying function boundaries is
inherently difficult [43], [44]. Binary analysis frameworks such
as angr, IDA, and others also face challenges in accurately
recovering function boundaries in binary programs, making
the use of functions as a detection unit impractical. Moreover,
using individual instructions as the basic unit is not effective
because they lack sufficient semantics.

Therefore, we adopt basic blocks as basic units for classi-
fication. A basic block is a basic semantic and control unit
for a program. It is a sequence of instructions in a program
with the property that, if the first instruction in the sequence
is executed, all subsequent instructions in the sequence will
also be executed in sequence, and no instructions outside of
the sequence will be executed until the last instruction in the
sequence has been executed. In other words, a basic block
represents a straight-line code sequence with no branches in
or out, except at the entry and exit points. If we use basic
blocks as the fundamental unit for malware classification,
it can simplify the analysis process by breaking down complex
programs into smaller, more manageable pieces. Analyzing
basic blocks individually makes it easier to understand pro-
gram behavior since each functionality typically uses a certain
set of instructions. Furthermore, basic blocks provide a natural
boundary for many analysis techniques because they represent
units of code that can be executed atomically. This enables
analysis algorithms to focus on specific portions of the pro-
gram without considering the entire program at once, leading
to more efficient and scalable analysis techniques. In summary,
basic blocks can provide a structured approach to analyzing
and understanding the behavior of computer programs.

In this paper, we present a “local self-similarity technique”
that captures local self-similarities and preserves the correla-
tions between them. Self-similarity is closely related to the
concept of statistical co-occurrence of instruction sequences
across programs, which is captured by Mutual Informa-
tion (MI). Alternatively, internal joint instruction statistics
are often computed and extracted from individual programs
and then compared across programs. Most existing methods
are restricted to measuring the statistical co-occurrence of
instruction-wise elements (byte codes, opcodes, operands,
or assembly characters) and are not easily extendable to the
co-occurrence of larger, more meaningful patterns such as
basic blocks. In some cases, such as with MI, this limitation
is due to the curse of dimensionality. Additionally, statistical
co-occurrence is often assumed to be global (within the entire
program), a very strong assumption that is frequently invalid.
In our approach, self-similarities are measured locally (within
a block). Our framework explicitly models both local and
global correlations of self-similarities. Furthermore, we use
basic blocks as the fundamental unit for measuring local self-
similarities, as they capture more meaningful semantic patterns
than individual instructions.

We aim to compare a “template” malware variant, F,
to another malware variant, G. The template malware F serves

ZHONG et al.: ENHANCING MALWARE CLASSIFICATION VIA SELF-SIMILARITY TECHNIQUES 7237

as a standard baseline, allowing us to assess similarities and
identify common patterns between the two variants. Notably,
F and G do not need to be the same size. While measuring
similarity across objects can be complex, similarities within
each malware sample can be easily revealed using simple
similarity measures such as the sum of squared distances
(SSD). SSD is calculated by taking the difference between
each pair of instructions, squaring the difference of each byte,
and summing them up. This results in local self-similarity
descriptors that can be matched across malware samples.
To compute local self-similarity descriptors for a basic block,
we must first identify the baseline instruction. However, the
fixed calling convention of the instruction set poses a chal-
lenge: comparing instructions within this convention to those
nearby in the basic block can yield similar self-similarity
descriptors for equivalent instructions from different basic
blocks ending with call sites in another malware sample. This
similarity complicates the differentiation of various malware
samples. As a result, we use the center instruction in the basic
block for comparison. Additionally, due to the varying sizes
of basic blocks, using a uniform number of self-similarity
descriptors to encode them is impractical. Analyzing each
basic block individually is time-intensive (two times longer),
requiring the division of large basic blocks into smaller chunks
and locating their center instructions, which may not fully
leverage the benefits of static analysis. Furthermore, direct
comparison is hindered by the various lengths of instructions.
Therefore, we utilize the integral average instruction length
along with the integral average basic block size. This mean
value provides a measure of the “typical” value in the dataset,
incorporating the influence of extreme values related to special
basic blocks pertinent to our analysis. To mitigate the impact
of instruction disorder caused by using the integral average
instruction length and basic block size, we densely compute
local self-similarity descriptors around the malware sample.
Our result in Section V shows that the similarity between
malware belonging to the same family and subfamily is
preserved and proves the effectiveness of densely computing
local self-similarity descriptors to mitigate the impact. Each
descriptor is derived from the squared sum of distances
between any average instruction and the center instruction
within its corresponding block (using “average instruction”
and “block” to represent an integral average instruction
and an integral average basic block, respectively). To man-
age the increasing positional uncertainty with distance and
instruction disorder caused by different development environ-
ments, we employ a binned log-polar representation for each
block [45].

We associate a “local self-similarity” descriptor di, j with a
center average instruction i and any other average instruction
j within the same block b. The term “local” denotes a
small portion of the malware (e.g., 2%) as opposed to the
entire malware. This descriptor is calculated using the simple
sum of square differences (SSD, see Eq. (1)) between their
instruction bytes, where k represents an instruction byte. Local
self-similarity descriptors for a block are calculated densely
within a byte window. After all self-similarity descriptors
are calculated, each is further transformed by the correlation

calculation Eq. (2). The correlation calculation provides a
quantitative measure of similarity between instructions, where
a higher value indicates a higher degree of similarity. The
use of the exponential function implies that small differences
between instructions result in relatively large values of C(di, j),
emphasizing robustness against minor variations while penal-
izing larger discrepancies more severely. This process results
in a “correlation matrix” Ci for the block. The correlation
matrix Ci is then transformed into log-polar coordinates and
partitioned into m ∗ n bins (m angles, n radial intervals).
The maximum values typically arise from the instructions
that exhibit the most similar semantics, representing the most
characteristic features of blocks. We select the maximal value
in each bin, and these maximal values form the form the m ∗n
entries of our final local “self-similarity descriptors” vector di
associated with the center instruction i . This approach also
addresses instruction disorder as we always take the maximum
values. To match an entire malware F to G, we compute
the local self-similarity descriptors di densely throughout F
and G for every block. This significantly accelerates the com-
putation of self-similarity descriptors because the processing
of each block is independent, allowing us to parallelize the
computation using multi-threading. All the local self-similarity
descriptors in F together form a single global “ensemble
of self-similarity descriptors,” which maintains their relative
geometric positions. A good match of F in G corresponds
to finding a similar ensemble of self-similarity descriptors
in G, similar both in descriptor values and their relative
geometric positions. To reduce sensitivity to outliers and
improve numerical stability [46], the global “ensemble of self-
similarity descriptors” d is normalized by linearly stretching
their values to the range [a, b] by the Eq. (3) and Eq. (4)
where dmin is the minimum value in d and dmax is the
maximum value in d, dstd is the standardized vector with
values in the range [a, b]. These descriptors are concatenated
as a self-similarity descriptor vector, which is reshaped to a
size (m∗n, h, w) where h and w are the height and width of the
input to the classifier before being fed into the classifier. The
semantics and feature engineering process can also generate
a collection of Windows feature maps for malware samples
to aid analysis. This is achieved by using the recommended
fixed widths for Windows feature maps with variable heights,
based on the sizes of the self-similarity descriptor vectors as
specified in [24]. Each vector consists of a set of local self-
similarity descriptors, which are calculated and normalized for
individual blocks, with each block containing three values.
By multiplying each self-similarity descriptor vector by 255,
we map its values to a range of 0 to 255, representing pixel
values.

di, j =

n∑
k=1

(ik − jk)2 (1)

C
(
di, j

)
= exp−di, j (2)

dstd =
d − dmin

dmax − dmin
(3)

dscaled = dstd · (b − a) + a (4)

7238 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Fig. 2. The architecture of employed classifier.

Properties and benefits of the“self-similarity descriptor”:

• Self-similarities are considered as a local property of
a malware sample and are therefore measured locally,
within the context of a block, rather than globally across
the entire malware. This approach broadens the appli-
cability of the descriptor to encompass a wide range of
complex malware variants.

• By selecting the maximal correlation value in each bin,
the descriptor becomes less sensitive to the precise posi-
tion of the best match within that bin due to local affine
deformations resulting from different development envi-
ronments. As the bins adapt in size with changes in future
instructions and basic blocks, this feature accommodates
additional radially increasing non-rigid deformations.

• Employing blocks as the fundamental unit for assess-
ing internal self-similarities captures more meaningful
functional patterns than analyzing individual instructions
alone.

5) Classifier: estimates the probabilities at which a malware
sample is classified into a specific malware family and subfam-
ily. Our goal is to identify a similar ensemble of descriptors
between malware samples, which are similar both in descrip-
tor values and in their relative geometric positions. Relative
geometric positions represent the correlation between blocks.
Using algorithms such as finding the largest common regions
in their descriptors poses efficiency challenges and faces
the curse of dimensionality. However, convolutional neural
networks (CNNs) offer a more efficient solution. CNNs excel
at capturing local similarity and the relationships between
neighboring regions. As the network depth increases, CNNs
can understand malware classification in terms of a hierarchy
of concepts. Therefore, we use CNNs for the final malware
classification. Specifically, we adopt the widely used VGG11
architecture. The architecture of VGG11, employed in our
study for the dataset presented in Section IV, is shown in
Fig. 2. It consists of six components: five convolutional blocks
and one fully connected block.

The classifier depicted in Fig. 2 is built using a training
dataset comprising a ensemble of descriptors of various mal-
ware programs. The input to the classifier is a 4-D vector

with dimensions (batch_si ze, c, h, w), where batch_si ze, c,
h, and w respectively represent the number of samples per
batch, channels, height, and width of an image. The initial
convolutional block includes f 1 zero-padded filters, each
with a kernel size of (k1, k1), a stride s1, channel-wise
batch normalization, ReLU activation, and max-pooling. Batch
normalization calculates the mean and standard deviation of
the inputs within each batch of data during training and then
normalizes the inputs based on these statistics. This ensures
that the inputs to each layer have a similar distribution, which
helps stabilize the training process and accelerates conver-
gence. ReLU can output zero for negative input values, which
can lead to sparse activations in the network. This sparsity can
help reduce overfitting and improve generalization. ReLU can
also help alleviate the vanishing gradient problem because it
has a constant gradient of 1 for positive input values, regard-
less of the input magnitude. Max-pooling, with kernel size
k2 and stride s2, reduces spatial dimensions, retains critical
information, and fosters translation invariance, enhancing the
network’s robustness and computational efficiency. After max-
pooling, the output of this block yields Y C

1 with f 1 channels,
having dimensions (batch_si ze, f 1, h1, w1). Subsequently,
another convolutional block follows the first one, differing only
in the number of zero-padded filters f 2. Its output Y C

2 assumes
dimensions (batch_si ze, f 2, h2, w2) and serves as input to
the third convolutional block. The third convolutional block
comprises two layers, with the first layer lacking max-pooling
and the second layer employing it. Both layers share the
same number of zero-padded filters f 3, channel-wise batch
normalization, and ReLU activation. The fourth and fifth con-
volutional blocks follow suit, differing only in the number of
zero-padded filters (f 4). The output of the max-pooling layer
in the fifth convolutional block is flattened and forwarded to
the fully connected block, which consists of three feed-forward
layers. The first two layers each contain f c1 neurons, ReLU
activation, and a dropout rate dr , while the last fully connected
layer comprises f c3 neurons, corresponding to the number
of malware families in the dataset. Its output P has a shape
(batch_si ze, num_class). Additionally, we employ CrossEn-
tropyLoss to evaluate discrepancies between true labels and
predictions as expressed in Eq. (5) and Eq. (6), where Pn and

ZHONG et al.: ENHANCING MALWARE CLASSIFICATION VIA SELF-SIMILARITY TECHNIQUES 7239

Qn represent the output probability for each malware family
for a sample in the batch and its corresponding true label.
We utilize Stochastic Gradient Descent as the optimizer, with a
learning rate lr , to iteratively update parameters using gradient
information.

ln = −

num_class∑
i=0

log
exp(Pn,i)

num_class∑
j=0

exp(Pn, j)

Qn,i (5)

l(P, Q) =

N∑
i=1

ln

N
(6)

IV. EVALUATION SETTINGS

A. Evaluation Metrics

The metrics for evaluating the performance of BBSS include
accuracy and efficiency. Let Ci, j denote the number of mal-
ware samples from family i classified into family j by the
Classifier, where i, j ∈ 1, 2, · · · , N and N represents the total
number of malware families. We can utilize the commonly
used machine learning parameters T P , F N , F P , and T N
to define the performance metrics of BBSS. Specifically, for
a malware family i , T Pi represents the number of correctly
predicted samples belonging to family i , denoted as T Pi =

Ci,i ; T Ni indicates the number of correctly predicted samples

belonging to other families, given by T Ni =

N∑
j=1, j ̸=i

C j, j ;

F Ni denotes the number of misclassified samples belonging

to family i , calculated as F Ni =

N∑
j=1

Ci, j − Ci,i ; and F Pi

stands for the number of samples misclassified into family

i , expressed as F Pi =

N∑
i=1

C j,i − Ci,i . Thus, the metrics to

evaluate the performance of the Classifier can be formally
represented as follows:

1) The accuracy is defined as the ratio of correctly pre-
dicted malware samples to the total number of malware
samples:

accuracy =
T P i + T N i

T P i + F N i + F P i + T N i
· (7)

2) The precision for a malware family i is calculated as the
ratio of correctly classified samples to the total samples
classified into this family:

precision =
T P i

T P i + F P i
· (8)

3) The recall for a malware family i is calculated as the
ratio of correctly classified samples to the total samples
belonging to this family:

recall =
T P i

T P i + F N i
· (9)

4) The F1 score for a malware family i is computed as the
balanced average of precision and recall:

F1 − score =
2 ∗ (recall ∗ precision)

recall + precision
. (10)

We also evaluate the efficiency of our BBSS framework.
As BBSS operates in a time-sensitive and space-sensitive
environment, its time efficiency, denoted by avg_time, can
be assessed by the processing time per malware sample,
which includes both feature extraction and classification. Let
total_time represent the total clock ticks used to process
num_ f iles malware samples. We can compute avg_time as:

avg_time =
total_time
num_ f iles

. (11)

In addition to time efficiency, we also evaluate the performance
of BBSS based on the size of the dataset used for training and
testing.

B. Experiment Setup

1) Equipment and Dataset: The PC employed by BBSS
is equipped with 32 logical processors, 24 kernels, and an
installed RAM with a 32.0GB available memory running the
64-bit Microsoft Windows 11 Home operating system. Each
processor is configured with 13th Gen Intel(R) Core(TM) i9-
13900 CPU @3.0GHz, 3000Mhz. The versions of PyTorch,
Pillow and angr to develop our framework are 2.3.0, 10.0.1 and
9.2.74, respectively. Additionally, we collect the malware sam-
ples from VirusShare across seven years from 2017 to 2023
[47]. We filter all malware samples that are not Windows
executables and not detected by more than 10 anti-virus prod-
ucts, and do not have complete program structures. Therefore,
our dataset reflects the trend of Windows malware in recent
years. This dataset is comprised of 25739 malware samples
in total, which belongs to 40 malware families with a varying
number of malware files per family, as detailed in TABLE I.
Adware and trojan are major types of malware in the wild.
The reason is that adware and trojans are often designed with
profit motives in mind. Adware generates revenue through
advertisements, while trojans can be used for various malicious
purposes such as stealing sensitive information or facilitating
other cybercrimes. The potential for financial gain incentivizes
attackers to create and distribute these types of malware
more widely. Additionally, potentially unwanted applications
(PUAs) are also stepped into our eyes. They are usually
bundled with legitimate software. Users may inadvertently
install PUAs while installing the main software they intended
to download.

2) Parameters: The number of considered substrings t is set
to 3, as malware samples combining functionality from more
than three families are typically identified as new variants [48].
These variants are less likely to be active in the wild and
more likely to be detected by antivirus products. We set the
threshold thr to 0.75 based on statistical similarity information
between substrings. To optimize the efficiency of the semantics
and feature engineering processor, we consider the average
instruction length, which is 2.86 bytes, and decide to use
three bytes as the comparison unit. Similarly, we use a region
of 15 bytes for comparison, as using a uniform number of
self-similarity descriptors to encode them is impractical and
examining every basic block in malware programs would be
time-consuming. Consequently, m and n are set to 1 and 3,
respectively, to produce Windows feature maps. In identifying

7240 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
BBSS MALWARE DATASET

TABLE II
FRAMEWORK PARAMETERS

a suitable classifier structure, we experimented with various
configurations of the popular VGG network, ranging from
VGG11 to VGG19. It was determined that VGG11 struck
the optimal balance between accuracy and efficiency. The
constructed classifier comprises five convolutional blocks and
one fully connected block, with detailed model parameters
presented in TABLE II. Since the VGG network requires
a fixed input size, we surveyed the distribution of shapes
for Windows feature maps. We found that when the width
and height reach 512 and 128, respectively, a majority of
Windows feature maps are accommodated. Therefore, w and
h are set to 512 and 128, respectively. Given that our dataset
has highly unbalanced samples across classes, we assigned
a higher probability of selection to samples from minority
classes for each batch to ensure their representation. The
probability of a sample being selected is inversely proportional
to the ratio of the number of samples in its category to the total
number of samples. This means that samples from minority
categories have a higher probability of being selected, while
samples from majority categories have a lower probability.
90% of the samples in each class in our dataset are used for
training, while the remaining are used for testing. Our VGG11
model is trained for 100 epochs.

TABLE III
CLASSIFICATION REPORT

V. EVALUATION RESULTS

A. Accuracy

We first evaluate the accuracy of BBSS on the dataset
and then compare BBSS with several other methods using
different techniques. One can observe from TABLE IV that
the average accuracy, precision, recall, and F1 score of BBSS
are 98.1%, 98.2%, 98.1%, and 98.1%, respectively. Among
the 40 malware categories, over 85% are accurately charac-
terized, with an accuracy of 90% or higher. It is worth noting
that malware samples utilizing anti-emulation, anti-debugging,
code obfuscation, multi-threaded, or polymorphic techniques,
such as worm.allaple, trojan.msil, and virus.virlock, can also
be detected with very high accuracy of over 96.6% (see
TABLE III). Additionally, malware samples from the same
subfamily but different families, such as pua.softpulse and
adware.softpulse, achieve an accuracy of 100%. However,
some malware samples in specific categories, such as tro-
jan.wabot and trojan.kryptik, exhibit relatively lower accuracy
at 66.7% and 60%, respectively. Trojan.wabot is a type of
malware that specifically targets the WhatsApp messaging
platform and allows unauthorized access to infected systems.
Analyzing the disassembly results for trojan.wabot samples
using angr revealed an interesting scenario: antivirus products
classify two main types of malware under this category.
The first type hides itself using a packer, enabling attackers
to remotely control the infected device, execute commands
without the user’s knowledge, and modify registry keys to
run automatically. The second type redirects users to websites
that download trojan.wabot applications. This discrepancy
between antivirus product definitions creates a definition gap.
Additionally, as shown in the Fig. 4, the left and right
images correspond to the first and second types of malware,
respectively, and their Windows feature maps differ signif-
icantly. Consequently, our model achieves low accuracy in
this category. To understand why our model struggles with
trojan.kryptik samples, we conducted reverse engineering on
samples with very different Windows feature maps. We identi-
fied three main types of malware in this category. The first type
behaves normally, the second uses a packer to hide its code,
and the third attaches the trojan.kryptik application processed
by another packer to its data sections. These variations result
in significantly different textures in their Windows feature
maps, presenting challenges for our solution in distinguishing
samples processed by different packers. While developing a
generic unpacker would address this issue, it falls outside
the current scope of our work. Consequently, this remains a
limitation of our approach.

ZHONG et al.: ENHANCING MALWARE CLASSIFICATION VIA SELF-SIMILARITY TECHNIQUES 7241

Fig. 3. Trojan.wabot sample1 (left) and trojan.wabot sample2 (right).

Fig. 4. Trojan.kryptik sample1 (left), trojan.kryptik sample2, and tro-
jan.kryptik sample3 (right).

TABLE IV
ACCURACY ON MALFINER

TABLE IV presents the comparison results among different
classification methods applied to our dataset. Due to the
unavailability of source codes, we re-implemented the most
representative algorithms proposed by other researchers. These
algorithms utilize various data visualization techniques to
target different aspects of malware features for classification.
Specifically, the Deep Neural Network (DNN) [49], K-Nearest
Neighbors (KNN) [50], shallow CNN [19], autoencoder [18],
and CNN with attention technique [20] focus on employ-
ing advanced machine learning algorithms to capture unique
features in malware images. These features include linear
relationships between malware bytes, similarity of data points
through distance comparisons, local features with simple
abstraction, reconstruction error, and the higher importance of

certain bytes. Nearly all of the classification methods failed
to distinguish malware samples from different categories.
Specifically, the CNN with attention technique exhibited a
notably low accuracy of 0.2%, along with very low precision
and F1 score. This suggests that there are no directly important
malware byte codes for classification, as our dataset is complex
and contains malware samples belonging to the same families
or subfamilies, inherently sharing codes. However, KNN per-
formed relatively well with an accuracy of 89%, indicating
evident similarities among malware samples within the same
category. This suggests that such similarities contribute posi-
tively to classification accuracy. Their performance is inferior
to that of VGG11_orig, which achieved an accuracy of 97.8%
by applying VGG11 directly to malware samples for classi-
fication. This demonstrates VGG11’s strong learning abilities
and its effectiveness in distinguishing malware samples from
different categories.

Other algorithms, such as DRBA [21], GIST [24], and
VisMal [25], employed local or global data augmentation tech-
niques to improve the quality of malware images by addressing
specific aspects of visual variation, such as frequencies, ori-
entations, rotation, translation, and image magnification. The
local data augmentation technique used by VisMal achieves
a relatively higher accuracy of 97.8%. In contrast, DRBA
and GIST, which apply global data augmentation techniques,
achieve accuracies of 96.5% and 95.2%, respectively. These
results suggest that maintaining similarity among differ-
ent malware samples is crucial for effective classification.
While these results are noteworthy, they are lower than the
accuracy of our approach, demonstrating the superiority of
our method. For further comparison, LBP [33] considers
the local numerical magnitude relationships across mal-
ware, while MDMC [32] emphasizes the mutual information
between neighboring byte codes across malware. Similarly, the
approach bb_img [34] focuses on the order and sequences of
opcodes in basic blocks to obtain hash bits used as features,
while bb_ngrams combines abstracted assembly instructions
and mutual information between instructions. MDMC and
LBP show very different results: MDMC achieves an accuracy
of 64.2%, while LBP achieves an accuracy of 96%. This
difference is because MDMC considers the overall correlation
across the entire malware sample, whereas LBP focuses on
the local correlation within a block. Additionally, bb_img and
bb_ngram achieve an accuracy of 94.7% and 90.9%, as they
preserve similarity among malware instances to some extent.
However, they also introduce more false positives due to only
collecting opcodes and instruction abstraction. The perfor-
mance of antivirus products in VirusTotal, with an average
accuracy of 16.5%, highlights a limitation in most antivirus
products to provide family and subfamily classifications for
malware simultaneously. This deficiency suggests that individ-
ual products may not offer sufficiently detailed information
to facilitate reliable measures for recovering from attacks.
In contrast, our method achieves the highest accuracy, preci-
sion, recall, and F1 score. This demonstrates the effectiveness
of preserving similarity between malware samples by using
internal self-similarities and their correlations for detecting
malware. Our approach proves to be a reliable method for

7242 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE V
TIME AND SPACE EFFICIENCY

malware detection, showing promising potential in thwarting
attacks.

B. Time and Space Efficiency

Considering the costs associated with storage and com-
puting resources, it is economically impractical to retain
original samples for model retraining to accommodate future
changes. Moreover, given the time-sensitive nature of mal-
ware classification within anti-virus systems, it is crucial
that the process of identifying malware samples does not
introduce significant delays. Even minor delays could result in
missed opportunities to detect malicious processes. Therefore,
we evaluate the performance of our solution based on storage
and time efficiency. TABLE V compares various malware
classification methods in terms of storage requirements and
average processing time. Most methods require substantial
storage of 14.7GB, with bb_ngram demanding the most at
210.9GB. In contrast, our method, BBSS, stands out with
its minimal storage requirement of 0.5GB, saving over 96%
of space compared to most other methods. To evaluate the
efficiency of our proposed framework, we measured the CPU
time required for our dataset to be processed by BBSS during
testing, calculating the average Mean Processing Time (MPE)
per malware sample. Our framework is designed for practi-
cal deployment, avoiding reliance on server infrastructure or
GPU utilization. When it comes to efficiency, the processing
times of various methods vary significantly, with bb_img and
bb_ngram taking 10 seconds and 11.9 seconds per sample,
respectively, while others range from 23.8 milliseconds (CNN)
to 319.8 milliseconds (LBP). Although BBSS has a processing
time of 9.7 seconds, it is substantially shorter than the 120 sec-
onds typically required for dynamic analysis [14]. In summary,
BBSS’s superior storage efficiency and competitive processing
time underscore its effectiveness and reliability in malware
detection, making it a promising solution compared to tradi-
tional methods. This combination of low storage requirements
and reasonable processing times ensures that BBSS can be
seamlessly integrated into time-sensitive malware detection
workflows, providing a practical and scalable solution for real-
world deployment.

VI. CONCLUSION

In this paper, we present a new malware dataset, which com-
prises over 25,000 samples collected over seven years. This
dataset offers a refined level of categorization, encompassing
both malware families and subfamilies. It has undergone
rigorous validation by more than 70 third-party antivirus
products and includes random sampling for dynamic and
manual analysis. This comprehensive dataset more accurately
reflects current trends in malware attacks. We also introduce
a context-sensitive malware visualization classification frame-
work called BBSS. This framework excels at distinguishing
between different malware subfamilies, even within the same
family, and different malware families, even within the same
subfamily–a capability often lacking in current antivirus prod-
ucts on VirusTotal. Furthermore, BBSS significantly reduces
the overhead of model training while preserving the similar-
ities among malware samples within the same families and
subfamilies.

Additionally, our approach differs from many exist-
ing methods that emphasize advanced image processing
or machine learning algorithms for malware classification.
Instead, we return to the foundational principles of malware
classification, focusing on detecting similarities between mal-
ware samples. Our method captures the internal semantics
and similarities within blocks, as well as the correlations
between them. Unlike methods that rely on overall statistical
distributions and local geometric information of byte codes,
our approach is inherently more resistant to changes because
the basic block serves as the fundamental unit of program
functionality.

REFERENCES

[1] S. Morgan. (Nov. 13, 2020). Cybercrime to Cost the
World $10.5 Trillion Annually By 2025. [Online]. Available:
https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-
by-2025

[2] M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns,” in Proc. 12th USENIX Secur. Symp., Washington,
DC, USA, Aug. 2003, pp. 1–19.

[3] R. Bonett, K. Kafle, K. Moran, A. Nadkarni, and D. Poshyvanyk, “Dis-
covering flaws in security-focused static analysis tools for Android using
systematic mutation,” in Proc. 27th USENIX Secur. Symp., Baltimore,
MD, USA, Aug. 2018, pp. 1263–1280.

[4] F. Gagnon and F. Massicotte, “Revisiting static analysis of Android mal-
ware,” in Proc. 10th USENIX Workshop Cyber Secur. Experimentation
Test, Vancouver, BC, USA, Aug. 2017, pp. 1–8.

[5] S. Aonzo, Y. Han, A. Mantovani, and D. Balzarotti, “Humans vs.
machines in malware classification,” in Proc. 32nd USENIX Secur.
Symp., Anaheim, CA, USA, Aug. 2023, pp. 1145–1162.

[6] X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, “MutantX-S: Scalable
malware clustering based on static features,” in Proc. USENIX Annu.
Tech. Conf., San Jose, CA, Jun. 2013, pp. 187–198.

[7] C. Jindal, C. Salls, H. Aghakhani, K. Long, C. Kruegel, and G. Vigna,
“Neurlux: Dynamic malware analysis without feature engineering,” in
Proc. 35th Annu. Comput. Secur. Appl. Conf., New York, NY, USA,
Dec. 2019, pp. 444–455.

[8] F. Zhong, X. Cheng, D. Yu, B. Gong, S. Song, and J. Yu, “MalFox:
Camouflaged adversarial malware example generation based on conv-
GANs against black-box detectors,” IEEE Trans. Comput., vol. 73, no. 4,
pp. 980–993, Jan. 2023.

[9] Y. Wu, C. Sun, D. Zeng, G. Tan, S. Ma, and P. Wang, “LibScan: Towards
more precise third-party library identification for Android applications,”
in Proc. 32nd USENIX Secur. Symp., Anaheim, CA, USA, Aug. 2023,
pp. 3385–3402.

ZHONG et al.: ENHANCING MALWARE CLASSIFICATION VIA SELF-SIMILARITY TECHNIQUES 7243

[10] H. Seo and M. Yoon, “Generative intrusion detection and prevention on
data stream,” in Proc. 32nd USENIX Secur. Symp., Anaheim, CA, USA,
Aug. 2023, pp. 4319–4335.

[11] D.-L. Vu, Z. Newman, and J. S. Meyers, “Bad snakes: Understanding
and improving Python package index malware scanning,” in Proc.
IEEE/ACM 45th Int. Conf. Softw. Eng. (ICSE), May 2023, pp. 499–511.

[12] A. Coscia, V. Dentamaro, S. Galantucci, A. Maci, and G. Pirlo,
“YAMME: A YAra-byte-signatures metamorphic mutation engine,”
IEEE Trans. Inf. Forensics Security, vol. 18, pp. 4530–4545, 2023.

[13] S. Li et al., “PackGenome: Automatically generating robust YARA
rules for accurate malware packer detection,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., New York, NY, USA, Nov. 2023,
pp. 3078–3092.

[14] L. Cui, J. Cui, Y. Ji, Z. Hao, L. Li, and Z. Ding, “API2Vec: Learning
representations of API sequences for malware detection,” in Proc. 32nd
ACM SIGSOFT Int. Symp. Softw. Test. Anal., New York, NY, USA,
Jul. 2023, pp. 261–273.

[15] C. Gao, G. Huang, H. Li, B. Wu, Y. Wu, and W. Yuan, “A com-
prehensive study of learning-based Android malware detectors under
challenging environments,” in Proc. IEEE/ACM 46th Int. Conf. Softw.
Eng., New York, NY, USA, Feb. 2024, pp. 1–13.

[16] S. Dambra et al., “Decoding the secrets of machine learning in malware
classification: A deep dive into datasets, feature extraction, and model
performance,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
New York, NY, USA, Nov. 2023, pp. 60–74.

[17] K. Lucas, S. Pai, W. Lin, L. Bauer, M. K. Reiter, and M. Sharif,
“Adversarial training for raw-binary malware classifiers,” in Proc. 32nd
USENIX Secur. Symp., Anaheim, CA, USA, 2023, pp. 1163–1180.

[18] X. Jin, X. Xing, H. Elahi, G. Wang, and H. Jiang, “A malware detection
approach using malware images and autoencoders,” in Proc. IEEE 17th
Int. Conf. Mobile Ad Hoc Sensor Syst. (MASS), Dec. 2020, pp. 1–6.

[19] X. Xiao and S. Yang, “An image-inspired and CNN-based Android
malware detection approach,” in Proc. 34th IEEE/ACM Int. Conf. Autom.
Softw. Eng. (ASE), May 2019, pp. 1259–1261.

[20] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma,
“Malware analysis of imaged binary samples by convolutional neural
network with attention mechanism,” in Proc. 10th ACM Workshop Artif.
Intell. Secur., New York, NY, USA, Nov. 2017, pp. 127–134.

[21] Z. Cui, F. Xue, X. Cai, Y. Cao, G. Wang, and J. Chen, “Detection
of malicious code variants based on deep learning,” IEEE Trans. Ind.
Informat., vol. 14, no. 7, pp. 3187–3196, Jul. 2018.

[22] X. Ugarte-Pedrero, M. Graziano, and D. Balzarotti, “A close look at a
daily dataset of malware samples,” ACM Trans. Privacy Secur., vol. 22,
no. 1, pp. 1–30, Jan. 2019.

[23] Analyse Suspicious Files, Domains, Ips and Urls to Detect Mal-
ware and Other Breaches, Automatically Share Them With the
Security Community. Accessed: Feb. 14, 2024. [Online]. Available:
https://www.virustotal.com/gui/home/upload

[24] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: Visualization and automatic classification,” in Proc. 8th Int.
Symp. Visualizat. Cyber Secur., New York, NY, USA, Jul. 2011, pp. 1–7.

[25] F. Zhong, Z. Chen, M. Xu, G. Zhang, D. Yu, and X. Cheng, “Malware-
on-the-brain: Illuminating malware byte codes with images for malware
classification,” IEEE Trans. Comput., vol. 72, no. 2, pp. 438–451,
Feb. 2023.

[26] M. Torralba and F. Rubin, “Context-based vision system for place and
object recognition,” in Proc. 9th IEEE Int. Conf. Comput. Vis., Sep. 2003,
pp. 273–280.

[27] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42,
no. 3, pp. 145–175, 2001.

[28] A. Makandar and A. Patrot, “Image-based malware classification using
ensemble of CNN architectures (IMCEC),” Oriental J. Comput. Sci.
Technol., vol. 92, pp. 400–406, Feb. 2017.

[29] S.-C. Hsiao, D.-Y. Kao, Z.-Y. Liu, and R. Tso, “Malware image
classification using one-shot learning with Siamese networks,” Proc.
Comput. Sci., vol. 159, pp. 1863–1871, Jan. 2019.

[30] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng, “Image-based
malware classification using ensemble of CNN architectures (IMCEC),”
Comput. Secur., vol. 92, May 2020, Art. no. 101748.

[31] Z. Bala et al., “Transfer learning approach for malware images classi-
fication on Android devices using deep convolutional neural network,”
Proc. Comput. Sci., vol. 212, pp. 429–440, Jan. 2022.

[32] B. Yuan, J. Wang, D. Liu, W. Guo, P. Wu, and X. Bao, “Byte-level
malware classification based on Markov images and deep learning,”
Comput. Secur., vol. 92, May 2020, Art. no. 101740.

[33] Y.-S. Liu, Y.-K. Lai, Z.-H. Wang, and H.-B. Yan, “A new learning
approach to malware classification using discriminative feature extrac-
tion,” IEEE Access, vol. 7, pp. 13015–13023, 2019.

[34] J. Chen, “A malware classification method based on basic block and
CNN,” in Proc. 27th Int. Conf. Neural Inf. Process. (ICONIP), Bangkok,
Thailand. Springer, Nov. 2020, pp. 275–283.

[35] F. Adkins, L. Jones, M. Carlisle, and J. Upchurch, “Heuristic malware
detection via basic block comparison,” in Proc. 8th Int. Conf. Malicious
Unwanted Softw. (MALWARE), Oct. 2013, pp. 11–18.

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2014, pp. 1–14.

[37] Malwarebazaar Database. Accessed: Jul. 14, 2023. [Online]. Available:
https://bazaar.abuse.ch/browse/

[38] Cuckoo Sandbox Overview. Accessed: May 14, 2024. [Online]. Avail-
able: https://www.varonis.com/blog/cuckoo-sandbox

[39] Y. Shoshitaishvili et al., “SOK: (State of) the art of war: Offensive
techniques in binary analysis,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2016, pp. 138–157.

[40] A. Calleja, J. Tapiador, and J. Caballero, “The MalSource dataset:
Quantifying complexity and code reuse in malware development,” IEEE
Trans. Inf. Forensics Security, vol. 14, no. 12, pp. 3175–3190, Dec. 2019.

[41] D. Korczynski and H. Yin, “Capturing malware propagations with code
injections and code-reuse attacks,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., New York, NY, USA, Oct. 2017, pp. 1691–1708.

[42] J.-W. Jang, J. Yun, J. Woo, and H. K. Kim, “Andro-profiler: Anti-
malware system based on behavior profiling of mobile malware,” in
Proc. 23rd Int. Conf. World Wide Web, New York, NY, USA, Apr. 2014,
pp. 737–738.

[43] X. Meng and B. P. Miller, “Binary code is not easy,” in Proc. 25th Int.
Symp. Softw. Test. Anal., New York, NY, USA, Jul. 2016, pp. 24–35.

[44] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos,
“An in-depth analysis of disassembly on full-scale x86/x64 binaries,”
in Proc. 25th USENIX Secur. Symp., Austin, TX, USA, Aug. 2016,
pp. 583–600.

[45] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 4, pp. 509–522, Apr. 2002.

[46] D. Singh and B. Singh, “Investigating the impact of data normalization
on classification performance,” Appl. Soft Comput., vol. 97, Dec. 2020,
Art. no. 105524.

[47] Virusshare.com—Because Sharing is Caring. Accessed: Feb. 14, 2023.
[Online]. Available: https://virusshare.com/

[48] (2020). Malware Classification Guide. [Online]. Available:
https://any.run/cybersecurity-blog/malware-classification-guide/

[49] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in Proc. 10th Int. Conf.
Malicious Unwanted Softw. (MALWARE), 2015, pp. 11–20.

[50] I. B. A. Ouahab, M. Bouhorma, A. A. Boudhir, and L. El Aachak,
“Classification of grayscale malware images using the K-nearest neigh-
bor algorithm,” in Innovations in Smart Cities Applications Edition 3,
M. B. Ahmed, A. A. Boudhir, D. Santos, M. El Aroussi, and I. R. Karas,
Eds., Cham, Switzerland: Springer, 2020, pp. 1038–1050.

[51] How It Works. Accessed: Feb. 14, 2024. [Online]. Available:
https://docs.virustotal.com/docs/how-it-works

Fangtian Zhong (Member, IEEE) received the
Ph.D. degree in computer science from The George
Washington University in 2021. After that, he was
a Post-Doctoral Scholar with The Pennsylvania
State University and the University of Notre Dame,
respectively. He is an Assistant Professor with Mon-
tana State University. His research primarily focuses
on software security, program analysis, and machine
learning for cybersecurity. He is a member of ACM.

7244 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Qin Hu (Member, IEEE) received the Ph.D. degree
in computer science from The George Washington
University in 2019. She is currently an Assistant
Professor with the Department of Computer Sci-
ence, Georgia State University. Her research interests
include wireless and mobile security, edge com-
puting, blockchain, and federated learning. She has
served as an editor/guest editor for several journals,
the TPC/publicity co-chair for several workshops,
and a TPC member for several international con-
ferences.

Yili Jiang (Member, IEEE) received the Ph.D.
degree in computer engineering from the University
of Nebraska-Lincoln, NE, USA, in 2022. She is
currently an Assistant Professor with the Department
of Computer Science, Georgia State University, GA,
USA. Her research interests include cybersecurity,
machine learning, cloud/edge computing, and wire-
less networks.

Jiaqi Huang (Member, IEEE) received the Ph.D.
degree in computer engineering from the University
of Nebraska-Lincoln, NE, USA, in 2020. He is
currently an Assistant Professor with the Department
of Computer Science and Cybersecurity, University
of Central Missouri, MO, USA. His research inter-
ests include cybersecurity, applied cryptography,
machine learning, connected autonomous vehicles,
and wireless networks.

Cheng Zhang received the master’s and Ph.D.
degrees in computer science from The George
Washington University, Washington, DC, USA, in
2017 and 2020, respectively. He is currently an
Assistant Professor with the Paul and Virginia Engler
College of Business, West Texas A&M University,
Canyon, TX, USA. His research interests include
social network privacy, the Internet of Things, and
the applications of machine learning.

Dinghao Wu received the Ph.D. degree in computer
science from Princeton University in 2005. He is
currently a Professor with the College of Informa-
tion Sciences and Technology, The Pennsylvania
State University. He carried out research in cyber-
security and software systems, including software
security, software protection, software analysis and
verification, software engineering, and programming
languages. He held the PNC Technologies career
development professorship, from 2017 to 2020.
He was a Visiting Professor with EPFL, Switzerland,

from 2018 to 2019. He was a Research Engineer with Microsoft in the
Center for Software Excellence and later the Windows Azure Division
from 2005 to 2009. He received the NSF CAREER Award, the George J.
McMurtry Junior Faculty Excellence in Teaching and Learning Award, and
the College Junior Faculty Excellence in Research Award.

