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Abstract
The remarkable performance of Deep Learning (DL) over the past decades has driven the
population of DL-based services. On the other hand, as edge computing advances, Deep
Neural Network (DNN) applications have expanded from cloud to edge devices, enabling
low-latency and highly secure intelligent interactions. Hence, the need to deploy DNN
models on different hardware devices has rapidly increased. Yet, as most frameworks
prioritize GPU environments, deploying DNN models across diverse hardware requires
significant manual effort and remains challenging. Deep Learning compilers address this
challenge by automating model conversion and optimization, streamlining deployment
across platforms. Leading AI providers, including Google and Amazon, have already
integrated DL compilers into their production workflows. However, while DL compilers
enhance efficiency, they also bring the security and privacy of DNN models to a new
arms race. In this dissertation, we investigate the Deep Learning Compiler concerning
the reverse and anti-reverse engineering of DNN programs.

Model extraction attacks rely on different information sources to extract information
from DNN models. Unlike other attack vectors, DNN programs always carry all the neces-
sary information to run as a standalone program, making them ideal for model extraction.
We introduce Libsteal, a novel framework that reconstructs DNN architectures by
reversing DL compiler-generated DNN programs. Our empirical analysis demonstrates
that Libsteal can extract layer types, attributes, dimensions, and connectivity, enabling
near-exact replication of the original model. We implemented the prototype of LibSteal
and evaluated its effectiveness against both sequential and non-sequential DNN models,
showing it can efficiently recover victim architectures.

As demonstrated in Libsteal, the security risks of reversing-based model extraction
have drawn increasing attention. Other reversing-based model extraction attacks have
been proposed at the same time. Unfortunately, no defense countermeasure is designed
to hinder such kind of attack. To address this gap, we investigate the state-of-the-art
reversing-based model extraction attacks and propose FlatD, an advanced defense
framework that obfuscates DNN Control Flow Graphs using Control Flow Flattening
(CFF). Unlike traditional CFF techniques (e.g., O-LLVM), FlatD provides more effective
and stealthy protection to DNN programs with similar performance and lower scale.

Beyond extraction threats, the integrity of DNN models is another critical concern,
which ensures the correctness and predictability of the model, prevents unauthorized
modifications, and enhances trust in deployment. Several attacks, such as bit-flip attacks,
have been proposed to target the integrity of the DNN model. Although no existing
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attacks directly target DNN programs, we anticipate future risks and propose a prototype
defense mechanism. Our evaluation confirms that the protected DNN program retains
full functionality, demonstrating the effectiveness of our integrity-preserving approach.
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Chapter 1 |
Introduction

Machine learning models, especially deep neural networks (DNNs), have made a massive
impact in the past decade due to their ability to solve complex problems in various
domains, including computer vision [50, 73, 119], speech recognition [47, 51], natural
language processing [31], and autonomous driving [66]. The exceptional performance
of DNNs on recognition and prediction tasks has led to their commercial adoption,
resulting in a surge in demand for deep learning-based services. As a result, there is
an increasing need to deploy DNN models on diverse hardware targets ranging from
cloud servers to self-driving cars and embedded devices [84,137]. However, the existing
frameworks [1,21,26,93,108] depend on vendor-specific operator libraries and mainly focus
on the optimization of a limited set of server-class GPUs. Moreover, Figure 1.1 shows that
different hardware targets (e.g., CPU, GPU, and TPU-like accelerators) require different
on-chip memory architectures and compute primitives. Therefore, deploying DNN models
on devices like mobile devices or embedded systems with limited resources is challenging
and requires significant manual effort. The appearance of Deep Learning Compilers eases
the process by bridging the gap between DNN frameworks and the hardware backend,
making deployment more efficient. Various DL compilers, such as TVM [22], Tensor
Comprehension [125], Glow [116], nGraph [32], XLA [76], and NNfusion [91], have been
proposed by both industry and academic players to address this issue.

1.1 Background

1.1.1 Deep Neural Networks

Deep Neural Networks (DNNs) are a sub-area of Deep Learning in Artificial Neural
Networks (ANNs). They have multiple layers between the input and output, enabling
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them to model complex, non-linear relationships. A DNN can be mathematically described
as a function y = f(x) where the input x ∈ Rn and the output y ∈ Rm. Distinct features
of models define their structure, training dynamics, and overall performance. Below are
the fundamental aspects of DNNs:
Network Architecture: The architecture of a neural network includes the types of
operators, operator dimensions, the connection topology between operators, and specific
attributes of each operator. Broadly, DNN architectures can be categorized into sequential
and non-sequential. Operators are connected linearly in sequential architectures, with
each operator having one input and one output. On the other hand, the non-sequential
architecture may include the operators with multiple inputs and the operators sharing
the same input.
Hyper-parameters: Hyper-parameters are configuration settings that govern the
training process of the model and significantly influence its efficiency and effectiveness.
These include learning rate, which determines the step size during optimization; batch
size, which specifies the number of samples processed before updating parameters of the
model; and the number of epochs, which defines how many times the entire training
dataset is used during training. Selecting appropriate hyper-parameter values is crucial,
as they directly affect the convergence speed, stability, and final accuracy of the model.
Parameters: The function f of a DNN is defined by its learnable parameters, which
include weights, biases, and additional parameters associated with specific operators,
such as Batch Normalization (BN) parameters. Weights represent the strength of
connections between operators, biases allow the model to shift activation thresholds, and
BN parameters normalize operator outputs to stabilize training. These parameters are
updated iteratively during the training process through optimization algorithms, such
as stochastic gradient descent (SGD) [4] or Adam [71]. The quality of these parameter
updates determines the ability of the model to generalize to unseen data.

In our dissertation, we focus on the network architecture information of the DNN
model through our framework, which is the most fundamental model characteristic for
neural network security because, with the knowledge of the network architecture, it is
possible to infer parameters and hyper-parameters. [55,124,126].

1.1.2 Deep Learning Compiler

The objective of deep learning compilers, such as XLA [76], TVM [22], Intel nGraph [32],
and Tensor Comprehension [125], is to simplify the process of deploying DNN models on
different hardware platforms, by automating the optimization and transformation. These
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Figure 1.1: Comparison of compute primitives and on-chip memory architectures across
CPUs, GPUs, and TPU-like accelerators. CPUs use scalar units with multi-level caches
(L1I/L1D, L2, L3). GPUs employ vector parallelism via Streaming Multiprocessors with
shared memory, L1/Texure, and L2 caches. TPU-like accelerators specialize in tensor
operations using Unified Buffer, a large on-chip memory, for activations and weights.
This divergence requires significant manual efforts when deploying the DNN model on
different hardware devices.

compilers can take models described within popular frameworks like TensorFlow [1],
PyTorch [108], MXNet [21], Caffe2 [93], and Keras [69] as inputs and generate standalone
DNN programs or kernel libraries that can be statically linked with executables for CPUs,
GPUs, and TPU-like accelerators. As shown in Figure 1.2, the DL compiler architecture
can be divided into two main phases: frontend and backend, each manipulating one or
several Intermediate Representations (IR).
Frontend. DL compilers first transform high-level model descriptions into computational
graph representations and further convert them into graph IRs. These IRs, independent
of the target hardware platform, define the graph structure, including the network
topology and layer dimensions. They facilitate graph- and node-level optimizations, such
as operator fusion, static memory planning, and layout transformation [22,116].
Backend. From the graph IRs, hardware-specific low-level IRs are generated. These
IRs serve as an intermediary step for tailored optimizations, incorporating knowledge of
DL models and hardware characteristics. The graph IR operators can be converted into
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Figure 1.2: Compilation Flow of the Deep Learning Compiler. The input of the DL
compiler is the model from different frameworks. The compiler frontend transforms the
model description into the computational graph representation and further conveys it
into graph IR to apply graph- and node-level optimizations. At the compiler backend,
it does the hardware-specific optimization on low-level IR and also involves scheduling
and tuning. Finally, the compiler uses the corresponding target executable format (e.g.,
LLVM) to generate the DNN Programs.

low-level linear algebra operators, simplifying the support for high-level operators across
various hardware targets. This stage’s optimization includes hardware intrinsic mapping,
memory allocation, loop-related optimizations, and parallelization [9, 22,111,145]. The
backend also involves scheduling and tuning, where the compiler searches for optimal
parameter settings, such as loop unrolling factors. Recent advancements [3,22,23,99,125,
149,150] introduce automated scheduling and tuning to improve optimization, reducing
manual efforts.
Code Generation. Finally, these low-level IRs are compiled into code for different
hardware targets. Before that, the DL compilers can also integrate with existing infras-
tructure like LLVM [75] and CUDA [136] to leverage third-party toolchains and further
manipulate the generated code.

Thanks to the DL compilers, the DNN model can be deployed on edge devices and
low-power processors [59,101,102,109] with limited hardware resources and low overhead.
Giant AI providers like Amazon and Google also include DL compilers in their AI services
to boost performance [5, 60, 88, 134]. As the need for DL-based services has increased,
DL compilers play a more critical role in deploying DNN models, and the safety of DNN
programs becomes increasingly vital.
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1.2 Motivation
The remarkable achievements of deep learning make the DNN models from giant AI
providers attractive to malicious users and attackers because a DNN model with high
accuracy always needs a large dataset [33, 141] and high training costs. For instance,
training a model using a v2 Tensor processing unit (TPU) in the cloud would cost $400K
or higher [35,110]. Additionally, these AI providers offer service privatization, allowing
them to sell their high-quality DNN models to other companies and organizations for
a license fee. The high value of DNN models raises the arms race between the attacks
and defenses toward the DNN models. The appearance of the Deep Learning Compiler
brings the war to another battlefield.

Existing model extraction works target different attack surfaces [41,55–57,65,103,104,
114,124,126,135,139,143,152]. Most of the previous research [41,56,57,135,139,143] utilize
side-channel information to infer the model characteristics — [55,152] used information
leaked by PCIe bus traffic and memory bus traffic to extract partial or whole DNN
model; [103,124] relied on the query-prediction pairs generated from the target model to
predict the model type. However, these information sources are limited and sometimes
depend on strict assumptions. Due to the emergence of the DL compilers, DNN models
have also been exposed to binary reversing engineering. Unlike the above information
sources, DNN programs compiled from DNN models always contain complete information
that can be used to run in an isolated environment. To take advantage of the information
contained by DNN programs, we propose a new model extraction attack framework to
leak the information from DNN models.

On the other hand, it is always vital to protect the DNN models. Besides our
attacking framework, there are another three attacking frameworks proposed at the same
time [20,89,138] that can reconstruct DNN models by reversing the DNN programs, which
is a significant threat to the security and privacy of DNN models. There exist several
defense mechanisms to defend against the attack from different perspectives. For example,
oblivious RAM (ORAM) [86, 87, 122] can prevent information leakage on the bus by
encrypting the data addresses to hide the memory access patterns. Therefore, attackers
are not able to identify two operations even with the same physical address [122]. Another
potential defense method is to obfuscate the identification of operator dependencies by
inserting dummy read/write operations as fake memory traffic to disturb the tracing of
memory events. The graph-level optimization applied by the DL compiler [22] increases
the difficulty of inferring the computation graph at the system level. However, none
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of these defense frameworks can hinder the DNN programs from reverse engineering.
Fortunately, after carefully investing in all the existing reverse-based model extraction
attacks, we found a key feature adopted by all the attack frameworks. Based on the
observation, we propose an advanced defense framework for protecting DNN programs
from reverse model extraction attacks.

Last but not least, we notice the importance of protecting the integrity of the DNN
programs to ensure their reliability and security. Due to their magnificent achievement
in many decision-making tasks, DNN models face threats not only from information
leakage but also from model compromising, especially fault injection attacks [132]. By
introducing faults into hardware, software, or DNN models, attackers can lead the model
to produce incorrect or unpredictable outputs and break the alignment between the
models’ training behavior and deployment behavior, undermining trust in safety-critical
systems like autonomous driving or financial systems. Actually, several research projects
have been proposed from both the attack and defense sides [7, 53, 82]. Aramoon et al. [7]
proposed AID to verify the integrity of DNN models by generating a set of test cases
called edge points to detect any unauthorized modifications that could compromise their
functionality. Li et al. [82] presented a novel attack framework called FrameFlip to deplete
DNN model inference with runtime code fault injections. However, none of the research
pays attention to the integrity of DNN programs, which provide a new interface for
attackers to manipulate DNN models. We take the first step and implement a prototype
to protect the integrity of DNN programs by ensuring the control flow integrity of DNN
programs.

1.3 Research Goals
In this section, we summarize our research goals and then present an overview of three
research studies in this dissertation. We present our research in three parts:

1. Model Extraction Attack towards Deep Learning Compilers by Reversing DNN
Program

2. Protecting Deep Neural Network Program from Reversing Attacks.

3. Securing Integrity of Deep Neural Network Program from Instrumentation.

With the emergence of Deep Learning Compilers, the threats and defenses of DNN
models have been introduced to a new battlefield. We aim to explore the possibility
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of reverse engineering DNN programs and anti-reverse engineering them. As shown in
the first project, we want to leak the information from DNN programs. In this project,
we statically analyze the DNN programs compiled from DL compilers and identify
several challenges to stealing information from DNN programs. We propose a novel
attack framework to extract the neural network architecture from DNN programs and
reconstruct the DNN models accordingly. At the same time, several projects focusing on
decompiling the DNN programs have been proposed. After carefully investigating these
model extraction attacks, we provide our solution to protect the DNN programs from
reversing based on control flow flattening while preserving efficiency. Finally, we raise
the importance of securing the integrity of the DNN program. We attempt to prevent
the DNN program from fault injection attacks by securing the control flow integrity of
the DNN program.

1.3.1 Model Extraction Attack towards Deep Learning Compilers by
Reversing DNN Program

The importance of the Deep Neural Network model is self-evident. The great value
of high-quality DNN models from giant AI providers always attracts the interest of
malicious users and attackers who want to steal them, as many existing model extraction
attacks try to leak essential information from different attacking surfaces.

Meanwhile, the increasing need to deploy Deep Learning-based services to different
hardware devices, especially edge devices, led to the birth of the Deep Learning (DL)
compiler, which can ease the deployment process by optimizing and compiling the DNN
model into a DNN program. However, it also provides a new attack interface for attackers
to extract information using reverse engineering. Our goal is to explore the possibility of
such a model extraction attack.
Analyze Deep Neural Network Program. Each DNN model layer has a unique
computational pattern, which is reflected in the code generated by DL compilers. These
patterns result in identifiable characteristics within DNN programs, making them more
vulnerable to reverse engineering than general-purpose binary programs. Moreover, unlike
traditional software, the DNN program contains nested loop structures that correspond
directly to specific layer operations.

Furthermore, these computational patterns are consistent across a wide range of DNN
models, regardless of their architecture or application domain. This consistency allows us
to systematically analyze and extract meaningful patterns from a set of well-understood
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white-box models, even if they differ from the target model. By leveraging these patterns,
we can infer key structural components of an unknown model, significantly reducing the
complexity of reverse engineering tasks.
Extract architecture and rebuild DNN Model. To reconstruct a DNN model, key
information about neural network architecture must be extracted, including the types,
attributes, dimensions, and connectivity between the layers. Therefore, we designed our
framework with three main components: binary analyzer, layer identification, and search
engine. These components allow us to obtain this critical information and accurately
rebuild the network architecture.

The binary analyzer disassembles DNN programs and extracts their input/output
(I/O) dimensions. The layer identification step operates on the principle that layers
with the same type, I/O dimensions, and attributes—even if they belong to different
models—are compiled into exact layer functions. This observation lets us systematically
explore possible layer attributes and generate layer functions with the exact I/O dimen-
sions as those extracted from the binary. These generated functions are stored in a layer
repository, which serves as a reference for identifying and matching the unknown layer
functions of the victim model. We can infer the correct layer types and attributes by
comparing the extracted layer functions against those in the repository. We employ a
search engine to reconstruct the model, organizing the extracted layers into a directed
data flow graph based on their I/O dimensions. This structured representation allows us
to efficiently identify a valid computational path that spans all layers, ensuring that the
reconstructed network accurately reflects the original architecture.

1.3.2 Protecting Deep Neural Network Program from Reversing
Attacks.

Given the high risk of information leakage from reversing DNN programs, our goal is
to propose an effective defense mechanism compatible with the DL compiler to prevent
attackers from inferring essential information from them.
Investigating the reversing-based model extraction attacks. We analyzed
the underlying logic and workflow of various attack frameworks to gain deeper insights
into reverse engineering-based model extraction attacks. First, these frameworks all
include an essential component: operator-type (layer-type) recovery. While the specific
techniques employed for this component may vary across frameworks, they all rely
on leveraging computation patterns to infer operator types, which means that each
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operator in a DNN model follows a distinct mathematical transformation to process
input data before passing it to the next layer. This characteristic enables attackers to
identify operator types through binary similarity analysis, matching observed computation
patterns against known references. At the same time, our study reveals that this reliance
on computation patterns also presents an opportunity for strengthening defenses. In
particular, we observed that the Control Flow Graph (CFG) plays a crucial role in all
attack frameworks, suggesting that CFG-based obfuscation could protect DNN programs
against reverse engineering-based extraction attacks.
Improve the robustness of the DNN program. Based on our observations,
we present FlatD, a defense framework that safeguards DNN programs from model
extraction attacks that rely on reverse engineering. FlatD is based on Control Flow
Flattening (CFF), a technique that disrupts the structured execution flow of a program,
making it harder to analyze. However, traditional CFF approaches still leave identifiable
patterns that attackers can leverage. To address this, FlatD enhances obfuscation by
incorporating additional security mechanisms, further complicating efforts to reconstruct
the Control Flow Graph (CFG) and extract meaningful insights. Moreover, FlatD inte-
grates opaque predicates, one-way cryptographic hashing, and indirect jumps to achieve
stronger protection. Opaque predicates introduce misleading conditional statements that
make static analysis unreliable, preventing attackers from quickly mapping out execution
paths. One-way cryptographic hashing ensures that even if certain control flow elements
are exposed, they cannot be reversed or interpreted meaningfully. Additionally, indirect
jumps obscure function call sequences, making identifying layer operations within the
compiled binary challenging.

1.3.3 Securing Integrity of Deep Neural Network Program.

The major goal of this work is to safeguard the integrity of DNN programs and defend
them against potential fault injection attacks, which are a growing threat in the AI
community. As the number of DNN programs deployed on diverse hardware targets
has rapidly increased, ensuring their security, integrity, and reliability has become a
critical concern. Protecting DNN programs from malicious manipulation is essential to
maintaining their performance, trustworthiness, and overall resilience in practice.
Investigate the potential fault injection attacks. In addition to model extraction
attacks, fault injection attacks pose another security risk to DNN programs. A particularly
concerning example is the FrameFlip [82] attack, which leverages RowHammder [70] to
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induce bit flips in the memory regions where DNN parameters or control logic are stored,
which leads to severe consequences, including misclassification of inputs, degradation of
model accuracy, and critical security breaches. RowHammer exploits physical weaknesses
in modern DRAM memory modules by repeatedly activating specific memory rows,
causing electrical interference that can flip bits in adjacent rows without direct access to
those memory locations. The attack can bypass most traditional code integrity protection
mechanisms, particularly those that operate solely at the software level, which often
assume the underlying hardware to be trustworthy.
Protect DNN program code integrity. To counter such a risk, the third work
proposes and develops a framework designed to secure the code integrity of DNN programs
by detecting unauthorized code modifications at runtime. The framework proposes a
crash-based security mechanism, which guarantees that any attempt to tamper with
the DNN program triggers an immediate system termination. This aggressive response
effectively prevents an attacker from gaining further control or causing additional harm
to the system. To implement this protection strategy, we introduce a two-stage prototype
framework consisting of compilation and post-compilation phases, leveraging hashing
and indirect control flow to check the code integrity at runtime. By combining these
methods, the framework enhances runtime integrity enforcement and provides a defense
capable of addressing fault injection attacks, including those leveraging RowHammer.

1.4 Thesis Organization
In this thesis, we aim to explore the reverse and anti-reverse engineering of DNN programs.
In particular, we leverage the new attack interface introduced by Deep Learning Compilers
and attempt to leak information from the DNN programs. Then, we propose an advanced
defense mechanism to protect the DNN programs from decompiling. Additionally, we
secure the integrity of the DNN programs to prevent them from compromising. The
first work presents a novel attack framework that targets the DNN program library. The
framework extracts neural network architecture information from the DNN programs
and rebuilds the DNN models. In the second work, we investigate all the reversing-based
model extraction attacks and propose an advanced defense mechanism to protect the
DNN program from reversing. The third work emphasizes the importance of DNN
program integrity and implements a prototype to secure the control flow integrity of
DNN programs.
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The rest of the thesis is organized as follows. We present related works of this thesis
in Chapter 2. In Chapter 3, we outline our novel attack framework for model extraction.
In Chapter 4, we investigate all the existing reversing-based model extraction attacks
and present an advanced defense mechanism. Chapter 5 focuses on the importance of the
integrity of DNN programs and implements a prototype to secure the integrity. Chapter 6
discusses current limitations and proposes potential improvements. In Chapter 7, we
give out a conclusion of the entire thesis.
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Chapter 2 |
Related Work

In this chapter, we present recent research related to this thesis. First, we introduce the
research focusing on the model extraction attacks. Then, we present the countermeasure
to prevent the model information from leaking.

2.1 Model Extraction Attacks
The basic logic of the model extraction attack is leveraging the information gathered from
different sources to leak the vital features of DNN models. Two primary sources are the
side-channel information and query results from prediction API. The emergency of DL
Compilers also makes it possible for attackers to extract models from reverse engineering.

2.1.1 Side-channel information

Among the various techniques employed in model extraction attacks, exploiting side-
channel information is one of the most common strategies. Side-channels refer to indirect
information leakage that can reveal sensitive data about the internal behavior of machine
learning models without requiring direct access to their parameters or architectures.

For example, by exploiting the memory and timing side-channel, Hua et al. [56]
presented a model extraction attack targeting the convolutional neural network (CNN)
running on a hardware accelerator, which can infer the network architecture and identify
the value of parameters. Similarly, Duddu et al. [41] and Hunt et al. [57] have also
leveraged timing side-channel to perform model extraction. Duddu et al. focused on
measuring execution time to deduce the depth of a DNN model, providing valuable
insights into its layer composition. Hunt et al., on the other hand, introduced Telekine,
a novel attack that observes the GPU kernel execution timing to classify input images,
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demonstrating that timing-based leakage can be exploited not only to reveal model
architecture but also to infer model inputs. Beyond timing channels, researchers have
also exploited cache-based side-channels. Yan et al. [143] showed that by analyzing
cache access patterns, it is possible to reconstruct the architectural layout of DNN
models, including details about the number and types of layers. Another form of side-
channel attack involves power analysis. Wei et al. [135] performed an attack on an
FPGA-based convolutional neural network accelerator to recover the input image without
knowing the parameter. Similarly, Xiang et al. [139] exploited power side-channel data in
embedded systems, successfully extracting critical information about the internal network
architecture and making reliable estimations of model parameters. Additionally, bus
traffic is also an important information source. Zhu et al. [152] introduced Hermes, a novel
attack framework that capitalizes on information leakage from encrypted PCIe traffic.
Their method successfully reconstructed the entire DNN model, including its architecture
and weights, achieving identical inference accuracy to the original target model. Hu et
al. [55] also investigated the vulnerability of bus traffic, utilizing side-channel leakage
from both PCIe and memory buses. By adopting techniques from speech recognition,
they developed a method to predict the architecture of the target DNN accurately.

2.1.2 Prediction API

Many ML-as-a-service platforms provide not only prediction labels but also confidence
scores. Although users benefit from the rich results, they leave a window for attackers
or malicious users to apply model extraction attacks. Many studies have shown that
this information can be exploited to enhance the efficiency of model extraction attacks,
enabling attackers to reconstruct models with fewer queries.

Tramèr et al. [124] focused on scenarios where attackers, without prior knowledge of
parameters or training dataset, can duplicate functionality of the model by leveraging
its prediction API. They demonstrated that attackers can efficiently extract target ML
models with high fidelity by making strategic queries to the prediction API. The attack
is particularly effective for popular model classes, including logistic regression, neural
networks, and decision trees. The attack was evaluated against online services such
as BigML and Amazon Machine Learning. The results indicate that it is possible to
extract models from these services with a limited number of queries. Papernot et al. [107]
proposed a method where an attacker trains a local substitute model to mimic the
target DNN model, which is achieved by generating synthetic inputs and using outputs
of the target model to label them. The substitute model learns to approximate the
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decision boundaries of the target model. The paper demonstrated the effectiveness of
this approach by attacking a remote DNN classifier hosted by MetaMind. The crafted
adversarial examples caused the target model to misclassify 84.24% of the inputs. Oh
et al. [103] presented that they can infer internal attributes of neural networks that are
accessible only through their input-output behavior. They train a secondary model to
predict specific characteristics of a target black-box neural network. The dataset consists
of diverse known neural networks to learn the relationship between observable outputs
and internal characteristics.

2.1.3 Reverse Engineering

With the appearance of the Deep Learning Compiler, DNN programs have become an
essential source for attackers to leak information about DNN models. Compared to other
information sources, DNN programs always contain complete information about DNN
models to perform the inference task. In addition to the work in our thesis, three other
works focus on decompiling DNN programs and reconstructing DNN models.

Chen et al. [20] propose NNReverse, a method for reconstructing the architecture
and parameters of DNN models from compiled DNN programs using a learning-based
approach. It employs a fine-grained embedding model to represent assembly functions by
combining syntax and topology semantics. The authors demonstrate that NNReverse can
accurately infer the type of DNN layers across various hardware platforms, leveraging
a pre-trained database of binary functions. Wu et al. [138] introduce DnD, the first
compiler- and ISA-agnostic decompiler for DNN programs. The method combines
symbolic execution with loop analysis to lift compiled binaries into an intermediate
representation (IR) that captures high-level mathematical operations. DnD identifies
DNN operators, hyper-parameters, and topology, representing the decompiled model in
the ONNX format. The evaluation reveals that DnD can recover models from binaries
generated by different compilers (Glow, TVM) and architectures (Thumb, AArch64,
x86-64). Liu et al. [89] present BTD (Bin to DNN), a decompiler designed for x86
DNN executables. BTD employs a hybrid approach involving representation learning,
dynamic analysis, and symbolic execution to fully reconstruct the DNN model, including
operator types, topology, dimensions, and parameters. BTD also demonstrates practical
applications by boosting adversarial attacks and supporting model migration across
platforms.
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2.2 Countermeasure
While the widespread adoption of DNN models has made remarkable achievements in
various fields, model extraction attacks raise a significant concern in the community
because the leaked information from DNN models can lead to more severe attacks,
like adversarial attack [45, 83]. For the security and privacy of DNN models, defense
mechanisms have been developed by academia and industry to protect DNN models from
such attacks from different surfaces.

2.2.1 Side Channel

Protecting memory access patterns is key to defending against side-channel-based model
extraction attacks, particularly in architectures that process sensitive computations, like
GPUs executing DNN models. Several methods have been proposed to mitigate model
extraction attacks.

Oblivious RAM (ORAM) is a well-established method for protecting memory access
patterns by encrypting data addresses and reshuffling memory accesses. Stefanov et
al. [122] introduced Path ORAM, a simplified ORAM protocol that significantly reduces
client storage requirements. Alternatively, Liu et al. [87] introduce compiler-assisted
techniques that obfuscate execution flow while minimizing overhead. Furthermore, Liu
et al. [86] proposed GhostRider, a hardware-software co-design system that aims to
hide memory access patterns at a higher level and enables secure computation with
minimal leakage of memory traces. GhostRider achieves this by leveraging an execution
environment that balances security with performance, ensuring an attacker cannot infer
program execution details from memory access patterns. Moreover, Hu et al. [55] discuss a
defense strategy about introducing dummy memory operations to hide the actual memory
access sequence, preventing attackers from accurately identifying layer dependencies in
DNN models.

2.2.2 Cloud

Attackers who target the model on the cloud usually use the input data sequence and
prediction output pairs to infer the model information. In this case, Juuti et al. [63]
propose PRADA, the first generic and effective tool to detect such a DNN model extraction
attack. PRADA analyzes the sequence of API queries and raises the alarm if it deviates
from benign behavior. They claim that PRADA can detect all prior model extraction
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attacks without false positives. Orekondy et al. [105] propose another defense against
this model extraction attack by actively perturbing predictions to poison the attacker’s
training objective. The defense is effective across many datasets and outperforms the
same type of defenses. It can resist model extraction attacks with high accuracy for
thousands of queries, increasing the attacker’s error rate up to 85 times, with minimal
impact on benign users. Besides, Li et al. [80] propose a protection scheme against
black-box model extraction attacks that uses a physical unclonable function (PUF)
obfuscation technique. The scheme involves building a PUF on the user side and a
corresponding PUF model on the service provider side. The proposed scheme allows
legitimate users to accurately restore the model predictions while preventing attackers
from extracting helpful information. Karchmer [64] discusses the possibility of providing
provable security against model extraction attacks. To detect such an attack, the author
proposes a theoretical framework for analyzing observational model extraction defenses
(OMEDs) that examine the distribution of queries made by adversaries. They introduce
the concepts of complete and sound OMEDs and show that achieving provable security
against model extraction through these defenses is possible using average-case hardness
assumptions for PAC learning. The framework provides a way to abstract current
techniques used in the literature to achieve provable security.

2.2.3 Obfuscation

To our knowledge, no defense mechanism has yet been designed for reversing-based model
extraction attacks. Therefore, this section shows a potential countermeasure solution:
obfuscation. Obfuscation is a technique that software developers have used for a long time
to protect their intellectual property. The basic idea behind obfuscation is to transform
a program into a new version that retains its functionality and semantics but hides its
high-level structures [11, 19, 142]. Obfuscation significantly increases the difficulty of
static program analysis [130,133,140], reversing engineering [128,131], and also higher the
bar of dynamic program analysis [12,13,24,25,151]. As an essential branch of obfuscation,
control flow obfuscation aims to conceal the proper control flow and make the control
flow graph as complicated as possible to raise the bar of countermeasures. Although
implementing control flow obfuscation is flexible and has many variants [37, 39, 129],
specific techniques can efficiently obscure the control flow graph and are frequently used
in practice.
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int x, y;
x = 0;
try {
    y = x-2/x;
    // Bogus Code
} catch (ArithmeticException e) {
    // Original Code
}

(a) Programming schemes

int x;
while (x>1) {
    if (x%2==1) x=x*3+1
    else x=x/2
    if (x==1) {
        // Original Code 
    }
}

(b) Contextual schemes

Figure 2.1: Opaque Predicates Schemes. Programming schemes (Fig 2.1a) leverage
exception handling as opaque predicates to mislead analysis by prioritizing bogus paths.
Contextual schemes (Fig 2.1b) utilize loops and state-dependent conditions (e.g., Collatz-
like sequences) to embed opaque predicates to deter reverse engineering.

2.2.3.1 Opaque Predicates

Opaque predicates involve inserting conditional statements that always evaluate to true
or false but appear complex and non-trivial to the analyzer, typically using mathematical
or logical expressions that seem relevant but are redundant [30]. Replying on opaque
predicates, bogus control flows are inserted into code sections that pretend to be regular
code to confuse the static analyzer. Typical schemes to create opaque predicates include
numerical, programming, and contextual schemes. Figure 2.1 has demonstrated examples
for each scheme.

Numerical schemes use mathematical expressions to achieve opaque predicates. For
example, (x3 − x) % 3 = 1 is always valid for all x. Nevertheless, this format of opaque
predicates is easy to detect. Several other mathematical approaches use more complex
schemes to reach the same goal. The second scheme is a programming scheme, which
uses some program tricks as an opaque predicate, such as comparing two references
pointing to the same address. However, pointer analysis is a severe challenge, even
for state-of-the-art static analysis. Besides, Dolz and Parra [38] presented a method
using try-catch mechanism to compose opaque predicates as shown in Figure 2.1a. In
this sample, ArithmeticException will be triggered by division by zero, and there are
some exception events similar to division by zero, which are easy to trigger. The final
one is contextual schemes utilizing the context of the program and proposing suitable
opaque predicates. Figure 2.1b indicates an example using a program verifying 3n + 1
problem(i.e., Collatz problem or the hailstone problem); the result will always be one,
therefore the original code under condition x == 1 will always be executed, the only
problem is waiting for how long.
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int s=0;
int x=1;
while (x<10) {
    s=s+x;
    x++;
}
printf(“%d”,s)

(a) Original Code

    int s=0;
    int x=1;
L1: if (x>=10) goto L3;
    s=s+x;
L2: x++;
    goto L1;
L3: printf(“%d”,s);

(b) Using if-then-go

    int swVar=1;
L1: switch (swVar) {
        case 1:
            s=0;
            x=1;
            swVar=2;
            break;
        case 2:
            if (x>=10) swVar=4;
            else swVar=3;
            break;

    case 3:
        s=s+x;
        x++;
        swVar=2;
        break;
    case 4:
        printf(“%d”,s);
        break;
}
goto L1;

(c) Using switch-case

Figure 2.2: Simplified Example of Control Flow Flattening. Figure 2.2a shows a simple
code to sum up integers from 1 to 9. Figure 2.2b shows the result obfuscated by using
if-then-goto. The loop is decomposed into labeled blocks with explicit jumps (goto),
disrupting the linear flow. Figure 2.2c demonstrates the control flow flattening result
using switch-case: A state variable, swVar, directs execution through a flattened control
flow graph, replacing the loop with a state machine. This technique obscures the original
loop structure, complicating reverse engineering by introducing artificial complexity and
indirect control transfers.

2.2.3.2 Control Flow Flattening

Control Flow Flattening is a widely adopted technique in the domain of control flow
obfuscation, primarily due to its ability to dynamically determine the sequence of basic
blocks or instructions during program execution. By doing so, it effectively conceals
the original control flow structure from static analysis tools and adversaries attempting
reverse engineering. As illustrated in Figure 2.2, a simplified example of the approach
introduced by Wang et al. [127], demonstrates how the technique leverages dispatcher
mechanisms, such as the switch-case construct (Figure 2.2c) and the if-then-goto
pattern (Figure 2.2b), to flatten the control flow graph. These dispatcher constructs
enable the redirection of control flow to various basic blocks at runtime, thereby masking
the static layout of the control flow graph and complicating any attempts to analyze
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or reconstruct the original program logic. In a typical control flow flattening scheme,
once a basic block finishes execution, program control automatically returns to the
dispatcher, which then determines the next block to execute based on a control variable
or index. This cycle repeats until the program concludes. As an alternative, Linn and
Debray [85] proposed a method that manipulates stack-based control information to
manage program execution, thereby adding further complexity by incorporating branch
functions to obfuscate executable binaries. Control flow flattening replaces conventional,
structured control flow mechanisms with a singular, linear dispatching system, such
as nested conditional statements and iterative loops. This transformation significantly
increases the difficulty of understanding the program’s execution path, as it hides decision
points and the logical structure within an opaque, uniform sequence of dispatch calls.

Building upon these traditional concepts, our second proposed framework, FlatD, is
designed based on control flow flattening to DNN programs. This framework enhances
the robustness of DNN programs against modern reversing-based model extraction
attacks, which often rely on analyzing control flow to reconstruct model architecture and
parameters.

2.2.3.3 Code Virtualization

Code virtualization is an advanced control flow obfuscation technique that transforms
the original code into a form significantly different from the source yet functionally
equivalent [8]. This method typically involves translating original native instructions
into a custom set of operations designed for execution on a specialized virtual machine
(VM). Unlike conventional virtual machines, such as the Java Virtual Machine (JVM),
this VM is specifically constructed to interpret the obfuscated program. It operates
with a unique instruction set architecture that can differ significantly from standard
processor instructions, further complicating reverse engineering and analysis. However,
code virtualization always introduces high time overhead, which is unsuitable for efficiency-
sensitive programs like DNN programs.

2.2.3.4 Other

In addition to the control flow obfuscation strategies discussed earlier, several innovative
techniques have been introduced from different perspectives. One of the most prominent
examples is the work by Domas [39], who created an obfuscation tool known as movfusca-
tor. This approach converts an entire program into a form that only uses MOV instruction
set. The effectiveness of this method relies on the fact that the MOV instruction set is
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Turing complete [37]. This transformation significantly complicates reverse engineering
efforts by eliminating the use of common control and arithmetic instructions, leaving
only MOV instructions to implement the program’s logic. Wang et al. [129] introduced the
concept of translingual obfuscation, which they implemented in their tool called BABEL.
Their approach involves translating selected portions of a C program into Prolog, a
language that follows a distinct programming paradigm and execution model. Since
Prolog operates on a declarative paradigm, in contrast to the imperative nature of C,
the resulting binary becomes substantially more difficult to analyze and reverse engineer.
Additionally, Majumdar et al. [92] proposed a unique obfuscation strategy based on
program slicing techniques. Their method leverages information extracted from slicing
the code to construct obfuscated versions of the program. Despite their originality and
effectiveness in specific scenarios, these methods generally lack broad applicability and
universality across different platforms and programming environments.
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Chapter 3 |
Model Extraction Attack towards
Deep Learning Compilers by Re-
versing DNN Program

In this chapter, we propose LibSteal [146], a novel attacking framework that can
rebuild DNN architecture by reversing the binary generated from the Deep Learning
Compiler. We demonstrate that by empirically examining the characteristics of the DNN
binary library, we can extract the layer types, attributes, dimensions, and connectivity
between layers. We implemented the prototype of LibSteal and also conducted a set of
evaluations to show LibSteal has the ability to extract architecture information and
rebuild DNN models.

3.1 Introduction
Machine learning models, especially deep neural networks (DNNs), have been widely
deployed to tackle challenging problems in computer vision [50,73,119], speech recognition
[47, 51], natural language processing [31], and autonomous driving [66]. Compared to
other machine learning technologies, the outstanding performance of DNNs on recognition
and prediction tasks [78,117] has seen its commercial adoption with impacts across the
field. It also increases the demand for Deep Learning (DL) based services and the need
to deploy deep learning model on edge devices like mobile phones [84, 137]. For example,
to help users who are blind or have low vision, some DNN models need to be deployed on
the phone so that users can use them to identify nearby objects more conveniently. Also,
giant AI providers provide the so-called service privatization to sell their high-quality
DNN models to other companies and organizations with a license fee.
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However, over the past decades, the explosion of DNN frameworks [1, 21,26,93,108]
and the explosion of hardware backend (e.g., CPUs, GPUs, and FPGAs) increase the
difficulty of deploying DL based services to target platforms, which requires significant
manual effort. The deep learning compiler kills two birds with one stone and draws
the attention of many stakeholders. Several DL compilers have been proposed by both
industrial and academic actors recently, such as TVM [22], Tensor Comprehension [125],
Glow [116], nGraph [32], and XLA [76]. The DL compilers take the models from different
DL frameworks as input and compile them into a lightweight binary with faster inference
efficiency for the target hardware platform. TVM, in particular, has developed a large
community across the industry and academia [6]. However, the DNN program generated
from DL compilers makes it possible for an attacker to leak the internal work of DNN
models by reversing the stand-alone programs [20,89,138]. The deployable DNN program
generated by DL compilers has two deployment modes, Ahead-of-time (AOT) and Just-
in-time (JIT) [81]. Unlike the existing work targeting the AOT scheme, which generates
self-contained executables, in this paper, we narrow down the threat model where we
only have access to the DNN runtime library generated by the JIT scheme. We propose
a framework named LibSteal to leak the network architecture information of the target
DNN model using only the runtime library.

The architecture information includes the layer types, attributes, dimensions, and
connectivity of the layers. In order to get this information, we designed our framework
into three parts: binary analyzer, layer identification, and search engine. The binary
analyzer slices the program into layer functions and extracts their I/O dimensions. Also,
we apply nested loop analysis at this step to find the nested loop of each control flow graph
(CFG) because the computation of the DNN layers mostly depends on the matrix, and
the nested loops carry the most significant features, which also related to the fundamental
logic of the layer identification part. According to our observation, each layer has its
unique computation pattern, so the code generated by the DL compiler is distinct, and
these computation patterns remain the same across DNN models. Therefore, we iterate
the possible layer attributes and generate layer functions with the same I/O dimensions
as the target layer functions to make up the layer repo. Then we compare the similarity
between the layer functions of the victim model and the generated layer functions in the
layer repo to obtain the layer types and attributes. As for the search engine, we first
build a directed graph based on I/O dimensions. After that, we search for the possible
connection between the layers heuristically.
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We implement the prototype of LibSteal based on Uroboros [131] and adopt the
idea proposed by Asm2Vec [36] to accomplish the similarity comparison between layer
functions. To demonstrate the practicality and the effectiveness of our attack framework,
we evaluate it against binaries of four widely-used DNN models, MNIST [77], VGG [119],
ResNet [50], and MobileNet [54]. We choose TVM [22] as the target DL compiler,
LLVM [75] as the target host, and CPU as the target hardware device to deploy. All
victim models are initially designed in Keras framework [26] with Tensorflow [1] as the
backbone. The experimental result shows that our framework can effectively extract the
neural network architecture information. The reconstructed models have similar or even
equivalent network architecture to the original. We then re-trained the extracted models
and they all achieved accuracy comparable to that of the original models.

In summary, we make the following contributions:

• We narrow down the threat model from the DNN executable to the DNN runtime
library. With limited input, we are able to leak essential information about the
DNN model architecture.

• We design and implement the framework LibSteal to achieve our goal, which consists
of three parts and combines various techniques to deliver a decent pipeline.

• We have evaluated our framework on four widely-used model binaries using the
TVM as the DL compiler. The results indicate that our framework can handle
MNIST, VGG, ResNet, and MobileNet DNN models. With the stolen information,
the reconstructed models have similar or even equivalent network architecture to
the original and can achieve inference accuracy comparable to that of the original.

The rest is organized as follows. We formulate the problem about reversing-based
model extraction attack in Section 3.2 and claim our threat model in Section 3.3. Then,
we present the design of our LibSteal framework in Section 3.4. The experimental results
are shown in Section 3.5.

3.2 Problem Statement

3.2.1 General Challenges

A reversing-based model extraction attack aims to reconstruct the architecture and
functional behavior of a DNN model by reverse engineering the DNN program generated
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by DL compilers, such as runtime libraries or standalone executables, without access
to the original DNN model description, training dataset, or model parameters. Unlike
traditional model extraction attacks that query APIs or analyze runtime behavior,
reversing-based model extraction attack focuses on the analysis of DNN programs to
infer layer types, depth, dimensions, and connectivity, which remain three crucial general
challenges (GCs):

• GC1: Information Scaricity. When DL compilers compile A DNN model
into the DNN Programs, it loses explicit layer metadata, such as layer dimensions
and attributes. Furthermore, deploying the DNN program as a commercial off-
the-shelf (COTS) product strips helpful information that may lead us to the layer
metadata. In this context, extracting essential information from the DNN program
and reconstructing the DNN model is challenging.

• GC2: Code-Semantic Gap. DL compilers pack high-level DNN model layer
into function. In order to infer the type of each layer, we need to map low-level
assembly to high-level DNN layers. However, constrained by GC1, filling this gap
seems unattainable.

• GC3: Limited Resources. In addition to GC1, we can only access to the DNN
runtime library. Without the JSON files containing the connection information, it
is almost impossible to reconstruct the DNN model even if we successfully tackle
GC1 and GC2 and infer layer-related information.

3.2.2 Our Solutions

With constrain from the about three general challenges, it is almost impossible to extract
architecture information from only DNN runtime library and reconstruct DNN model. We
overcome hurdle by several observations from careful investigation of the DNN programs.
More specifically,

• To address GC1, the data section of DNN runtime library contains information
related to layer metadata.

• To address GC2, the special computation pattern bind to each layer type remains
consistently even when being compiled to low-level assembly code.

• To address GC3, with extracted layer information, it is possible to heuristically
search out the connection information and reconstruct the DNN model
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3.2.2.1 Reverse Engineering Framework

For GC1, we reply on a reverse engineering framework to decompile and analyze the
DNN runtime library. Binary reverse engineering focuses on analyzing and understanding
binary programs without access to their source code. This technique is often used to
uncover the functionality and structure of software, especially when the source code is
unavailable or inaccessible. Over the past decade, both academia and industry have
introduced several sophisticated reverse engineering frameworks designed to automate and
enhance the analysis of binary programs. Industry-standard tools such as IDA Pro [42],
Binary Ninja [58], and Ghidra [115] are widely adopted for their user-friendly interfaces,
extensive plugin ecosystems, and support for multiple instruction set architectures. On
the other hand, academic research has produced frameworks like BAP (Binary Analysis
Platform) [17], angr [128], and BitBlaze [120], which emphasize static and dynamic
analysis techniques, symbolic execution, and formal methods for program reasoning.
Among these, Uroboros, introduced by Wang et al. [131], offers a particularly notable
advancement through its reassembleable disassembly approach. In this work, we adopt
Uroboros as the primary framework for reverse engineering the DNN runtime library.
Its ability to generate accurate and reassembleable representations of disassembled code
provides a robust foundation for understanding and reconstructing the control and data
flows within DNN programs.

3.2.2.2 Binary Similarity Detection

To address GC2, we actually need to finish a task about the binary similarity detection.
Since the computation pattern of the same layer type with the same attributes remains
similar across different DNN programs, we can generate a repo containing all candidate
layer types for the victim layer function. Then, we leverage the binary similarity
detection technology to compare the victim layer function with all candidate layer
types and determine its layer type. To achieve this goal, we must choose a binary
similarity detection methodology wisely. Early frameworks such as BinDiff [44] and
BinSlayer [14] rely on graph-based structural comparisons of control flow graphs (CFGs)
to measure similarity. While effective in some scenarios, these methods often suffer
from limited resilience to code transformations, such as compiler optimizations. More
recently, learning-based approaches have been proposed to improve robustness and
efficiency. DeepBinDiff [40], for example, incorporates deep learning models to generate
embeddings that capture functional similarities between binary code segments, even
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when the code has undergone heavy transformations. However, DeepBinDiff primarily
targets the function-level comparison without fine-grained adaptability to specific code
patterns like those found in DNN layer functions. In this work, we adopt Asm2Vec [36],
a state-of-the-art static binary similarity detection framework designed to enhance
robustness against both code obfuscation and compiler optimization. Asm2Vec generates
embeddings for assembly instructions by leveraging control flow context and sequential
semantics, producing vector representations that reflect the functional behavior of binary
code. Compared to graph-based or purely syntactic approaches, Asm2Vec offers superior
resilience to variations introduced by different compilation settings, making it particularly
well-suited for analyzing layer functions in DNN runtime libraries. Its efficiency and
accuracy in identifying semantically similar functions allow us to reliably map the
victim layer function to its corresponding candidate in our repository. By leveraging
robust similarity detection of Asm2Vec, we can confidently determine the layer type of a
given function within a DNN program despite variations caused by different compilers,
optimization levels, or minor implementation differences.

As for GC3, we innovatively adopt heuristic search to figure out the connection
information from DNN program and reconstruct DNN models. Based on the information
extracted by solving GC1 and GC2, we can build a directed graph to search out possible
architecture. In order to get as complete and accurate architecture as possible, we adopt
several assumptions to do the prune. The technical detail will be discussed in Section
3.4.4.

3.3 Threat Model
In this section, we break down the victim’s capability and the attacker’s goal and
capability.

3.3.1 Victim’s Capability

The DNN programs are compiled by TVM [22] with optimization level -O0 and are not
obfuscated because, to the best of our knowledge, DL compilers themselves do not apply
any software defensive mechanism to the generated binary. Also, the target host platform
is LLVM, which means the ultimate DNN programs are ELF binaries on the x86/x64
system.
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Figure 3.1: Threat Model. The deployable package generated by a DL compiler includes
three components: a JSON specification, a runtime library (.so) containing layer functions,
and parameter weights (.params). The attacker is restricted to accessing only the runtime
library (.so), which holds compiled layer implementations. This limitation aligns with
practical deployment scenarios, where configuration files (JSON/params) are more easily
secured, and Just-in-Time (JIT) compilation, widely adopted in DL compilers, separates
model logic from runtime execution.

3.3.2 Attacker’s Capability

This work assumes the attacker is motivated to leak the DNN model architecture
information for malicious usage and can only access the shared library. The deployable
DNN program generated by DL compilers has two deployment modes, Ahead-of-time
(AOT) and Just-in-time (JIT) [81]. AOT scheme uses general-purpose compiler backends
and generates self-contained executables. They can run directly on the target devices and
serve the same function as the general binary program. On the contrary, JIT will produce
two artifacts: a DNN configuration file describing the model and a runtime library
that contains all the layer implementations. As shown in Figure 3.1, the deployable
package generated by TVM consists of three parts: a JSON-formatted specification
file, a runtime library (.so), and parameter weights (.params). Among them, the JSON
and the parameter weights files are DNN configuration files, which are important for
inferring information about the neural network architecture. The JSON file contains
the connection topology between the layers of the DNN models, and the shared library
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Figure 3.2: LibSteal Workflow Overview. ➀ The binary analyzer takes DNN runtime
library as input and disassembles it to get the sliced layer function. With further analysis,
we also extract the layer dimensions at this step; ➁ At the layer identification step,
we leverage the immutable computation pattern to compare the similarity of unknown
victim layer functions with customized candidate layer functions and identify their layer
types and attributes. ➂ Based on layer types, attributes, and dimensions, the search
engine finds the connectivity between layers and rebuilds the network architecture of the
model.

includes all the unique layer functions. A survey [81] shows that the JIT scheme is more
popular and adopted by a majority of the DL compilers. Moreover, as the data files, the
JSON and parameter weights files are much easier to protect than the runtime library
files. Therefore, limiting the attacker’s capability to only access runtime library files is
reasonable and has a practical impact.

3.4 Attack Design

3.4.1 Overview

As shown in Figure 3.2, our attack framework consists of three parts, i.e., the binary
analyzer, the layer identification module, and the search engine. Correspondingly, the
attacking process has three steps. First, we feed the DNN library to the binary analyzer.
The analyzer disassembles the binary and slices it into different layer functions. We
leverage the information from the data section to extract the layer dimensions for each
layer function. Moreover, we apply nested loop analysis to identify each layer function’s
existing nested loop. The details will be discussed in Section 3.4.2.

Then we pass the extracted layer dimensions and sliced layer functions to the next
step to identify the layer type and attributes of the layer functions. We use the layer
dimensions to generate all possible layer functions with the exact I/O dimension and
store them in the candidate layer repository. Since the computation pattern of each
kind of layer remains the same across different models, the layers with the exact layer
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dimensions, type, and attributes will lead to very similar layer functions. Therefore, in
order to obtain layer types and attributes, we use collected layer candidates to train the
representative learning model so that we can check the similarity between victim layer
functions and candidate layers functions. We present the detail in Section 3.4.3.

In the last step, we use the search engine to recover the model architecture topology
connection using the information collected in the above two steps. We first build a
directed graph based on the layer dimensions. Then in order to make the search process
more efficient, we make some heuristic pruning based on the layer types. Along with the
built graph, we explore a result containing all layers and get the connection topology
between layers.

3.4.2 Binary Analysis

The Binary Analyzer uses Uroboros [131] as the binary reverse engineering framework to
disassemble and analyze the victim DNN library. Uroboros can recover the relocation
information and solve the symbolization problem. With these pieces of information, we
slice the program into separated layer functions and recover the precise control flow graph
of each function.

3.4.2.1 Layer Dimensions

This section shows how we infer the layer dimensions. Figure 3.3 shows a part of a layer
function from VGG16, which is abstracted from the actual result, where we only replace
the recovered symbol with a more readable one. In order to extract the I/O dimensions
of each layer function, the first thing we need to do is find its related code in the function.
We find that every layer function will check the constraint of the data dimensions before
the computation so that the memory will not mess up during the runtime. Therefore, we
locate the Basic Block invoking the error report function. In line 9, the code loads the
address of __TVMAPISetLastError, which sets the last error message before return, to
the register rax. The function is indirectly called in line 11 with the error message set to
STR in line 10. According to the message carried by STR, this is the exception caused by
the input and actual data dimensions mismatch. When we trace back to line 2 in Figure
3.3, we find the comparison between a memory-loaded number and a constant number in
line 1 and figure out that one of the data dimension numbers is equal to 1. Following
the same routine, we get a set of numbers. The numbers can be separated into groups
based on their memory address. For example, four numbers in Figure 3.3 are in one
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   section .text
    ...
   LAYER_FUNC:   
    ...
 1  cmp dword [rax], 0x1
 2  jne LABEL
 3  cmp dword [rax + 0x8], 0x40
 4  jne (label)
 5  cmp dword [rax + 0x10], 0x20
 6  jne (label)
 7  cmp dword [rax + 0x18], 0x20
 8  jne (label)
    ...
   LABEL:
 9  mov rax, qword [LABEL_GOT]
10  lea rdi, [STR]
11  call qword [rax]
12  pop rcx
13  ret
    ...
   section .rodata
14  STR: "Assert fail" ...
    ...
   section .got
15  LABEL_GOT: qword __TVMAPISetLastError
 

Figure 3.3: Example of a layer function from VGG16 DNN model. The com-
plete message carried by STR is "Assert fail: (1==int32(arg.placeholder.
shape[0])), Argument arg.placeholder.shape[0] has an unsatisfied
constraint: (1==int32(arg.placeholder.shape[0]))"

group. According to our observation, each group represents one data dimension of the
layer function. Therefore, the data dimension extracted from Figure 3.3 is 1, 64, 32, 32.
Typically, one layer function only has one input dimension and one output dimension.
However, some layers require multiple inputs, like Add layers whose input can be a list of
tensors with the same shape. Fortunately, all constraints of dimension data are checked
in order.
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(a) Victim layer (b) MaxPooling2D layer

(c) AveragePooling2D layer (d) Conv2D layer

Figure 3.4: The comparison between the CFGs of layer functions with the same I/O
dimensions. All four layer functions have the same input dimension (1,64,32,32) and
the same output dimension (1,64,16,16). Figure 3.4a is the layer function of figure 3.3;
figure 3.4b is the MaxPooling2D layer function with pool_size=2; figure 3.4c is the
AveragePooling2D layer function with pool_size=2; figure 3.4d is the Conv2D layer
function with filters=64, kernel_size=2, strides=2, and the padding option is
"same".
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Algorithm 1 Nested Loop Analysis Algorithm
Input: G = (V, E) {Control flow graph}

1: stack ← ∅
2: stack.push(G.entryBlock)
3: visitedBlocks← {G.entryBlocks}
4: while not stack.empty() do
5: u← stack.top()
6: if v ∈ u.successors and v /∈ visitedBlocks then
7: stack.push(v)
8: visitedBlocks.add(v)
9: else

10: stack.pop()
11: timestamp(u)
12: end if
13: end while
14: V ′ ← V
15: E ′ ← reversed(E) {the directions of all edges are opposite}
16: G′ ← (V ′, E ′)
17: nestedLoops← ∅
18: while not V ′.empty() do
19: for u ∈ V ′ do
20: v ← u : v ? u.timestamp > v.timestamp
21: end for
22: blockSet← traverse(G′, v)
23: V ′ ← V ′ − blocksSet
24: if blockSet.size() > 1 or v.isSelfLoop() then
25: nestedLoops.add(blockSet)
26: end if
27: end while

3.4.2.2 Nested Loop Analysis

The main goal of nested loop analysis is to find the most significant computation features
of each layer function. After the DNN model is compiled into the binary, the layer func-
tions contain computation code and trivial instructions like push/pop and data load/store.
The existence of these instructions will affect the effect of the representation learning
in the next step. Moreover, as shown in Figure 3.4, different types of layer functions
have different numbers of nested loops, which is reasonable because the computation of
pooling layers is relatively more straightforward than the Conv layer. This feature can
be used to validate the result of the layer identification process to increase accuracy.
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Figure 3.5: The basic workflow of layer identification. The candidate layer generator
uses the layer dimension information (➀) to generate the potential layer functions (➁).
The generated candidate layer functions are then used to train the representation model
(➂) and produce vectors for each candidate (➃). Also, we use the trained representation
model to generate the vector of the victim layer function (➄, ➅). Finally, we compute
the similarity between candidate function vectors and victim function vector (➆) to
choose the most similar to infer the layer type and attributes of the victim layer function.

In order to find the nested loop from each layer function, we use Algorithm 1 to apply
the analysis. In this algorithm, we demonstrate CFG as G = (V, E) where V is the set
of basic blocks, and E is the set of directed flow between basic blocks. In the first step
(Lines 1-13), we traverse the whole CFG beginning from the entry basic blocks (Lines
2-3) and timestamp each basic block when they are popped out from the stack (Lines
10-11). In the second step (Lines 14-23), we first create a reversed CFG, G′ = (V ′, E ′)
from the original CFG, G (Lines 14-16). The direction of flows of G′ is opposite from G.
After that, we search V ′ to find the basic block with the latest timestamp (Lines 18-20).
And starting from this basic block, we try to traverse the reversed CFG, G′ (Line 21).
All the basic blocks reached by this point are no doubt members of a nested loop. We
then eliminate these basic blocks from V ′ (Line 22) and continue the job until all basic
blocks are revisited. For the record, we also consider the self-loop as the nested loop.
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3.4.3 Layer Identification

Figure 3.5 shows the basic workflow of the whole process of layer identification. In this
section, we provide more details and insights.

3.4.3.1 Layer Generator

The fundamental of layer identification is that for two layers, even if they are from
different models, as long as they share the same layer type, I/O dimensions, and layer
attributes, they are compiled into very similar layer functions. On the other hand, for
many layer types, the relationship between the output and input dimensions is based on
their attributes. We take the Conv2D layer as an example. Assume the input dimension
is (N, C, H, W ), where N is the sample number, C is the channel number, and H, W is
the data resolution. Then we have

Hout =
⌊

H + 2 · P −D · (K − 1)− 1
S

+ 1
⌋

Wout =
⌊

W + 2 · P −D · (K − 1)− 1
S

+ 1
⌋

where P is the value of padding, D is the value of dilation, K is kernel size, and S is the
stride value. Therefore, based on the layer dimensions, we generated a decent number of
the candidate layer functions. As shown in Figure 3.4, (a) is the computation part of the
layer function we discuss in Figure 3.3. After applying the method we present in Section
3.4.2, we get its I/O dimensions as (1, 64, 32, 32) and (1, 64, 16, 16). There are several
possible layers with this kind of I/O dimensions. We choose three representative layers
to illustrate our approach: MaxPooling2D with pool_size=2 (b)), AveragePooling2D
with pool_size=2 (c), and Conv2D with filters=64, kernel_size=2, strides=2,
padding=same (d). As we can see, the CFG of the victim layer function shown in (a) is
the same as the layer function shown in (b) (MaxPooling2D).

3.4.3.2 Layer Function Representation Learning

Our representation learning model is built based on the idea proposed by Asm2Vec [36].
After finishing the training of the representation learning model, we first use the nested
loop analysis approach in Section 3.4.2.2 to lift the computation pattern of candidate
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layer functions. We then use the trained model to produce the vector of each candidate
layer function. The vector of the victim function is also generated from the nested loop of
the functions. Finally, we calculate the similarity score and make the inference decision
for the victim function.

As for the example shown in Figure 3.4, the similarity between the victim layer
and MaxPooling2D is 0.9356, while its similarity with AveragePooling2D is 0.522 and
with Conv2D is 0.272. Therefore, we determine that the layer function from VGG16 is
MaxPooling2D with pool_size=2. This result is reasonable because the computation
patterns MaxPooling2D and AveragePooling2D are similar. They follow the same routine
to slide through the data. However, the final operations are different.

3.4.4 Model Reconstruction

After the binary analysis and layer identification, we have stolen valuable information,
including layer dimensions, types, and attributes. In this section, using all the above
information, we rely on the search engine to infer the network architecture.

At first, we build a directed graph, Gnn = (Vnn, Enn), where each layer represents
a vertex v, and an edge e, pointing from v1 to v2 means the output dimension of v1

matches the input dimension of v2. We search all possible combinations from the input
layer, whose output dimension is the data resolution of the model, to the output layer,
whose input dimension is the number of model classifications. We also did some heuristic
pruning based on the layer types, such as activation layer and batch normalization.
Typically, these layers do not affect the data resolution, so their layer dimensions stay
the same. Furthermore, the layer functions of these supportive layers are the same when
they have the exact I/O dimensions because they do not have variable attributes, which
means different supportive layers may share the same layer functions. If we directly add
them to our search space, much effort will be wasted. However, these layers are critical
in the training and inference, so we cannot ignore them. Therefore, we divide the layer
into supportive layers (e.g., ReLu, BN) and functional layers (e.g., Conv2D, Pooling2D).
Each functional layer can only be used once during the search and should all be used in
the final rebuilt model. As for the supportive layers, we do not limit their usage. Once
a functional layer finds out it can link supportive layers, we add them directly to the
path. Additionally, when we meet the layer with multiple inputs, we trace back the
graph to find another input and link it to the former path. Once we find the path that is
satisfying, we can reconstruct the DNN model.

35



Table 3.1: Victim Models Information.

MNIST VGG16 ResNet20 MobileNet
Datasets MNIST CIFAR-10 CIFAR-10 CIFAR-10

Input Shape (28,28,1) (32,32,3) (32,32,3) (32,32,3)
# of Parameters 34,826 150,001,418 19 274,442 3,239,114

# of Layers 11 60 72 91
# of Layer types 7 7 8 9

Table 3.2: Statistics of the comparison between the original model and extracted model.

MNIST VGG16 ResNet20 MobileNet

Test accuracy Original (%) 99.17 93.16 91.65 83.16
Extracted (%) 99.04 90.59 83.92 75.00

Layer number
Original 11 60 72 91

Extracted 10 38 49 66
Percentage (%) 90.91 63.33 68.06 72.53

Layer type number Original 7 7 8 9
Extracted 6 6 8 8

3.5 Evaluation
In this section, we will present the evaluation result of our framework. We implement
the prototype of our attack framework based on Uroboros [131] and adopt the idea of
asm2vec [36] to achieve layer-type identification. we evaluate LibSteal by answering
the following research questions (RQs).

• RQ1: (Architectural Completeness) How complete is the reconstructed DNN
model compared to the original victim DNN model?

• RQ2: (Accuracy of Extracted Models) Does the DNN model reconstructed by
LibSteal still apply the inference functionality properly?

3.5.1 Experiment Setup

Environment: All the experiments are run on the Ubuntu 18.04 LTS server with NVIDIA
TITAN XP GPU and dual-core 2.20 GHz Intel(R) Xeno(R) Silver 4114 CPU. We pick
CUDA 10.3 as the GPU programming interface. For the training of the representative
learning model, we choose embedding dimension d = 200, 25 negative samples, 3 random
walks, and a learning rate of 0.025.
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Figure 3.6: Architecture Comparison For MNIST. This figure partially shows the network
architecture difference between the original and extracted models.

Victim Model: We evaluate our attack on four widely-used DNN models: MNIST,
VGG16, ResNet20, and MobileNet. The detailed information of all victim models is shown
in Table 3.1. All the pre-trained models are designed in the Keras framework [67, 68]
with Tensorflow as the backbone and compiled by TVM [22] to generate the binaries.
We use LLVM [75] as our host platform.
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Figure 3.7: Architecture Comparison For VGG16. This figure partially shows the network
architecture difference between the original and extracted models.
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Figure 3.8: Architecture Comparison For ResNet20. This figure partially shows the
network architecture difference between the original and extracted models.
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Figure 3.9: Architecture Comparison For MobileNet. This figure partially shows the
network architecture difference between the original and extracted models.
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3.5.2 (RQ1) Architectural Completeness

This section compares the architectures of the original models and the extracted models.
Figure 3.6, Figure 3.7, Figure 3.8, and Figure 3.9 visualize part of the architecture of
original models and extracted models for MNIST, VGG16, ResNet20, and MobileNet.
Each block represents a DNN layer. As we can see, the basic architecture remains the
same in extracted models. However, several layers are missing. First, the dropout layer
is used to avoid over-fitting during the training phase by setting randomly selected input
units to 0, so it will be invalid during the inference. Therefore, the DL compiler does
not compile it into the layer function, and we cannot extract its related information.
Nevertheless, this does not invalidate the purpose of the attack since the lack of dropout
layers does not hurt the performance of the extracted models.

Regarding other missing layers, as we mentioned in Section 3.4.3, the same type of
layer with the same input dimension, output dimension, and layer attributes will produce
the same layer function. This rule of thumb allows us to identify the layer type and its
related attributes but also leads to the situation that the layer function can be reused
in the DNN executable. As shown in Figure 3.9, the recovery of MobileNet is the least
satisfying. The reason for missing a larger chunk in this model is that the original DNN
model is the composition of the same pattern repeated four times. Since our attack
targets the DNN library, inferring the number of repetitions from the code is difficult, as
the same code can be executed arbitrarily during inference. On the other hand, Figure
3.6 shows that as long as all the layers of the DNN model have their unique features, we
are able to fully recover the whole network architecture.

3.5.3 (RQ2) Accuracy of Extracted Models

We compared other statistics information between original DNN models with the extracted
ones as shown in Table 3.2. In order to evaluate the functionality of the extracted model,
we re-trained the extracted models and compared their accuracy with the original models.
The training and testing dataset (MNIST and CIFAR-10) is obtained from keras.datasets.
MNIST [77] is the dataset of hand-written digits with 60,000 training and 10,000 test
gray-scale images. CIFAR-10 [72] contains 60,000 training and 10,000 test colour images.
As for the training settings, we use the same hyperparameter as the original one for a
more precise comparison. For the MNIST model, the extracted model achieves 99.04%
accuracy compared to the original 99.17% accuracy. The extracted VGG16 model and
ResNet20 model achieve 90.59% accuracy compared to the original 93.16% and 83.92%
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accuracy compared to the original 91.65% accuracy, respectively. Moreover, extracted
MobileNet model achieves 75% accuracy compared to the original 83.16%. With the
missing layers, it is not surprising that the accuracy of these three extracted DNN models
is worse than the original ones. However, we can see that the accuracy drop of ResNet20
and MobileNet is more significant than that of VGG16, although we recover more layers
for ResNet20 and MobileNet. We guess that the importance of layers varies inside the
neural network architecture. Although VGG16 missed more layers, the key skeleton still
remains. As for the layer types, so far, the only layer we are not able to recover is the
Dropout layer, which will disappear during the inference process.
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Chapter 4 |
Protecting Deep Neural Network
Program from Reversing Attacks

In this chapter, we propose FlatD [147], an advanced defense mechanism that protects
Deep Neural Network Programs from reversing-based model extraction attacks while
preserving efficiency.

4.1 Introduction
Due to the widespread success [47,50,66,78] of Deep Learning (DL) across various domains,
the demand for DL-based services has surged in recent years. This has led service providers
to deploy the Deep Neural Network (DNN) models across a wide range of hardware
devices, from cloud servers to embedded devices [46], to meet diverse requirements.
However, deployment across multiple platforms presents challenges due to the differences
in on-chip memory architecture and compute primitives across CPU, GPU, and TPU-like
accelerators [61]. Additionally, the rapid growth of DL frameworks [1, 21, 26,93] further
complicates the situation.

The DL compilers [22, 76, 91, 116] ease this process by automatically compiling
the models into standalone DNN programs with decent optimization using multiple
intermediate representations (IR) during compilation. Generally, a DL compiler can
support various frameworks as input and generate programs for different hardware devices.
Some also [22, 116] allow third-party toolchains such as LLVM [75] and CUDA [136] for
further code generation. The powerful automated optimization provided by DL compilers
suddenly attracted the attention of both academia and industry. Gaint AI providers such
as Google, Amazon, and Facebook are all considering embedding the DL compilers into
their AI infrastructure to enhance the performance of their AI services. [5, 60, 88, 97, 134].

43



While the DL compilers significantly impact the AI industry, they also introduce a
new attack interface from the binary analysis side. Due to the lack of defense applied at
the binary level, the DNN programs are vulnerable to reversing-based model extraction
attacks. The targets of traditional model extraction attacks [41, 55, 56, 103–105, 135,
139, 143, 152] can mainly be classified into three categories: side channel information,
sniffing bus traffic, and prediction pairs from black box models. These information
sources are limited and sometimes depend on strict assumptions. Unlike these sources,
DNN programs always contain complete information that can be used to run in an
isolated environment. To date, there are four state-of-the-art model extraction attack
frameworks [20,89,138,146] that can fully or partially reconstruct models by reversing
the DNN programs. However, to our knowledge, effective defense mechanisms still need
to be developed to countermeasure these reversing attacks. Moreover, training DNN
models at an industry scale often involves processing TB-sized datasets [33, 141] with
high training costs. For example, using a v2 Tensor Processing Unit (TPU) in a cloud
environment costs approximately $4.50 per hour, and completing an entire training cycle
may exceed $400,000 [35, 110], which emphasizes the importance of protecting DNN
models.

Unlike the typical binary program, the DNN program is generated directly from the
model without any source code, which excludes source-code-level defense frameworks
like Tigress [29]. Moreover, the DNN Program is more sensitive to performance and
scale than a typical binary program, making the time-consuming framework unavailable.
Fortunately, most state-of-the-art DL Compilers [22,116] support third-party code-gen
tools (e.g., LLVM [75]) for users to apply the customized transformation, which leaves us
the window to shield DNN programs.

We carefully investigated the basic logic and workflow of attacking frameworks to
gain more insight into the reversing-based model extraction attack. These frameworks
include the same components to rebuild the model: operator-type recovery, topology
recovery, and metadata recovery (including dimensions, parameters, and attributes).
Although the methodologies vary from framework to framework, they share the idea
of using the computation pattern to recover the operator type. Specifically, each kind
of operator in the DNN model has a formula for transforming the input data to the
next operator. For instance, the ReLU activation function uses the formula 4.1, and the
Tanh activation function uses the formula 4.2. They exhibit entirely different syntax
and semantics meanings when represented in the program. This feature helps attackers
infer the operator type by using binary similarity comparison. On the other hand, it also
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guides the protection of DNN programs because we found that the Control Flow Graph
(CFG) plays a vital role in all attack frameworks.

f(x) = x+ = max(0, x) = x + |x|
2 (4.1)

f(x) = ex + e−x

ex − e−x
(4.2)

Based on our observations, this paper proposes FlatD, an advanced defense frame-
work based on Control Flow Flattening, for DNN programs to protect them from
reversing-based model extraction attacks. Unlike the traditional Control Flow Flattening,
we leverage the opaque predicate, one-way cryptographic hashing, and indirect jump
to conceal the control flow further so that attackers cannot quickly recover the original
CFG and apply more inference analysis. We also use several strategies to preserve the
DNN program’s performance and reduce the overall time overhead.

We implemented FlatD on the top of O-LLVM [62] and embedded it into the
code generation part of TVM [22]. We used O-LLVM as the baseline and evaluated
FlatD on eight real-world pre-trained models and one self-trained model from four
frameworks. Our experiment results show that compared to the traditional Control Flow
Flattening, FlatD can more effectively counterwork state-of-the-art reversing-based
model extraction attacks while preserving the functionality of the original DNN programs.
Moreover, the DNN program transformed by FlatD performs similarly to the one using
traditional Control Flow Flattening in most cases and always has a lower scale.

In summary, we make the following contributions:

• We investigate four state-of-the-art reversing-based model extraction attacks and
identify a key component shared across the attack frameworks. This component
guides the provision of protection and contributes to future research on DNN
program safety.

• We design and implement FlatD, the advanced defense framework targeting
compiled models toward reversing-based model extraction attacks. FlatD conceals
the original Control Flow Graph of DNN programs based on Control Flow Flattening
and ensures minimal information gained by attackers through statistical analysis.

• We successfully apply FlatD on DNN programs compiled from large-scale models
using TVM to evaluate these DNN programs regarding functionality, performance,
and resilience. We use O-LLVM as the baseline to compare the results. Our
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experiment demonstrates that DNN programs transformed by FlatD can prevent
leaking information from reversing-based model extraction attacks more effectively
than traditional Control Flow Flattening with similar performance and lower scale.

The rest of the paper is organized as follows. We first show the insight of reversing-
based model extraction attacks is presented in Section 4.2. Next, we present the workflow
and design logic of FlatD in Section 4.3. The experimental results are presented in
Section 4.4.

4.2 Inspiration from Attacks

Table 4.1: Reversing-based Model Extraction Attacks. (★stands for fully support and
fully recover ✩stands for partial recover.)

Tool Name NNReverse DnD BTD LibSteal

Target
Compilers

TVM ★ ★ ★ ★

Glow ★ ★

NNFusion ★

Platform
Support

x86-64 ★ ★ ★ ★

ARM ★ ★

AArch64 ★ ★

Results Architecture ★ ★ ★ ✩

Parameters ★ ★

In this section, we compare the methodology and design logic between four state-
of-the-art reversing-based model attacks to determine their similarities and differences.
Table 4.1 lists attack frameworks that extract the essential information from the DNN
model to rebuild the DNN model by reversing the victim DNN program. Specifically,
NNReverse [20] is a learning-based method that can fully recover the architecture from
DNN programs compiled from TVM across platforms. DnD [138] implemented a cross-
architecture DNN decompiler based on symbolic execution, which can fully recover the
architecture and parameters of DNN programs compiled from TVM and Glow. Instead,
BTD [89] focuses on the decompiling DNN Programs on x86 platforms. By utilizing
the neural identifier model and dynamic analysis, BTD can reconstruct models from
DNN programs compiled from three DL compilers. Unlike the above attack frameworks,
all targeting the standalone DNN programs, LibSteal [146] partially recovers the DNN
architecture using only a shared library. Although the target and methodology vary from
frameworks, the logic and workflow align the same. In order to rebuild the original DNN
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(b) ResNet50 softmax function

Figure 4.1: The comparison of CFG and Opcode sequence of softmax function between
VGG16 (Figure 4.1a) and ResNet50 (Figure 4.1b) DNN Programs, which compiled by
TVM with optimization -O0. VGG16 and ResNet50 are pretraining on ImageNet and
loaded from Keras Application Zoo. Therefore, they have the same output dimension
(1,1000). However, the input dimension of the VGG16 softmax function is (1,4096), while
the input dimension of the ResNet50 softmax function is (1, 2048).
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model, the following characteristics must be recovered: operator types (Section 4.2.1),
topology (Section 4.2.2), and metadata, including dimensions, attributes, and parameters
(Section 4.2.3). We detail the review of each part below and summarize our findings in
Section 4.2.4.

4.2.1 Operator-type Recovery

The critical component of each attack framework is to recover operator types of DNN
programs. The idea of operator-type recovery is also the most straightforward due to
the unique computation pattern of each DNN operator. We take the softmax function
as an example. As shown in Figure 4.1, both VGG16 and ResNet50 are loaded from
Keras Application Zoo and compiled by TVM with the configuration -O0. Figure 4.1a
is the CFG and opcode sequence of the VGG16 softmax function, and Figure 4.1b is
the CFG and opcode sequence of the ResNet50 softmax function. Both the CFGs and
opcode sequences are obtained from Binary Ninja [58]. We can see that no matter which
feature is compared, the VGG16 softmax function is almost identical to the ResNet50
softmax function, although they do not even have the exact input dimensions. With
this insight, all reversing attacks coincidentally choose to infer operator type based on
binary similarity. NNReverse combines the syntax representation (opcodes and operands)
and topology representation (CFG) to train an embedding model and find the most
similar function in the dataset based on the semantic representation. DnD uses symbolic
execution to lift each operator function to an Abstract Syntax Tree (AST) and match
it with a template AST to infer the operator type. BTD chose to train a model with
a sequence of Atomic Opcodes from each DNN function and predict the operator type.
LibSteal trained a representation model with loop structures extracted from each operator
function and compared the victim operator function with functions in the dataset.

4.2.2 Topology Recovery

At this step, attack frameworks start to use different methodologies to achieve the goal.
NNReverse directly leverages the graph file generated along with the shared library file to
recover the topology of DNN architecture. DnD reconstructs the DNN topology structure
by utilizing the sequence of DNN operator executions within the inference function and
the data dependencies among the DNN operators. BTD uses the Intel PinTool [90] to
hook every callsite as the operator function’s inputs and outputs are transmitted via
memory pointers in the function arguments. Subsequently, BTD seamlessly links the
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operator function using the identical memory address. Since LibSteal can only access
the shared library file, it heuristically searches the possible topology combination to link
all the inferred operators.

4.2.3 Data Recovery

Recovering the data of the DNN models, including parameters, attributes, and dimensions,
is tricky. LibSteal does not support the recovery of parameters due to limited resources.
However, it extracts the dimensions and attributes information about each operator
by analyzing the data flow of the functions that validate the input data before the
computation. NNReverse still uses parameter files directly generated by the TVM. As for
BTD, the whole workflow includes multiple steps. First, it records execution traces and
applies taint analysis to condense them. Following this, symbolic execution is utilized to
summarize the input-output constraints of each operator function, which is used to infer
dimensions and parameters later. DnD recovers the attributes and parameters of each
operator by leveraging the lifted AST and reconstructed topology structure.

4.2.4 Inspiration

Upon conducting a comprehensive analysis of the workflows employed in four cutting-edge
reverse-engineering-based extraction attacks, it becomes evident that the type of operator
emerges not only as the most foundational aspect to be considered during the execution
of an attack but also as the critical characteristic warranting robust protection. This
assertion is confirmed in Section 4.2.1 and visually illustrated in Figure 4.1, where we
detail how the unique computational patterns of each operator cause their corresponding
functions to be susceptible to inference attacks.

A key observation from our analysis is that these distinct computational patterns give
rise to specific structural features within the CFG, especially loop structures. It is widely
acknowledged that operations within DNN models mainly involve matrix computations,
which result in a nested loop structure within operator functions. Such structures are
not merely incidental but serve as significant signatures that attackers can exploit to
their advantage. Therefore, defensive technologies capable of obscuring the original CFG
structure, as discussed in Section 2.2.3, could play a transformative role in mitigating
the effectiveness of these extraction attacks. Nonetheless, integrating these defensive
mechanisms into DNN programs is challenging because we need to ensure the efficiency of
the DNN programs while preserving security and privacy. The balance between enhancing
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Algorithm 2 Flattening Algorithm
Input: P {DNN Program}

1: SF = getAllFunctions(P )
2: for F ∈ SF do
3: if F is necessary to be flattened then
4: SBB = getAllBasicBlocks(F )
5: breakCFG(F )
6: BBold = getOldEntry(SBB)
7: BBnew = createNewEntry(BBold)
8: T = createDispatcher(BBnew) {Return the switch table that guide the control

flow in new CFG}
9: attachBBToDispatcher(T , SBB)

10: Salt = initializeSalt()
11: Fhash = initializeHashFunc()
12: updateSwitchVar(D, Salt, Fhash)

13: createBBAddrTable(SBB)
14: encodeSwitchTable(T )
15: Fdecode = initializeDecodeFunc()
16: updateDispatcher(T , Fdecode)
17: inlineDispatcher(T )
18: end if
19: end for

Output: Program with flattened operator functions.

security measures and ensuring computational efficiency requires a detailed approach to
design, which not only conceals CFG structures but also carefully considers the potential
impacts on the performance and functionality of DNN programs. Therefore, we propose
FlatD to secure DNN programs against sophisticated extraction attacks.

4.3 Design

4.3.1 Overview

Algorithm 2 uses pseudo code to represent the basic workflow of our defense framework,
FlaD. For the given DNN Program P , we extract and iterate all the functions (Line
1-2). Before applying the flattening, we check the specific function’s necessity to increase
the performance (Line 3). The rules are discussed in Section 4.3.5. Then, we break the
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BB.1:
  <other instructions>
  br label %BB.2

BB.2:
  <other instructions>
  br label %BB.3

BB.5:
  ret i32 0

BB.0:
  <other instructions>
  br i1 %cmp1 label %BB.1, label %BB.5

T F

BB.3:
  <other instructions>
  br i1 %cmp2 label %BB.4, label %BB.3

T F

BB.4:
  <other instructions>
  br i1 %cmp3 label %BB.2, label %BB.5

T F

Figure 4.2: Original Control Flow Graph of the ReLU operator function from MNIST
compiled by TVM -O0. The figure only shows the control flow-related instructions in
LLVM IR format to simplify the graph.
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Entry:
  <initialization works>
  store i32 0, i32* varAddr
  br label %LoopEntry

BB.0:
  <original instructions>
  %nextSwitchVar = select i1 %cmp1, i32, 1, i32 5
  store i32 $nextSwitchVar, i32* varAddr
  br label %LoopEnd  

LoopEnd:
  br label %LoopEntry

BB.5:
  ret i32, 0  

Default:
  br label %LoopEnd  

LoopEntry:
  %switchVar = load i32* varAddr
  switch i32 %switchVar, label %Default [
    i32 0, label %BB.0
    i32 1, label %BB.1
    i32 2, label %BB.2
    i32 3, label %BB.3
    i32 4, label %BB.4
    i32 5, label %BB.5
  ] 
   
def 0 1 2 3 4 5

Figure 4.3: CFG after applying traditional Control Flow Flattening to Figure 4.2. The
figure only shows part of the resulting CFG because the modifications of all basic blocks
are similar except for basic blocks with label BB.5 and Default, where BB.5 is the exit
block of this function, and Default is added by switch instruction to avoid assertion.
Although we only include flows to BB.0, BB.5 and Default, flows to other basic blocks
still exist.
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original CFG and rebuild a new one using the dispatcher and switch table (Line 4-9),
which follows the implementation steps of traditional CFF [74]. However, as shown in
Section 4.3.2, traditional CFF is still vulnerable to static analysis.

To increase the robustness of the resulting program, we continue transforming using
the following strategies. First, we hide the visible label by introducing the hashing method
and a randomly chosen secret, Salt (Line 10-12). We provide more details in Section
4.3.3. Second, to further hide the loop structure, we create a table containing the address
of each Basic Block and encode the switch table, which are both stored in the global
variable list (Line 13-14). Then, we create a decode function (Line 15-16) to accomplish
the indirect control flow. The function decodes the address of the corresponding basic
block from the encoded switch table and switch variable. Finally, we inline the dispatcher
to each basic block to hide the loop structure completely. Section 4.3.4 takes an example
of the final operator function to illustrate the whole process.

4.3.2 Traditional Control Flow Flattening

Figure 4.2 shows the original CFG of the ReLu operator function from a simple MNIST
convnet model [28] compiled from TVM [22] with optimization configuration -O0, and
Figure 4.3 demonstrates the CFG after flattening. We omit unnecessary instructions
for both figures and only retain the control flow related instructions to make the figures
clear and tidy. Moreover, the code in each basic block is represented in LLVM assembly
language format (LLVM IR) because our defense mechanism is implemented on top of
LLVM. For Figure 4.3, we do not include all the basic blocks originally shown in Figure
4.2 because the modification applied to all basic blocks is similar except for basic block
BB.5 and Default, where BB.5 is the exit block of this function, and Default is added
by switch instruction to avoid assertion by default. Therefore, we choose one basic block
(BB.0) to show the basic logic and explain the vulnerability of traditional CFF. As we
can see in Figure 4.3, after flattening, all basic blocks in the original implementation
share the same dominator, LoopEntry, and post-dominator, LoopEnd (except for Basic
Block BB.5). Instead of condition jump controlled by %cmp1 and br, the dispatch variable
%switchVar manipulates the control flow. Although the CFG is transformed, attackers
can reconstruct it by analyzing the operand value of the selection instruction in BB.0
with the operand value of the switch instruction in LoopEntry to get the successors of
each basic block. For example, as shown in Figure 4.3, we can infer that either BB.1 or
BB.5 can be the next execution target after the execution of BB.0 (marked as red).
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Entry:
  %salt=call i32 @SALT_INIT()
  <initialization works>
  store i32 -1051055862, i32* varAddr
  br label %LoopEntry

BB.0:
  <original instructions>
  %nextSwitchVar = select i1 %cmp1, i32, -565623816, i32 -2056297511
  store i32 $nextSwitchVar, i32* varAddr
  br label %LoopEnd  

LoopEnd:
  br label %LoopEntry

LoopEntry:
  %switchVar = load i32* varAddr
  %hash = call i64 @OBF_HASH(i32 %switchVar, i32 %salt)
  switch i64 %hash, label %Default [
    i64 -8544006523246440740, label %BB.0
    i64 -1211438434810113373, label %BB.1
    i64 7744719857366639162, label %BB.2
    i64 3170033436677531650, label %BB.3
    i64 -4349415460800802357, label %BB.4
    i64 1291272085159665688, label %BB.5
  ] 
   

Figure 4.4: CFG after hiding the visible label of Figure 4.3. To achieve the goal, we
introduce a 32-bit secret number, %salt and initialize it (red) at the Basic Block Entry.
Then we compute %hash using a one-way cryptographic hashing function (red) based on
the old %switchVar value and %salt. Finally, we use the value of %hash to determine
the control flow. In this case, the value assigned to %switchVar does not show in the
switch table anymore (blue).

4.3.3 Hide Visible Label

The first strategy to increase the resilience of traditional CFF is to hide the statically
visible dispatch labels by introducing secret information and employing one-way cryp-
tographic hashing. Figure 4.4 shows the CFG after hiding the visible label (marked
as blue) of Figure 4.3. The value of %salt is initialized at the Block %Entry (marked

54



Entry:
  %salt=call i32 @SALT_INIT()
  <initialization works>
  store i32 -1051055862, i32* varAddr
  br label %LoopEntry

LoopEntry:
  %switchVar = load i32* varAddr
  %hash = call i64 @OBF_HASH(i32 %switchVar, i32 %salt)
  <load %encodedSwitchTb>
  %idx = call i16 @DECODE(i64 %hash, i16* %encodedSwitchTb)
  <load %localAddrTb>
  %blockAddrPtr = load i64, i64* %localAddrTb, i16, %idx
  %blockAddrVal = load i64, i64* %blockAddrPtr
  %blockAddr = inttoptr i64 blockAddrVal to i8*
  Indirectbr i8* %blockAddr, [label %BB.0, label %BB.1, 
                              label %BB.2, label %BB.3,
                              label %BB.4, label %BB.5]
   

?

BB.0:
  <original instructions>
  %nextSwitchVar = select i1 %cmp1, i32, -565623816, i32 -2056297511
  %hash_0 = call i64 @OBF_HASH(i32 nextSwitchVar, i32 %salt)
  <load %encodedSwitchTb_0>
  %idx_0 = call i16 @DECODE(i64 %hash_0, i16* %encodedSwitchTb_0)
  <load %localAddrTb_0>
  %blockAddrPtr_0 = load i64, i64* %localAddrTb_0, i16, %idx_0
  %blockAddrVal_0 = load i64, i64* %blockAddrPtr_0
  %blockAddr_0 = inttoptr i64 blockAddrVal_0 to i8*
  Indirectbr i8* %blockAddr_0, [label %BB.0, label %BB.1, 
                              label %BB.2, label %BB.3,
                              label %BB.4, label %BB.5]
   

?

Figure 4.5: CFG after hiding the loop structure of Figure 4.4. Instead of directly using
hashed dispatcher label %hash to determine the subsequent control flow, we use it to
decode the switch table and get %idx to retrieve the address of the target basic block in
the basic block address table so that we can implicitly go to the following basic block.
The potential candidate can be all the original basic blocks. Moreover, the main body
of the dispatcher is inlined into each basic block, and the loop structure is completely
removed.
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as red). Then, each time a new basic block needs to be dispatched, we compute the
new label (%hash) with the %salt and the old label (%switchVar) through the hashing
function (@OBF_HASH()) (marked as red). Finally, the code decides its successor basic
block according to the value of %hash. As we can see, the value assigned in Block %Entry
and %BB.0 no longer appear in the dispatcher (%LoopEntry) (marked as blue). More
specifically, we pick the hash function and compute the value of %salt wisely.

4.3.3.1 Hash function

We want to ensure the hash function has preimage resistance, which means finding any
input that maps to a given output hash is computationally infeasible. In other words,
given a hash value h, it should be tough to find any original input x such that hash(x) = h.
This property is crucial for security, as it prevents attackers from reverse-engineering the
hash to discover the original data. The most common method used in practical life is
SHA-256/512 [49]. Preimage resistance keeps the original data secure and practically
impossible to deduce even if the hash value is exposed. This feature perfectly fits our
requirements since the hash values are used in the switch table to determine the following
control flow, and we do not want the attackers to match it with the original data in each
basic block. Moreover, the overhead of the hash function is relatively low and does not
affect the performance of DNN programs.

4.3.3.2 Salt computation

Although preimage resistance prevents attackers from inferring the original data from
the hash value, they can directly compute the hash value from the original data because
regardless of which hash function we choose, its body is included in the DNN program file.
Therefore, it is necessary for us to introduce a secret value, %salt, and keep it unknown
from attackers. The %salt is computed at run time and should not be easily statically
revealed to make attackers unable to recover the original CFG statically. To achieve the
goal, we leverage the concept of opaque predicate [30,38], which can either be a constant
function that does not look constant, like the value of x∗ (x + 1)%2, which always returns
0 regardless of the value of x, or the fact only known to developers, like the color of a
particular pixel of some app resource. An adequate opaque predicate should be resilient
to static analysis. Therefore, for the computation of %salt, the compiler first randomly
generates for each function. At run time, each bit of the %salt is computed by a "query,"
which can be an opaque predicate, making %salt computation statically obscure and
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dynamically confidential. Since the computation of %salt is a one-time job for each
function, it also does not affect the time overhead of the DNN programs.

4.3.4 Hide Loop Structure

After hiding the statically visible dispatcher label, attackers have already struggled to
recover the original CFG or gain important information from CFG. However, as the
loop structure is retained in each function, the control flow still explicitly goes to each
basic block and comes back to the dispatcher (%LoopEntry in Figure 4.4), which leaves
a window for attackers to leak essential information of DNN programs. For example,
attackers at least know all the original basic blocks contained inside a function. To
conceal the CFG further, we aim to hide the loop structure by turning all the explicit
flow into the implicit flow (i.e., indirect jump). The first thing we need to do is to remove
the switch table. Thus, we encoded and embedded the original switch table in the global
variable list. Besides, for each function, we create a table to store the addresses of basic
blocks. Then, we create a decode function that uses the hashed dispatcher label %hash
to get the address of the following basic block. In this way, the flows from the dispatcher
(%LoopEntry) to each basic block are removed. For the last step, we remove the flows
from basic blocks to the dispatcher (%LoopEntry) by inlining the dispatching part (mark
as blue) into every flattened basic block. Figure 4.5 shows the part of the final result
transformed from the original CFG from Figure 4.2. Apparently, attackers do not see a
loop-like structure (or even part of it) in such a CFG because all basic blocks are floated
in the DNN programs.
Additional Effort. While creating the table for basic block addresses, we added a
mask to each address to prevent immediate disclosure of block addresses. The mask
is a random noise randomly generated for each function. It will be deduced from the
retrieved entry before it is used as the target address of the indirect jump.

4.3.5 Optimization

Undoubtedly, after transforming the original CFG from Figure 4.2 to Figure 4.5, the time
overhead increases due to the increasing of instructions, indirect jump, and function calls.
In nested loops, even a single added instruction in the inner loop can execute thousands
of times, causing significant performance overhead. In order to weaken the overhead
introduced by the transformation, we propose two optimization methods: reduce the
flattened functions and inline added function calls.
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Table 4.2: A classification of the number of Basic Blocks in each operator function. BB
refers to Basic Block.

# of BBs Operators
< 3 BatchFlatten
3 ReLu; BiasAdd

4 ReLu; BiasAdd; Add; Divide;
Sqrt; Multiply; Negative;

>4 Dense; Pooling; Conv; ...

4.3.5.1 Reduce the Transformed Functions

Apparently, function transformation introduces additional time overhead. Reducing the
number of transformed functions can improve performance. Applying the transformation
to all functions is unnecessary because some lack helpful information. To determine
the necessity of transformation of the functions, we provide a set of rules based on the
knowledge of DNN programs:

• We only consider transforming the function with the computation. For example,
the DNN programs that TVM generates contain functions that check the input and
output data layout constraint before starting the computation. These functions
typically have more basic blocks than the actual computation function. Applying
transformation to such a function increases not only the time overhead but also
the scale of the DNN program.

• We want to ignore the functions with few blocks because the transformation would
be trivial in this case. However, if we refer to the number of such blocks as N ,
determining the value of N is tricky since we do not want to exclude the vital
operator functions. Thus, we collect information about the number of basic blocks
in each operator function as shown in Table 4.2. We find that only activation
functions like ReLU, element-wise arithmetic operators like Add, and operator
function BatchFlatten have less than five basic blocks. Since these operators are
unimportant, we ignore the functions with less than five basic blocks. Note that
the DNN program with a high optimization level rarely contains such a function
because operators can be fused into one operator function.

• Transforming a function with too many blocks (e.g., 100) is unnecessary, which
makes the code generation step suffer too much, though people typically do not
care about the compilation overhead.
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4.3.5.2 Inline Function Call

As described in Section 4.3.3 and Section 4.3.4, our algorithm integrates two specialized
function calls within the dispatch segment of the program. Recognizing that additional
function calls may incur a notable runtime overhead is essential. This overhead primarily
stems from the potential for extensive jumps between function calls, alongside the
requisite establishment of stack frames, each of which demands considerable processing
time and can impede overall system performance.

One effective strategy we employed to mitigate this overhead is inlining these function
calls. However, while beneficial in reducing function call overhead, excessive inlining can
also substantially increase the size of the function body. This expansion can negatively
impact the time overhead, as larger function bodies may lead to increased compilation
times and potentially hinder execution efficiency due to factors such as cache misses.
Therefore, we want to inline function calls selectively. In our case, inlining is particularly
beneficial in scenarios where the function calls are situated within a block that was the
inner loop of a nested looping construct before optimization because they can invoked
repeatedly during the runtime. To locate these function calls, we analyzed the loop
structure of CFG during the compilation phase. This analysis enabled us to identify all
the inner loops within the CFG accurately and inline them.

4.4 Evaluation
In this section, we evaluate FlatD by answering the following research questions (RQs)
through empirical evaluation.

• RQ1: (Correctness) After applying FlatD to the DNN programs from different
DL frameworks, can they still apply the inference functionality properly?

• RQ2: (Resilience) Does FlatD effectively counterwork against the state-of-the-
art reversing-based extraction attack?

• RQ3: (Performance and Scale) How does FlatD affect the performance and
scale of the DNN programs?

To explore the above RQs and provide a comprehensive evaluation, we evaluate
FlatD with eight real-world pre-trained models and one self-trained model from four
different frameworks and use the well-known obfuscator, O-LLVM [62] as the baseline.
We only use the control flow flattening (-fla) obfuscation of O-LLVM to transform the
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Table 4.3: Statistics of DNN models. ResNet18 is loaded from three different frameworks:
PyTorch (P), ONNX (O), and MXNet (M). All other models are loaded from Keras
Application Zoo.

Model # of Parameters # of Operators
MNIST [28] 34,826 12
VGG16 [119] 138,357,544 23

VGG19 143,667,240 26
Xception [27] 22,910,480 134
ResNet50 [50] 25,636,712 177

ResNet101 44,707,176 347
ResNet152 60,419,944 517

MobileNet [54] 4,253,864 91

ResNet18
P 11,689,512 51
O 11,699,112 69
M 11,699,112 171

program. All models are optimized and compiled by TVM [22] to generate DNN programs.
FlatD and O-LLVM are both applied during the compilation and optimization. During
the evaluation, all the models only used the data from ImageNet [33] to do the inference
task.

4.4.1 Experimental Setup

We implement FlatD on the top of O-LLVM [62,75] (version 8.0), primarily written in
C++ with about 5K LOC. The current implementation obfuscates and evaluates DNN
Programs in the ELF format on x86 platforms.

4.4.1.1 Deep Learning Compiler

For our evaluation, we adopt TVM [1], a state-of-the-art deep learning compiler, to
compile DNN models into executable programs. TVM is chosen due to its flexibility,
which allows seamless integration of our defense mechanism, FlatD, into the workflow
during the code generation phase. For most of our evaluation, we use TVM v0.13.0 with
the highest optimization level (O3) during the compilation. However, for the resilience
evaluation, since the iteration of the TVM version is relatively fast, in order to align the
attack environment, we chose TVM v0.9 to get the victim DNN programs with both the
lowest optimization level (O0) and the highest optimization level (O3).
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Table 4.4: Comparison of the inference results of the obfuscated DNN programs from
O-LLVM and FlatD to the original DNN programs. Here P refers to PyTorch, O refers
to ONNX, M refers to MXNet

FlatD O-LLVM
VGG16 100% 100%
VGG19 100% 100%

Xecption 100% 100%
ResNet50 100% 100%
ResNet101 100% 100%
ResNet152 100% 100%
MobileNet 100% 0%

ResNet18
P 100% 100%
O 100% 100%
M 100% 100%

4.4.1.2 Datasets

Table 4.3 shows all DNN models used for evaluation. All these models, except MNIST-
convnet, are pre-trained models loaded from different frameworks. Among them, MNIST-
convnet is a self-construct and self-trained model following the guide from [28], and
ResNet18 is used to evaluate the effect of FlatD across the frameworks, so we loaded it
from PyTorch [108], ONNX [10], and MXNet [21] respectively. The rest of the models
are all loaded from Keras application zoo [26,67].

4.4.1.3 Runtime Environment

We perform our evaluation in an Ubuntu 22.04 system on a machine that has Intel(R)
Xeon(R) Silver 4114 CPU (2.20 GHz) with 40 cores and 219GB RAM. Note that our tool
can only applied to ELF format on x86 platforms, so our experiments are all running
on the CPUs rather than the GPU. Although the inference overhead is vital for DNN
programs, the compilation overhead is not generally of concern. The total time cost for
applying FlatD to DNN programs at code generation usually ranges from a few seconds
to a few minutes, depending on the operator numbers of each model.

4.4.2 (RQ1) Correctness

To evaluate the impact of FlatD on preserving the inference accuracy of DNN programs,
we compare the inference outcomes of the original DNN programs with the counterparts
transformed from FlatD and O-LLVM. The primary metric for this comparison is to check
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if the prediction results of the two models are identical. We assumed the original DNN
program results were the ground truth and computed the identical percentage for the
programs generated from FlatD and O-LLVM. To ensure a diverse and representative
sample of test inputs, we sourced the test dataset from the ImageNet obtained from
TorchVision [94]. We randomly select 10, 000 test inputs from this dataset as our
evaluation set. Moreover, to illustrate the adaptability of FlatD, we evaluated ten
versions. Within this set, three versions of ResNet18 were sourced from three distinct
frameworks: PyTorch, ONNX, and MXNet. The remaining seven models were obtained
from the Keras Application Zoo.

The summarized results are presented in Table 4.4. The findings from this table
indicate that the inference results of the transformed DNN programs generated by FlatD
align perfectly with those of the original programs across all the sampled inputs, which
is under the expectation. However, we surprisingly found that after being obfuscated
by O-LLVM, the MobileNet Program lost functionality. This outcome underscores the
effectiveness of FlatD in preserving the original functionality and prediction accuracy
of the DNN models.

4.4.3 (RQ2) Resilience

In this section, we evaluate the resilience of our defense framework. We first describe our
evaluation setup (Section 4.4.3.1). Then, we show how FlatD influences the operator-
type inference to the reversing-based extraction attacks (Section 4.4.3.2) by comparing
the result between FlatD and O-LLVM.

4.4.3.1 Evaluation Setup

To align with the attack environment of prior reversing-based model extraction attacks
[89, 146], we choose the TVM with released version v0.9.0 and use MNIST [34] and
VGG16 [119] as two of our test models. We acquire MNIST by following the guide
from [28] and VGG16 from Keras Application Zoo [67]. To test the effect of our defense
mechanism on a more diverse set of DNN programs, we compile the two models above
with two different optimizations (O0 and O3).

4.4.3.2 Operator Type Inference

As mentioned in Section 4.2, all the reversing-based model extraction attacks fully or par-
tially include four parts: Operator-type recovery, Topology recovery, Parameter recovery,
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Table 4.5: The accuracy change in DNN operator inference before and after applying
FlatD and O-LLVM. “N/A” means the attack framework does not support the DNN
programs with the settings.

Victim
Model

Attack
Framework

TVM -O0 TVM -O3
Orig O-LLVM FlatD Orig O-LLVM FlatD

MNIST BTD 100% 91.67% 50.00% 100% 92.31% 38.46%
LibSteal 100% 58.34% 25.00% N/A

VGG16 BTD 100% 96.88 % 40.63% 100% 91.23% 64.91%
LibSteal 100% 40.63% 9.38% N/A

and Dimensions (Attributes) Recovery. Since FlatD mainly focuses on manipulating
the CFG of Operator functions, which is only related to the Operator Type recovery,
we only evaluate our defense mechanism on how it can affect the inference of Operator
Type of each reversing-based model extraction attack. Moreover, Operator-type recovery
is the most essential and fundamental step in reconstructing the final models because, in
some attacks [20, 138,146], the recovery of other parts highly depends on the recovery of
Operator-type.

We report the difference in the accuracy of DNN operator inference between the
original version and the transformed version generated from O-LLVM and FlatD in
Table 4.5. We apply the same metrics to compute the accuracy of each attack used, where
the prediction of operator type is regarded as correct only when the predicted result
describes precisely the same operation as the ground truth. Since LibSteal [146] cannot
deal with the situation when multiply operators are fused into one operator function,
we only evaluate the DNN programs compiled with configuration -O3 on BTD [89]. As
we can see, compared to the O-LLVM, FlatD can effectively reduce accuracy in DNN
operator inference for each attack framework. Notably, while BTD can still achieve over
90% accuracy decompiling the program transformed by O-LLVM, FlatD decreases the
accuracy to around 60% and even lower. Specifically, for MNIST with TVM -O0, the
accuracy of BTD reduces to 50.00%; for VGG16 with TVM -O0, the accuracy of BTD
reduces to 40.63%; for the optimization level -O3, BTD only gets 38.46% accuracy when
targeting the transformed MNIST program compared to 92.31% targeting the MNIST
program obfuscated by O-LLVM. BTD can achieve 61.54% accuracy when targeting the
VGG16 program transformed by FlatD. When facing the LibSteal Attack, although
O-LLVM has already significantly reduced the accuracy, FlatD can still outperform it
(58.34% compared to 25.00% for MNIST TVM -O0 and 40.63% compared to 9.38% for
VGG TVM -O0).
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Table 4.6: Comparison between the performance of the transformed DNN programs
generated by FlatD and O-LLVM and the original DNN programs. We use the time
overhead of the original program as the baseline (100%). This table reports the time
overhead of each DNN program running the inference to one specific picture from
ImageNet and compares it to the original version to indicate the increasing time overhead.
Here, P refers to PyTorch, O refers to ONNX, and M refers to MXNet.

FlatD O-LLVM
VGG16 188% 162%
VGG19 183% 166%

Xecption 280% 181%
ResNet50 169% 170%
ResNet101 163% 176%
ResNet152 161% 176%
MobileNet 231% 228%

ResNet18
P 138% 147%
O 138% 149%
M 134% 146%

LibSteal and BTD rely heavily on the complete CFG information to infer the operator
type. However, FlatD completely conceals the CFG by breaking the visible control
flow between basic blocks. Even IDA Pro cannot extract the complete CFG without
manual effort. On the other hand, although O-LLVM changes the control flow structure,
the basic blocks are still visibly connected in the same chunk, which is still risky for the
operator type to be inferred. We did not evaluate all the attacks mentioned in Section
4.2 due to the failure of setting up the attacks, which is discussed in Chapter 6.

4.4.4 (RQ3) Performance and Scale

Runtime performance and scale are critical to a DNN program, especially when deploying
the model on devices with limited resources, like edge devices or low-power processors.
Therefore, in this section, we compare the scale change between the original DNN
programs and transformed versions (Section 4.4.4.2), as well as their performance of
inference tasks (Section 4.4.4.1). To demonstrate the compatibility of FlatD, we evaluate
ten versions of DNN models. Among them, we loaded three versions of ResNet18 from
three different frameworks (PyTorch, ONNX, MXNet), and all seven other models are
loaded from the Keras application Zoo. Compared to O-LLVM, the programs generated
by FlatD have a lower scale while maintaining similar performance.
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Table 4.7: Comparison between the scale of the transformed DNN programs generated
by FlatD and O-LLVM and the original DNN programs. We use the original DNN
program size as the baseline (100%). This table shows the increased percentage between
transformed DNN programs and original DNN programs. Here, P refers to PyTorch, O
refers to ONNX, and M refers to MXNet.

Diff(%) FlatD O-LLVM
VGG16 17.43 27.90
VGG19 17.48 27.57

Xecption 18.76 34.71
ResNet50 12.91 28.59
ResNet101 12.91 28.44
ResNet152 12.90 28.88
MobileNet 17.04 34.24

ResNet18
P 22.45 36.73
O 21.93 35.53
M 21.94 35.72

4.4.4.1 Inference Time Overhead

Since the time overhead is sensitive to the runtime environment and can fluctuate wildly
due to unexpected reasons, we run all the DNN programs in an isolated environment to
mitigate the influence of the runtime environment and reduce such fluctuation. Specifically,
we randomly chose one picture from ImageNet and used it as the input for all the inference
tasks. For each DNN program, we run the inference 100 times and record the mean as
the evaluation result. As shown in Table 4.6, the results demonstrate that the increasing
time overhead introduced by FlatD is similar to O-LLVM for most DNN models except
the Xecption model.

4.4.4.2 Program Scale

Table 4.7 shows the scale change between the transformed DNN programs generated by
FlatD and O-LLVM and the original DNN programs. Since the transformation process
does not affect the parameter part of the DNN program, we only compare the scale
change of the shared library files, which only contain the operator functions. To note,
Diff = ( St

So
− 1) ∗ 100(%) where St refers to the scale of a transformed DNN program

and So refers to the scale of its original version. As we can see, the final percentages
increased by FlatD to the DNN programs are much less than O-LLVM. While the size
increased by FlatD can range less than 20%, the program generated from O-LLVM
may increase over 30%.

65



Chapter 5 |
Securing Integrity of Deep Neural
Network Program

In this chapter, we realize the potential risk of fault injection attacks to the Deep Neural
Network Program and propose a prototype to secure the integrity of DNN Programs.

5.1 Introduction
Deep Neural Networks (DNNs) have revolutionized numerous fields by delivering state-
of-the-art performance in tasks such as image recognition [50, 119], natural language
processing [16], and complex decision-making systems [118]. These advantages speed
up their widespread adoption across various platforms, ranging from large-scale cloud
infrastructures to resource-constrained edge devices and embedded systems. The growing
demand for low-latency, privacy-preserving inference has accelerated the deployment of
DNN models directly on end-user devices.

To address the computational demands of deploying DNN models on such platforms,
modern Deep Learning (DL) compilers like TVM [22], Glow [116], and XLA [76] have
become essential components in the deployment workflow. These compilers translate
high-level DNN models from different DL frameworks into optimized low-level executable
programs tailored for efficient execution on specific hardware architectures. Although the
appearance of DL compilers eases the deployment of the DNN model, it also introduces
new risks from the perspective of the DNN program. For example, compared to the model
extraction attacks based on side-channel information or prediction queries, the information
leak caused by a reversing-based model extraction attack is more severe because the
DNN program always carries the complete information to run as a standalone program
or on a lightweight runtime stack, which even includes the essential model characteristics
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like its architecture, trained parameters, and hyperparameters. Consequently, attackers
are increasingly encouraged to reverse-engineer DNN programs to extract sensitive model
information, exploit implementation vulnerabilities, or tamper with inference behavior.

In addition to model extraction attacks, it is unknown whether other threats to DNN
models can become more severe due to the emergency of the DNN program. Nevertheless,
a state-of-the-art fault injection attack toward DNN models reveals the potential risk to
the integrity of DNN programs. A fault injection attack intentionally introduces faults
into DNN models, leading to misclassifications, performance degradation, or unauthorized
data leakage. The attack can be performed on different interfaces. While existing research
predominantly focuses on model parameters or training data, FrameFlip [82], which
exploits hardware vulnerabilities, particularly the Rowhammer bug [70], applies the
attack by directly bit-flipping the code base of the shared computational library, such as
the Basic Linear Algebra Subprograms (BLAS), which are fundamental components of
widely used DL frameworks like PyTorch [108] and TensorFlow [1]. Even minor corruption
can cause reductions in inference accuracy. FrameFlip represents a proof-of-concept
attack highlighting the real-world feasibility of using fault injection to undermine AI
infrastructure. Yet, its focus on shared libraries underestimates the potential impact
of similar attacks when targeting standalone compiled DNN programs, which include
the entire computational pipeline within a single executable. When targeting these
compiled DNN programs, the attack surface of the adversary increases substantially.
Unlike shared libraries that are typically protected and isolated by operating system
mechanisms, standalone DNN programs often lack robust runtime defenses, making them
even more vulnerable to fault injection attacks.

Despite the growing severity of fault injection threats, existing defenses for protecting
software code integrity remain insufficient, particularly against hardware-based fault
injection attacks like Rowhammer. Common solutions such as code signing, Control Flow
Integrity [2], and Runtime Application Self-Protection (RASP) [106] primarily focus
on enforcing software-level security guarantees. While these approaches are effective
against traditional software tampering and control flow hijacking, they typically assume
trusted hardware environments and lack mechanisms to detect or prevent bit flips caused
by hardware faults. Consequently, they offer limited protection against advanced fault
injection techniques that exploit physical vulnerabilities in memory subsystems.

To fill the gap, this chapter investigates three general challenges facing fault injection
attacks and proposes a crash-based integrity protection framework to protect the integrity
of the DNN program. The framework is designed to detect and respond to unauthorized
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code modifications in real time. By integrating dynamic hashing techniques and indirect
control flow enforcement into the compilation pipeline, the framework ensures that any
tampering attempt results in an immediate system halt. This fail-stop behavior prevents
attackers from leveraging tampered code for inference or further system compromise.
The protection framework operates in two distinct phases:

• Compilation Phase. During compilation, the DNN program is instrumented
with verification points, where hashes of critical code segments are calculated and
embedded. These verification points are strategically placed to cover sensitive
computation paths, ensuring comprehensive protection.

• Post-Compilation Phase. After compilation, runtime monitors verify these
embedded hashes against recalculated values during execution. Any differences
between the stored and computed hashes indicates a potential integrity violation,
triggering the crash mechanism to halt execution immediately.

To evaluate the effectiveness of this framework, we conducted experiments on six
widely used real-world DNN models(e.g., VGG-16 [119]). Using ResNet-50 [50] as a
case study, the framework was able to identify and respond to FrameFlip-like attacks,
ensuring that no degraded outputs were produced as a result of code manipulation. Our
evaluation demonstrates that our framework successfully detects single-bit fault injections
and prevents inference under compromised conditions.

In summary, we make the following contributions.

• We identify the emerging threat of fault injection attacks targeting DNN programs
and analyze their potential for disrupting inference reliability and system security.

• We propose a crash-based integrity protection framework that enforces runtime
code integrity verification, providing robust defense against unauthorized code
modifications, including those induced by hardware-level fault injection attacks like
Rowhammer.

• We implement and evaluate our framework across multiple DNN models, demon-
strating its effectiveness in preserving inference correctness and mitigating runtime
tampering, while maintaining acceptable runtime performance.

The rest of the paper is organized as follows. We first demonstrate our motivation for
this framework in Section 5.2. Next, we discuss the general challenges and our solution
in Section 5.3. Then we present the basic work flow of our framework in Section 5.4.
Section 5.5 presents the evaluation and case study.
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Figure 5.1: Comparison between the attack towards DNN models and DNN Programs.
As shown in figure 5.1a, the original frameflip uses DARM Rowhammer to affect the
bit in the shared library, Basic Linear Algebra Subprograms (BLAS), and further
affects computation results of the Convolutional module and the final result of the AI
classification Application. When the attacker uses the same strategy targeting DNN
programs (figure 5.1b), all DNN model-related computation, including shared library
(BLAS), Convolutional module, and final classification, are integrated into a standalone
DNN program. Therefore, the attacker can target any vulnerable bit inside the DNN
program to affect the final result.

5.2 Motivation

5.2.1 Potential Risk

With the widespread adoption of Deep Neural Network (DNN) models, they have faced
numerous security and privacy risks [113,121,132]. These risks stem from various attack

69



L1:
   mov r10, (x+1) 
   mov r10, (x-1)
   clflush (x+1) 
   clflush (x-1)
   jmp L1

(a) Code snippet

x-1
x

x+1

…

…
(b) Target Physical Address

Figure 5.2: Demonstration of Double-sided Rowhammer attack exploiting DRAM vul-
nerabilities. As shown in 5.2a, the code snippet repeatedly accesses and flushes adjacent
memory rows x− 1, x + 1 via mov and clflush instructions in a loop (L1), bypassing
the cache to stress DRAM cells directly. Physical address layout (5.2b) highlighting the
victim row x flanked by aggressor rows x− 1, x + 1. Rapid access to these adjacent rows
induces bit flips in the victim row, enabling unauthorized memory manipulation.

vectors that threaten model integrity, confidentiality, and robustness. On the other hand,
the emergence of the Deep Learning Compiler, which compiles the model into DNN
programs, introduces a new attack vector. For example, the critical attack vector, model
extraction attacks [138, 146], has gained considerable attention. These attacks aim to
steal essential DNN model information, including network architecture, parameters, and
hyperparameters, by reversing DNN Programs, allowing adversaries to replicate or exploit
valuable models developed by leading AI providers.

Beyond model extraction attacks, fault injection attacks [52, 82, 112] present another
serious risk for the DNN program that demands attention. Fault injection attacks involve
deliberately introducing faults into a system to induce incorrect behavior, compromise
security, or expose latent vulnerabilities. By manipulating execution flow, adversaries
can force misclassifications, degrade performance, or bypass security mechanisms to
leak sensitive information or manipulate model behavior. Among various fault injection
strategies, the recently proposed FrameFlip attack by Li et al. [82] stands out due to
its novel and highly effective approach. As shown in Figure 5.1a, unlike traditional
fault injection methods, FrameFlip does not target individual neural network weights
or activations but instead exploits shared libraries, such as the Basic Linear Algebra
Subprograms (BLAS), which are foundational components of widely used machine learning
frameworks like PyTorch [108] and TensorFlow [1]. By flipping a single bit in these
shared libraries, FrameFlip affects the computation of the Convolutional module in the
machine learning infrastructure and further disrupts the DNN inference control flow in AI
applications, causing substantial performance degradation. The attack leverages DRAM
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Rowhammer [70] to perform end-to-end fault injections, making it effective across diverse
model architectures (LeNet [79], VGG-16 [119], ResNet-50 [50]) and datasets (CIFAR-10,
ImageNet [33]). The findings demonstrate that even a single bit flip can degrade inference
accuracy, reducing performance to levels comparable to random guessing. Inspired by
the FrameFlip attack, we recognize the critical need to protect the integrity of DNN
programs. Figure 5.1 compares the original FrameFlip attack and the potential attack
workflow pipeline if it targets the DNN programs. As we can see in Figure 5.1b, an attack
on DNN programs expands the threat landscape to the entire DNN model computation
pipeline because they are all integrated into a standalone executable, including involved
shared library (like BLAS), Machine Learning infrastructure (Convolutional Module),
and final classification. Furthermore, targeting the vulnerable bits in the DNN program
containing the whole computation pipeline is far more convenient than just exploring the
shared library codebase. In order to emphasize the severity of the FrameFlip attack, we
first dive into the critical technology it uses, Rowhammer.

5.2.1.1 Rowhammer

Dynamic Random-Access Memory (DRAM) is the backbone of modern computing,
providing high-density, high-speed, volatile storage. On the architectural level, DRAM
is organized into several channels. Each channel sits between the memory controller
and the physical DRAM modules, which are known as Dual Inline Memory Modules
(DIMMs). Data is organized hierarchically in these modules into ranks, banks, rows (i.e.,
word-lines), and columns (i.e., bit-lines). Each memory cell stores data as an electric
charge in capacitors, which are controlled and accessed by transistors through activating
targeted word-lines.

The Rowhammer bug is a fatal hardware vulnerability in many DRAM devices [70],
typically affecting those with high-density production technologies. It was first recognized
through experimental studies showing that if specific DRAM rows are rapidly and repeti-
tively turned on again, then capable electromagnetic interference or capacitive coupling
is induced across adjacent memory rows. Double-sided hammering is a typical exploit
to trigger the Rowhammer bug, which interferes with data accuracy in adjacent rows,
causing random bit flips. Such an offset compromises the data integrity of neighboring
rows by casually turning all 0s into 1s instead. Figure 5.2 demonstrates the code snippet
and the target physical address of double-sided Rowhammer. As shown in Figure 5.2b,
the aggressor rows with row index x + 1 and x− 1 lie on either side of a target victim
row x. If an attacker rapidly accesses these two aggressor rows via mov and clfush
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instructions, the electromagnetic interference will eventually corrupt data stored inside
the victim row x. When this happens, a memory cell in row x storing a 1 signal can
suddenly convert into a 0 signal or vice versa.

Although hardware manufacturers have introduced mitigation strategies, such as
Target Row Refresh (TRR) [98], in subsequent generations of DRAM (e.g., DDR4),
research has shown that these defenses are not absolute. For example, TRRespass [43]
proposes an attack that bypasses TRR mechanisms by utilizing advanced Rowhammer
solutions that aim simultaneously at multiple rows, called many-sided Rowhammer. Thus,
despite TRR and other defensive measures, the Rowhammer bug is still a daunting and
significant issue for modern commodity DRAM.

5.2.2 Existing Code Integrity Mechanism

Ensuring the integrity of software code during its lifecycle, from development to deploy-
ment and execution, is a foundational basement of software security. Code integrity
protection mechanisms aim to guarantee that software remains untampered, authentic,
and behaves as intended, even in adversarial environments. Over the years, several tech-
niques and frameworks have been developed to preserve code integrity, each addressing
different stages and components of software execution. However, none can prevent DNN
programs from the risk of bit-flip attacks using Rowhammer. Note that in this section, we
only discuss the software-level defense mechanism. Although hardware-level mitigation
policies perform better against the Rowhammer, they have limitations when applied to
DNN programs. For instance, Error-Correcting Code (ECC) memory can detect and
correct single-bit errors, which mitigates some Rowhammer effects. However, ECC is not
universally available, especially in edge devices where DNN programs are often deployed.
Therefore, software-based defenses are necessary.

5.2.2.1 Static Protection

Code Signing and Digital Signatures. Code signing is a cryptographic technique
designed to ensure the authenticity and integrity of software prior to its execution.
Developers generate digital signatures by hashing the code and encrypting this hash
with their private key. At runtime or load time, the signature is verified using the
corresponding public key to confirm that the code has not been altered. However, this
method predominantly verifies integrity only before execution, leaving the running code
potentially vulnerable.
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Integrity Measurement Architecture (IMA) and Trusted Platform Module
(TPM). IMA is a Linux kernel subsystem that calculates hashes of critical executable
files before execution and stores them in tamper-resistant logs for attestation purposes.
TPM, combined with Secure Boot and Measured Boot mechanisms, provides hardware-
based verification of software components during the boot process, ensuring that the
system starts in a known good state. These mechanisms focus on initial system trust but
do not continuously monitor runtime integrity.

5.2.2.2 Dynamic Protection

Control Flow Integrity (CFI). CFI is a critical code integrity protection mechanism
designed to prevent control flow hijacking attacks. First introduced by Abadi et al. [2],
CFI has become an essential defense against Return-Oriented Programming (ROP),
Jump-Oriented Programming (JOP), and other sophisticated code-reuse attacks that
leverage vulnerabilities such as buffer overflows and memory corruption. Zhang and
Sekar [148] and Mohan et al. [96] further improve the efficiency by reducing performance
impact. Control Flow Integrity ensures that a program’s execution adheres to its intended
control flow graph (CFG), preventing adversaries from redirecting execution to unintended
locations. It enforces two primary properties: Forward-Edge ensures that function calls
and indirect jumps follow valid transitions within the CFG, and Backward-Edge protects
return addresses to prevent stack-based control flow attacks. Static CFI, like LLVM-
CFI [100] and Microsoft Control Flow Guard [123], enforces control flow correctness
at compile-time by instrumenting code with valid control flow constraints. Dynamic
CFI enforces integrity during execution by monitoring control transfers and blocking
unauthorized branches. For example, Shadow Stack Techniques [18] maintains a separate
secure stack to verify return addresses at runtime.
Runtime Application Self-Protection (RASP). RASP technologies embed security
checks within an application’s runtime environment to detect and mitigate attacks as they
happen. RASP monitors application inputs, API calls, and behavior to block common
application-layer threats, such as SQL injection, cross-site scripting (XSS), and command
injection. However, RASP primarily operates at the software abstraction level, assuming
that the hardware and memory layers are trustworthy.
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5.2.2.3 Limitation

Unfortunately, Rowhammer is capable of bypassing these code integrity mechanisms.
The primary limitation of existing code integrity mechanisms lies in their foundational
assumption: the reliability of the underlying hardware. Traditional software integrity pro-
tections are designed to prevent software-based tampering and unauthorized modifications.
Still, they are not equipped to detect or deter bit-level manipulations originating from
Rowhammer. Specifically, they have the following disadvantages against Rowhammer:

• Threat Model Mismatch. Code signing and IMA verify software integrity
before execution, but they do not monitor runtime changes. Once the code is
loaded into memory, it becomes susceptible to Rowhammer-induced modifications.

• Post-Execution Blind Spots. TPM-backed Secure Boot and Measured Boot
confirm system integrity during startup. Still, they do not protect against dynamic
memory corruption during runtime, leaving systems exposed to Rowhammer after
the initial attestation phase.

• Lack of Hardware Awareness. Control Flow Integrity (CFI) and RASP
focus on enforcing legitimate control flow and runtime behavior. However, they
typically do not include low-level memory integrity verification. Bit flips induced
by Rowhammer that subtly alter data or instructions without violating expected
control flow or triggering behavioral anomalies go unnoticed.

Therefore, DNN programs still face the threat of bit-flip attacks like FrameFlip. It is
critical to devise a solution to mitigate this threat.

5.3 Problem Statement

5.3.1 General Challenges

Designing a compiler-integrated defense framework to safeguard the code integrity of DNN
programs against fault injection attacks, especially bit-flip attacks using Rowhammer,
like FrameFlip, is challenging. There are three crucial general challenges (GCs):

• GC1: Detection bit-flip Tampering at Runtime. Traditional integrity
checks fail to address runtime modifications because they apply the check at load
or boot time or after the control flow graph is not hijacked. A robust framework
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must detect any bit-flips in critical code regions (e.g., Convolutional computation
module) in real time.

• GC2: Preventing Forgery of Integrity Verification. Traditional integrity
checks (e.g., static hash functions) are vulnerable to bypass or reverse engineering,
allowing attackers to recompute valid hashes after tampering. A defense must
ensure verification mechanisms cannot be easily forged even if code sections are
modified.

• GC3: Halting Exploitation of Compromised Execution. Many defenses
allow execution to continue after detecting tampering, enabling attackers to exploit
transient or partial control-flow hijacking. A robust framework must prevent
attackers from leveraging even partially corrupted states.

5.3.2 Our Solution

To mitigate this threat, we propose a prototype to secure the integrity of the DNN
program against unauthorized modifications. Our approach introduces a crash-based
security mechanism, which ensures that any attempt to manipulate the codebase or
execution flow triggers an immediate application failure. By enforcing strict integrity
verification, we negate fault injection attempts before they can cause damage, thus
preserving the reliability and security of deployed DNN programs. Our work introduces
a more robust defense model that addresses some of the shortcomings of traditional
code integrity solutions by solving the general challenges. Specifically, when facing
hardware-based attacks like Rowhammer, our framework is more robust than traditional
code integrity solutions.

• Runtime Code Integrity Verification. To address GC1, our framework
enforces continuous runtime verification of control flow integrity. By using cus-
tomized hash functions and indirect control flow mechanisms, it ensures that any
unauthorized modification to the critical codebase of DNN programs or control
flows is detected during execution.

• Customized Hash Function for Code Integrity. To address GC2, the
system employs a customized hash function to generate verification values based on
the program’s code base. This customization adds an additional layer of security
by making it difficult for an attacker to generate valid hash values after flipping
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bits in the code. Without knowledge of the hash function, an attacker leveraging
Rowhammer cannot recompute correct hashes, and any modification will trigger
the framework’s detection mechanisms.

• Immediate Crash-Based Reaction. To address GC3, upon detecting unautho-
rized changes, the mechanism initiates a crash-based reaction, halting execution to
prevent further exploitation. This immediate response limits the attacker’s ability
to leverage Rowhammer-induced modifications to perform privilege escalation or
arbitrary code execution.

For the solution of GC2, even if the attackers can get the customized hash function
by reverse engineering and recompute correct hashes for the target modification, the
attack is still extremely hard or even impossible to be successful. We assume the attacker
targets the vulnerable bit in row X, and the original hash value stores at row Y . The
attacker needs to flip bits in both rows X and Y simultaneously to bypass the defense
mechanism while applying the desired attack effect. Otherwise, the mismatch of hash
values will trigger the crash reaction and halt the execution to prevent further exploitation.
Therefore, our framework offers greater robustness against Rowhammer because it verifies
runtime integrity rather than relying on pre-execution checks, provides a customized
hash function to complicate forgery attempts, and reacts to tampering proactively by
terminating execution rather than attempting to continue operating under compromised
conditions.

5.4 Design

5.4.1 Overview

Figure 5.3 presents the workflow of our integrity protection methodology. The framework
is composed of two primary phases: the Code Generation (CodeGen) stage and the
Post-Compilation stage. During the CodeGen phase, which is implemented using the
LLVM compiler infrastructure [75], a relocatable Executable and Linkable Format (ELF)
binary is produced. This intermediate binary includes strategically inserted placeholders,
which are designed to accommodate later critical values to ensure code integrity during
execution. Furthermore, this phase integrates the computed hash values with indirect
branching instructions to protect the control flow integrity of the final DNN program.
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Figure 5.3: Workflow Pipeline Overview. The process begins with a DNN model, which is
compiled into a final program using a DL compiler. During LLVM-based code generation,
integrity checks are injected: (1) the Original Control Flow Graph is transferred to indirect
branch instructions, (2) placeholder values and functions are inserted, (3) cryptographic
hash functions are integrated. (4) The hash results are combined with indirect branch
logic. At the post-compilation phase, the relocatable ELF binary is processed to locate
placeholders, compute the hash value of Basic Block metadata offline, and replace
placeholder values.

At the Post-Compilation stage, we leverage a Python-based parsing and analysis tool
to process the relocatable ELF binary. The tool systematically identifies the placeholders
embedded during the earlier CodeGen stage. After locating these placeholders, it
computes the appropriate hash values based on pre-analyzed basic block information,
and substitutes the placeholders with these finalized values.
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define weak i8* @PLACEHOLDER_FUNC() noinline optnone readonly {
  %retaddr = call i8* @llvm.returnaddress(i32 0)
  ret i8* %retaddr
}  

Figure 5.4: LLVM IR placeholder function designed to capture the return address of its
caller. Marked as weak, noinline, optnone, and readonly, this function is ensured not
to be optimized during compiler optimizations and other code generation processes. It
uses @llvm.returnaddress to retrieve the runtime return address and returns it.

%begin_addr = call i8* @PLACEHOLDER_FUNC()
 <Original Basic Block>
%end_addr = call i8* @PLACEHOLDER_FUNC()
%check_sum = call i32 @HASH_FUNC(i8* %begin_addr, i8* %end_addr)
%masked_value = xor i32 %next_bb_address, %check_sum
%next_bb_address = xor i32 % masked_value, <PLACEHOLDER_VAL>

Figure 5.5: Result After CodeGen. Placeholder functions (@PLACEHOLDER_FUNC) capture
the start and end addresses of a basic block. A hash function (@HASH_FUNC) computes
a checksum over the block’s address range. The checksum is combined with the next
basic block’s address via the XOR operation, which ensures runtime tamper detection by
validating code integrity during execution. The placeholder value (<PLACEHOLDER_VAL>)
is replaced post-compilation to finalize the integrity checks.

5.4.2 CodeGen

The initial operation within the Code Generation (CodeGen) phase is converting all
direct branch instructions present in the computational segments of the DNN program
into indirect branches. This transformation enhances flexibility by allowing dynamic
modifications to target addresses during runtime. To assist in identifying the boundaries
of basic blocks during the Post-Compilation phase, the framework introduces placeholder
functions at both the entry and exit points of each basic block of critical computation
component, as demonstrated in Figure 5.4. These placeholder functions fulfill several
critical roles and adhere to specific design requirements:

• Boundary Delimitation. They explicitly mark the beginning and end of
each basic block, enabling precise detection of block boundaries when performing
integrity verification after compilation.

• Runtime Address Retrieval. The placeholder function calls the LLVM intrinsic
llvm.returnaddress, allowing it to capture the runtime return address. This
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Relocation section '.rela.text.<section_name>’ at offset 0x231a0 contains 30 entries:
  Offset          Info           Type           Sym. Value    Sym. Name + Addend
00000000024d  002400000004 R_X86_64_PLT32    0000000000008960 PLACEHOLDER_FUNC - 4

Symbol table '.symtab' contains 54 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
    36: 0000000000008960     5 FUNC    WEAK   DEFAULT    2 PLACEHOLDER_FUNC

Figure 5.6: Partial results from readelf showing relocation and symbol table entries
for the PLACEHOLDER_FUNC in an ELF binary. The relocation entry (type R_X86_64_-
PLT32) references the weak symbol PLACEHOLDER_FUNC at offset 0x24d. The symbol
table confirms PLACEHOLDER_FUNC as a weakly bound function with fixed address 0x8960.
These entries enable post-compilation patching, where placeholder offsets and values are
replaced with runtime-derived hashes for control-flow integrity verification.

address information is essential for the computation of hash values used in verifying
the integrity of control flow during execution.

• Compiler Directive Compliance. To ensure the placeholder function remains
intact and is not subject to alteration during compiler optimizations, specific
attributes are applied. These include noinline, optnone, and readonly, which
collectively prevent inlining, disable optimization, and declare that the function
has no side effects, respectively.

Following these modifications, the CodeGen phase produces an intermediate repre-
sentation of the program, where each basic block is bracketed by calls to the placeholder
function. As illustrated in Figure 5.5, the runtime system retrieves both the starting
and ending addresses of a basic block using these functions. These addresses are then
passed to a hash function to compute a checksum that validates the block’s integrity.
At this stage of compilation, the actual binary layout of the program is not finalized.
Therefore, a temporary placeholder value is inserted in place of the actual checksum.
This placeholder will later be replaced with the valid hash corresponding to the finalized
basic block during the Post-Compilation phase. Finally, two sequential XOR operations
are integrated to enforce control flow integrity. The first XOR combines the computed
checksum with the address of the next basic block, while the second XOR reverses this
masking process using the placeholder (which will later be replaced by the correct hash).
If an attacker tampers with the basic block, the checksum verification will fail, resulting in
an unexpected indirect branch address. This deviation causes the program to terminate
abnormally, thereby preventing unauthorized code modifications and preserving the
integrity of the execution flow.
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5.4.3 Post Compliation

The Post Compilation phase ensures that the final DNN program contains the correct
security-enforcing mechanisms by replacing placeholders with computed hash values.
This step requires precise identification of placeholder positions, both function and value,
within the relocatable ELF binary.

To confirm the placeholder function’s position, we first use readelf to analyze the
symbol table and relocation section and identify placeholder call sites. As shown in
Figure 5.6, the relocation section of the ELF binary contains information about where
PLACEHOLDER_FUNC is referenced. Specifically, at offset 0x24d, the instruction calls
PLACEHOLDER_FUNC with relocation type R_X86_64_PLT32, and the correspond-
ing function symbol is located at address 0x8960, which is consistent with the symbol
table entry. Upon these findings, we utilize pyelftools, a Python library designed to parse
relocatable ELF binary and locate each placeholder function call site.

Once the placeholder function locations are identified, the next step is to search for
the placeholder value. Since we use a predefined, unique placeholder value (0xdeadbeef
in our case) within the binary, locating offsets that store these values is straightforward.
Then, we combine two position lists to get an offset list that includes basic block start
address, basic block end address, and instruction address containing the placeholder value
sequentially. Since it is impossible for the DNN program to contain function symbols or
values matching our predefined placeholders, the offset list follows a strict order. Finally,
we compute the hash values of each basic block offline using the previously extracted
boundaries and replace the placeholder value.

5.5 Evaluation
This section evaluates our prototype using the following research questions (RQs). We
mainly focus on the functionality of our prototype from two sides.

• RQ1: (Functionality of DNN Programs) After applying our prototype to the
DNN programs, can they still apply the inference functionality properly?

• RQ2: (Functionality of Prototype) Does our prototype effectively secure the
DNN programs integrity?

To explore the RQ1, we evaluate our prototype with six real-world pre-trained models
and use the data from ImageNet [33]. All models are optimized and compiled by TVM [22]
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Table 5.1: Statistics of DNN models. All models, except MNIST, are loaded from the
Keras Application Zoo.

Model # of Parameters # of Operators
MNIST 34,826 12
VGG16 138,357,544 23
VGG19 143,667,24 26

Xception 22,910,480 134
ResNet50 25,636,712 177
MobileNet 4,253,864 91

to generate DNN programs. As for the RQ2, we target the DNN program compiled
from ResNet-50 as the case study to discuss the effectiveness of our methodology. In the
evaluation, we use TVM [22] as the DL compiler to generate DNN programs from DNN
models with the highest optimization level (O3) during the compilation.

5.5.1 (RQ1) Functionality of DNN Program

5.5.1.1 Datasets

Table 5.1 shows all DNN models used for functionality evaluation. All models, except
MNIST-convnet, are pre-trained models loaded from the Keras application zoo [26,67,68].
MNIST-convnet is a self-construct and self-trained model following the guide from [28].
All the experiments are run on a server with an Ubuntu 22.04 system, Intel(R) Xeon(R)
Silver 4114 CPU (2.20 GHz) with 40 cores and 219GB RAM. Note that our prototype
can only be applied to the ELF format on x86 platforms, so our experiments run on the
CPU rather than the GPU.

5.5.1.2 Results

To assess how our prototype impacts the inference accuracy of DNN programs, we compare
their prediction outcomes before and after applying our approach. The key evaluation
metric involves determining whether both versions produce identical predictions. Given a
test set of N inputs, we capture the outputs from the original and transformed programs
and quantify their consistency. Specifically, we compute the percentage of test inputs
for which both models yield the exact predictions, providing a direct measure of how
the transformation process influences the predictive behavior of the DNN programs.
Our assessment is conducted on six different DNN models. We draw samples from
the ImageNet dataset sourced through TorchVision [94]. A total of 100 test inputs are
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Table 5.2: Comparison between inference results of the DNN programs with and without
applying our methodology. This table shows that the predicted labels do not change
after transformation

MNIST VGG16 VGG19 Xecption ResNet50 MobileNet
100% 100% 100% 100% 100% 100%

Original ResNet-50
Program 

ResNet-50 Program
With Protection

ADD RDX, 0x70

01001000 10000011 
11000010 01110000 

ADD RDX, 0xf0

01001000 10000011 
11000010 11110000 

Bit Flip

{

{

Before Attack: Cat

After Attack: Fox

Before Attack: Cat

After Attack:  Segment Fault

Figure 5.7: Case Study Result Overview on FrameFlip-like bit flip attack against ResNet-
50. We manually identify a vulnerable bit ((highlighted in red)) in the original program’s
assembly instruction (ADD RDX, 0x70) and alter it to ADD RDX, 0xF0 via Rawhammer,
causing misclassification from "Cat" to "Fox". On the other hand, the protected DNN
program triggers a segmentation fault upon the same attack, demonstrating runtime
integrity enforcement. The protection framework detects tampering and halts execution
to prevent erroneous outputs.

randomly selected, allowing our evaluation to cover a broad range of scenarios and input
variations.

Table 5.2 summarizes the results. The findings show that the transformed DNN
programs consistently produce identical inference results compared to their original
versions across all sampled inputs. This outcome highlights the effectiveness of our
prototype in preserving both the integrity and predictive accuracy of the DNN programs.
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5.5.2 (RQ2) Functionality of Prototype

5.5.2.1 Assumption

Victime Capability. We use ResNet-50 [50] as a case study to demonstrate the
impact of potential bit-flip attacks on a DNN program and evaluate how our prototype
enhances integrity protection by triggering an alarm upon detection of unauthorized
modifications. We use a pre-trained ResNet-50 from the Keras Application Zoo [67,68]
and compile it into a deployable DNN program using TVM. To align with the prior
bit-flip attacks [52,82,112,144], we assume that the decompiled ResNet-50 program is
deployed and run on a resource-sharing platform.
Attack Capability. The attacker aims to undermine the functional reliability of the
DNN inference program by introducing a single-bit fault into the DNN program runtime
codebase. The injected fault is designed to disrupt the standard control flow of the DNN
program, thereby resulting in a measurable decline in the predictive accuracy and overall
performance of the DNN program. Meanwhile, the attacker strives to preserve a high
level of stealth, ensuring that the fault remains undetected for an extended duration.
We assume that the attacker process resides on the same platform as the target DNN
service, allowing both to share computational resources. In particular, the adversary
is an unprivileged user and yet still accesses the same physical memory space as the
victim process. This assumption is widely recognized and has been adopted in previous
research [48,52,82,144]. Also, we assume that the attacker can obtain the DRAM address
mapping scheme.

5.5.2.2 Case Study

To simulate a bit-flip attack similar to FrameFlip [82], we manually identify a vulnerable
bit in the ResNet-50 Program and flip it using RawHammer. The impact of this bit-
flip attack is visualized in Figure 5.7. Specifically, when the original (unprotected)
ResNet-50 program is subjected to the attack, a test image of a "cat" is misclassified as a
"fox", highlighting the vulnerability of the DNN program to even minimal modifications.
Furthermore, we randomly selected 100 test images from ImageNet and measured the
accuracy after the attack. Without protection, the accuracy drops from 100% to 70%,
demonstrating a substantial degradation in performance due to the attack. Conversely,
when the protected ResNet-50 program is tested under the same attack conditions, it
maintains its original classification accuracy before the attack. As expected, the model
correctly identifies the image as a "cat", consistent with our evaluation result in Section
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5.5.1. However, when a bit-flip attack is attempted on the protected model, the system
detects the integrity violation and immediately terminates execution via a segmentation
fault, preventing any further inference.

This case study demonstrates the robustness of our methodology in securing DNN
program integrity against fault injection attacks. By enforcing a fail-safe mechanism, our
approach detects unauthorized modifications and halts execution to prevent compromised
models from producing incorrect outputs.
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Chapter 6 |
Discussion

In this chapter, we discuss several limitations of our presented works and provide potential
solutions for them.

6.1 LibSteal
The limitation of our attack framework is due to the connection between layers. The
shared library compiled from DNN models only contains the distinct layer functions, so
we need to know the exact number of each layer function. One solution is to enlarge our
search space and use meta-learning to make us closer to the original network architecture.
For example, we do not limit the usage of function layers and allow the search engine to
explore the possible combination. We train and test each explored architecture’s accuracy,
leaving the best result. However, it is time-consuming and will be out of imagination.
On the other hand, if we can access the JSON or even the parameter file, we can recover
the precise DNN models, making our work more meaningful.

The emergence of the DL compilers has attracted attackers’ attention to the binary
attack interface [20, 89, 138]. However, a few software defense strategies can still be
used to mitigate this attack interface. The most common one is obfuscation, which
transforms the program into another format with the same functionality and semantics.
However, only some obfuscation techniques are suitable for this scenario because the DNN
executable still requires efficiency. For example, although code virtualization performs
outstandingly against reverse engineering, it will significantly increase the execution time
overhead, which is unacceptable for the DL inference binary.

Another approach is white-box cryptography (WBC) [15]. Existing attacks can
all be considered white-box attacks since they assume complete control over the DNN
executable. WBC is an essential technology against the white-box binary attack. WBC
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allows transforming the given binary into a robust representation so that it can hinder the
reverse engineering and analysis of the binary. However, this technology also increases
the execution time overhead.

6.2 FlatD

Protect other characteristics. The primary purpose of FlatD is to protect the CFG
of the operator function so that attackers cannot infer the operator types accordingly.
However, we do not provide protection to other characteristics of the DNN model, such
as graph topology, operator attributes, and parameters, which should be protected from
different views. For example, the data flow of DNN programs is also an essential feature
attackers use to extract DNN model information, like graph topology. Attackers [89,138]
utilize the data dependency between operator functions to determine the graph topology
structure because the input data of the successor operator function and the output data
of the predecessor operator function share the same memory address.
DNN program integrity and dynamic analysis. In section 4.3.3, we introduce
the secret information, salt, and one-way cryptographic hashing to secure the dispatcher
label. Actually, we also consider the probability of such a strategy to secure the code
integrity (i.e., tamper-proof). For example, we can leverage the value of salt, which is
randomly chosen for each function. Theoretically, we can make the salt related to the
code of each basic block, like the hash value of the code chunk. The value of the salt can
be calculated after executing each basic block. Thus, If the code is compromised, the
value of salt will not match the original one, and the execution sequence of the basic block
will not follow the original control flow. Most likely, the code crashes. A tamper-proof
program can prevent malicious instruments from collecting valuable information.
Supporting Other DL Compilers and Platforms. In Chapter 4, though we only
discussed and evaluated the availability of FlatD on TVM and x86-64 platforms, our
defense framework can also provide support to other DL compilers and platforms thanks
to the compatibility of LLVM [75]. According to a complete survey of DL compilers [81],
the low-level IR used by the majority of DL compilers can ultimately be converted into
LLVM IR. To better support more compilers and platforms, we need to consider the
optimization work after the code transformation.
Other attacks. Although we failed to evaluate NNreverse [20], and DnD [138], the
defense effect of FlatD towards these two attacks should be more significant than the
result from BTD because they both highly rely on accurate CFG. The advantage of
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NNReverse compared to other binary mapping tools [36] is that it combines syntax and
topology structure representation. However, after the transformation, the loop structure
of CFG will be hidden, and all the CFG structures will look similar. In other words, the
proposed advantage is cut off. DnD implemented its framework on the top of anger [128]
and utilized symbolic execution to recover all the essential information for reconstructing
the model. Nevertheless, after FlatD turns all branch instructions into indirect jumps,
each operator function is transformed into a state-machine-like format, which is fatal
to symbolic execution-based tools. Overall, FlatD can also effectively hinder these
attacks [95].

6.3 DNN Program Integrity

Data Flow Integrity. Apart from leveraging control flow to enforce the integrity of the
DNN program, ensuring data flow integrity represents another crucial defense strategy
against fault injection attacks because, all in all, the ultimate target of such attacks is
often the computational pipeline of the DNN model (i.e., the data flow of DNN program),
which includes critical weights [52] and vulnerable bits in the branch condition of shared
library [82]. Moreover, it is not necessary to enforce strict integrity checks across the
entire data flow of the DNN program because a DNN model inherently possesses some
tolerance to minor variations in weight and can often continue functioning correctly even
if less critical components of the computational pipeline, such as activation functions,
are compromised or malfunctioned. Given this resilience, focusing on monitoring and
protecting the most critical data portion is more practical and efficient. By selectively
supervising these key data portions, it is possible to preserve the performance and
accuracy of the DNN program while minimizing the additional time overhead.
Hardware-assisted Defense. While traditional code integrity mechanisms provide
critical protections against software-based tampering, they are generally insufficient to
defend against hardware-level attacks like Rowhammer. Our third work enhances robust-
ness by incorporating runtime integrity verification and immediate reaction mechanisms.
However, it is important to acknowledge that our framework is still at the software level
and cannot replace the need for hardware-level defense. As we discussed in Section
5.3.2, if Rowhammer flips bits in memory holding the hash values used for integrity
verification and vulnerable bits in the computation pipeline at the same time, which
is extremely hard to achieve, the framework can be bypassed. Therefore, although the
target hardware platform of DNN programs does not universally have the condition to
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shield with hardware-assisted defense, it is reasonable to raise a discussion. A proper
robustness defense framework against hardware-level attacks like Rowhammer requires co-
design with hardware-level protections such as Trusted Execution Environments (TEEs)
and memory isolation strategies. When combined with hardware-based protections,
our framework can strengthen defenses against Rowhammer and similar fault injection
attacks. Hardware protections prevent Rowhammer, and software protections ensure
tampering is noticed if hardware fails.
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Chapter 7 |
Conclusion

In this thesis, we present three of our works about the reverse and anti-reverse engineering
of the Deep Neural Network program. In the first work, we notice the new security
and privacy risk brought about by the rise of the Deep Learning Compiler and its
production, the DNN Program. This work observes this scenario and identifies a new
attack surface. We are the first several teams to demonstrate that it is possible to leak
the essential information of DNN models by binary reverse engineering. Based on this
new attack surface, we propose a novel model extraction attack, namely LibSteal,
the advanced model extraction attack framework using binary reverse engineering to
steal the architecture of DNN models. We develop solutions based on empirical ways to
get the types, attributes, dimensions, and connectivity of the DNN model layers. We
implemented a prototype of LibSteal and evaluated it on four DNN programs compiled
from TVM. The evaluation results indicate that our framework can reconstruct a similar
or even equivalent model architecture compared to the original one. We aim to raise the
community’s security concern about the possible threat from the perspective of binary
reverse engineering.

The great value of DNN programs does not only attract our attention. Several
reversing-based model extraction attacks have been proposed. Therefore, followed by
the first work, we focus on improving the robustness of DNN programs. In the second
work, we investigate current state-of-the-art reversing-based model extraction attacks
and implement FlatD, an advanced defense framework for protecting DNN programs
based on control flow flattening. FlatD makes it challenging for attackers to recover the
control flow graph (CFG) statically and gain necessary information from DNN programs.
Compared to the traditional control flow flattening, our evaluation shows that FlatD is
an effective, adequate, and practical defense framework that prevents DNN programs
from leaking essential information while ensuring their performance and program scale.

89



Our third work investigates the state-of-the-art fault injection attack against DNN
models and finds that it risks affecting the integrity of the DNN Program. By systemat-
ically integrating static integrity enforcement mechanisms, our framework secures the
integrity of deployed DNN programs, ensuring they remain resistant to potential fault
injection attacks. We implement a prototype and evaluate its functionality. The result
shows that our methodology can prevent the fault injection attack while preserving the
accuracy of the DNN program.
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