
DOS-GNN: Dual-Feature Aggregations with
Over-Sampling for Class-Imbalanced Fraud

Detection On Graphs

Shixiong jing
Pennsylvania State University

jing@psu.edu

Lingwei Chen
Wright State University

lingwei.chen@wright.edu

Quan Li
Pennsylvania State University

qbl5082@psu.edu

Dinghao Wu
Pennsylvania State University

dinghao@psu.edu

Abstract—As fraudulent activities have shot up manifolds,
fraud detection has emerged as a pivotal process in different
fields (e.g., e-commerce, online reviews, and social networks).
Since interactions among entities provide valuable insights into
fraudulent activities, such behaviors can be naturally represented
as graph structures, where graph neural networks (GNNs)
have been developed as prominent models to boost the efficacy
of fraud detection. In graph-based fraud detection, handling
imbalanced datasets poses a significant challenge, as the minority
class often gets overshadowed, diminishing the performance
of conventional GNNs. While oversampling has recently been
adapted for imbalanced graphs, it contends with issues such as
graph heterophily and noisy edge synthesis. To address these
limitations, this paper introduces DOS-GNN, incorporating Dual-
feature aggregation with Over-Sampling to advance GNNs for
class-imbalanced fraud detection on graphs. This model exploits
feature separation and dual-feature aggregation to mitigate the
impact of heterophily and acquire refined node embeddings that
facilitate fraud oversampling to balance class distribution without
the need for edge synthesis. Extensive experiments on four large
and real-world fraud datasets demonstrate that DOS-GNN can
significantly improve fraud detection performance on graphs with
different imbalance ratios and homophily ratios, outperforming
state-of-the-art GNN models.

Index Terms—Fraud Detection, Graph Neural Networks, Class
Imbalance, Heterophily.

I. INTRODUCTION

Increased connectivity of devices and individuals to the

Internet has continuously transformed our daily lives in various

aspects, such as socializing, online banking, and healthcare.

Despite apparent benefits, they also create an ever-expanding

surface for fraudsters to exploit these networks for their eco-

nomic, social, or political intents intentions [1]. As fraudulent

activities have shot up manifolds, fraud detection has emerged

as a pivotal process in the fields of e-commerce [2], [3],

healthcare [4], online reviews [5], [6], and social networks [7].

Fraudulent entities (e.g., accounts, reviews, and transactions)

often disguise their malicious nature by incorporating genuine

information, making it challenging to directly identify them

based on individual attributes, while their interactions with

other entities offer valuable clues that can expose themselves

[8]. As such, fraudulent activities can be naturally abstracted

into graph structures, enabling a more intuitive analysis to

reveal the suspicious entities at the graph level [9].

�

���

���

���

���

���

	
�� ����� ��������
 ��������

�������
������
���������������������
���������������

Fig. 1: Imbalance ratio and homophilly ratio of minority class

for Yelp, Amazon, T-finance, and Elliptic datasets.

Due to their remarkable learning capabilities [10], [11],

graph neural networks (GNNs) [12], [13] have been developed

as prominent models to boost the efficacy of fraud detection

[5], [6], [14], [15]. In this line of work, fraud detection is

cast as a node classification problem, where GNN models are

designed to follow the message-passing paradigm, enabling the

propagation of information from labeled nodes to unlabeled

ones through the graph structure. Nevertheless, graphs used in

fraud detection commonly exhibit a natural imbalance among

labeled nodes due to the typical rarity of frauds. To put it into

perspective, we calculate and present the imbalance ratios (as

defined in Sec. II) of four real-world fraud detection datasets

(detailed in Sec. IV-A) in Fig. 1, where most of these ratios are

below 0.1, indicating that frauds are far less than legitimate

instances. Class imbalance is prevalent in fraud detection,

which, however, has rarely been considered by conventional

GNN models. When the GNN model is trained on imbalanced

labeled data, it is difficult to classify the instances in the

minority class as fraud, leading to biased predictions [16].

To mitigate the impact of class imbalance on GNN models,

many oversampling techniques have been tailored for imbal-

anced graphs, such as GraphSMOTE [17] and GraphENS [18].

These methods involve synthesizing nodes in the embedding

space and subsequently generating edges to connect them

with existing nodes [16]. Unfortunately, node embedding is

intricately linked with its neighborhood, while fraudsters tend

to establish relationships between fraudulent and legitimate

20
24

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e 
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

79
-8

-3
50

3-
59

31
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IJ
C

N
N

60
89

9.
20

24
.1

06
50

49
4

1



entities for camouflage and evasion [14]. This results in a

high degree of heterophily [19] for fraud nodes (illustrated in

Fig. 1 where most fraud detection datasets exhibit extremely

low homophily ratios), and their embeddings are significantly

smoothed by neighborhood aggregation using GNNs designed

for homophily [20]–[22], rendering the synthesized nodes

ineffective. Furthermore, synthesized edges may not accurately

represent real relationships between nodes due to constraints.

For example, on social networks, an account can only be

connected to others when the following request gets approved.

The addition of synthesized edges may inadvertently introduce

noise, potentially undermining the intended enhancement of

neighborhood information and diminishing the efficacy of

message passing and the resulting node embeddings.
To address these limitations, this paper introduces DOS-

GNN, which implements Dual-feature aggregation with Over-

Sampling to advance GNNs for class-imbalanced fraud detec-

tion on graphs. DOS-GNN proceeds by acquiring informative

and distinguishable node embeddings through homophilic and

heterophilic feature aggregation, and then employing an over-

sampling algorithm on these refined embeddings to exclusively

synthesize fraud nodes, achieving a balanced class distribution

for fraud detection. The leveraged node embeddings encode

both node features and graph structure, which eliminates the

necessity for edge synthesis.
Recent methods used to handle graph heterophily primarily

focus on adaptive message aggregation [19], which extracts

various signals from neighbors by training separate filters to

manipulate homophily and heterophily, and mixes the results

from these filters into a single vector as node embedding

at each neighborhood aggregation step [23]–[25]. This easily

leads to dissimilar features being overshadowed by similarities

and subsequently becoming too insignificant for further prop-

agation to higher orders. In contrast, DOS-GNN elaborates

a simpler yet more effective neighborhood aggregation to

avoid over-smoothing on minority node embeddings resulting

from heterophily. More specifically, each node preserves its

similar and dissimilar features as two separate vectors, and

enables dual-feature aggregation to absorb the corresponding

signals from neighbors through connection property (i.e., if the

edge connecting the target node and its neighboring node is

homophilic or heterophilic). By maintaining each node’s simi-

larities and dissimilarities locally without excessive smoothing

or compromise, these features can be effectively propagated to

other nodes with long-range associations. This mitigates the

impact of heterophily on graph learning, amplifies node em-

beddings and the subsequent oversampling, thereby improving

class-imbalanced fraud detection performance. In summary,

our major contributions are listed as follows:

• A novel oversampling paradigm is proposed for im-

balanced graphs in fraud detection, which exclusively

synthesizes fraud nodes on node embeddings without the

necessity for edge synthesis.

• A simple yet effective dual-feature aggregation is elabo-

rated to mitigate heterophily and enhance node embed-

dings that facilitate oversampling.

• Extensive experiments are conducted on four real-world

datasets, which demonstrate that DOS-GNN can achieve

state-of-the-art fraud detection performance on graphs

with different imbalance and homophily ratios.

II. PRELIMINARIES

Notations. A given fraud graph is denoted as G = (V,E,X),
where V (n = |V |) is the set of entities (e.g., accounts,

reviews, and transactions), E is the set of edges indicating

reciprocal links between entities, and X ∈ R
n×d is the feature

matrix. Edges E can be further encoded as an adjacency matrix

A ∈ R
n×n. The neighbors for vi is represented as N (vi) =

{vj |(vi, vj) ∈ E)}. Each labeled node is associated with a

ground truth y ∈ Y = {0 : legitimage, 1 : fraudulent}.

Graph Neural Networks. In this paper, fraud detection is

cast as node classification, which aims to learn a GNN model

fW : (A,X) → y where W is the model parameters and y is

the set of labels. Generally, GNN models enforce each node to

aggregate information from its neighbors and generate higher-

level node embedding [26]. This graph aggregation layer can

be defined in a form as follows:

H(l) = aggregate
(
H(l−1),A,W(l)

)
(1)

where H(l−1) and H(l) are the input and output for layer l
(l ≥ 1), W(l) is a learnable weight matrix, and H(0) = X.

The final output Z of GNNs with L layers can be computed

using a softmax function.

While GNNs can be applied under inductive and trans-

ductive settings, we focus on transductive inferences in this

paper where all node connections and features are accessible

during training. Also, different variants of GNN, such as GCN

[13], GAT [27], or others [12], [28], have different aggregation

mechanisms. In this respect, we use a GCN as the base model

fW(A,X) to facilitate the evaluation of DOS-GNN, which

aggregates neighborhood information by performing:

H(l) = σ
(
ÃH(l−1)W(l)

)
(2)

where σ is an activation function, Ã = D̂−
1
2 ÂD̂−

1
2 , Â =

A+ I, and D̂ is the diagonal degree matrix defined on Â.

Class Imbalance on Graphs. Fraud graphs exhibit a nature of

class imbalance due to the fact that fraudulent entities are often

rare. We define the imbalance ratio to quantify such nature to

better understand the data challenge for fraud detection on

graphs. Specifically, this imbalance ratio ri can be specified

on the labeled nodes as follows:

Definition 1 (Imbalance Ratio). Given a fraud graph G
where Nminor represents the number of fraudulent entities

and Nmajor signifies the number of legitimate entities, the

imbalance ratio can be written as

ri =
Nminor

Nmajor
(3)

Homophily and Heterophily. When generalizing to graphs,

homophily suggests that nodes tend to connect with others

2



Dual-Feature Aggregation Feature Separation 

Heterophilic         Homophilic

 

 

 

 

Oversampling 

Fig. 2: Overview of our proposed model DOS-GNN for class-imbalanced fraud detection on graphs: the model proceeds with

feature separation to maintain each node’s similarities and dissimilarities locally without excessive smoothing or compromise,

which facilitates dual-feature aggregation to address heterophily and acquire fraud-specific embeddings; these embeddings are

used to perform oversampling to generate a balanced class distribution for fraud detection.

sharing similar features [21]. This paper focuses on homophily

in class labels [22], where a graph with good homophily

indicates that connected nodes share the same label with a

high probability. Accordingly, homophily ratio can be defined

as follows to quantify the degree of graph homophily:

Definition 2 (Homophily Ratio). Given a graph G, the

homophily ratio is the proportion of edges in G that connect

nodes sharing the same labels, which can be calculated as

rh =
|{(vi, vj) : (vi, vj) ∈ E ∧ yvi = yvj

}|
|E| (4)

In fraud graphs, we are more interested in homophily ratio

for minority (fraudulent) class to better understand the impact

of heterophily on fraud node oversampling. rh can be further

constrained by

rh =
|{(vi, vj) : (vi, vj) ∈ E ∧ yvi = yvj = 1}|

|{(vi, vj) : (vi, vj) ∈ E ∧ (yvi = 1 ∨ yvj = 1)}| (5)

Heterophily is the opposite of homophily to describe the

status of connected nodes belonging to different labels. Graphs

with high homophily have rh → 1, while graphs with high

heterophily exhibit low homophily with rh → 0.

III. PROPOSED MODEL: DOS-GNN

In this section, we present our proposed fraud detection

model DOS-GNN for technical details. Its overview is il-

lustrated in Fig. 2. DOS-GNN proceeds with dual-feature

aggregation to address heterophily and acquire fraud-specific

embedding, and oversampling in node embedding space to

generate a balanced class distribution for fraud detection.

A. Feature Separation

When a graph has low homophily ratio, conventional GNN

models that solely apply low-pass filters [29], [30] to aggre-

gate neighborhood features tend to smooth the outputs from

different classes and thus misclassify these nodes [24]. To

restore the discrimination capability in such graphs, GNN

models need to harness nodes’ surrounding dissimilarities,

which prompts the utilization of high-pass filters [31] to extract

the information of neighborhood differences and address het-

erophily [25]. Following this idea, different adaptive message

aggregation methods [23]–[25], [32] have been deployed to

train separate filters to extract similar and dissimilar signals

from neighbors to mitigate the impact of heterophily on

graph learning. Though these approaches extract dissimilarities

from neighbors, they are still mixed with similarities to be

compromised as a single feature vector; such straightforward

preservation may not be helpful for propagating dissimilarities

to higher-order nodes [33].

Since separating the similar and dissimilar signals from

node features provides a feasible way to deal with graphs

with different homophily ratios [23], we propose to preserve

these similarities and dissimilarities separately. Specifically,

we elaborate two distinct feature vectors for each node v ∈ V
to facilitate feature aggregation: similar feature vector h1

v ,

and dissimilar feature vector h2
v . h1

v is used to aggregate and

preserve similar signals from neighborhood features, while h2
v

is used to preserve dissimilar signals extracted from neighbors.

In this respect, the representation for each node v ∈ V during

aggregation can be formalized as

hv = {h1
v,h

2
v} (6)

For a given graph G, considering that dissimilarities are

not existing prior to feature aggregation, we initialize hv as

hv = {Xv,0}, where h1
v = Xv , h2

v = 0, and Xv denotes the

original feature vector of node v. The feature aggregations on

h1
v and h2

v are performed separately as well, where either h1
v

or h2
v aggregates the corresponding features from neighboring

nodes based on their connection properties, which is detailed

in the subsequent section. Such a bi-vector feature setting

can address the aforementioned limitation to collaboratively

preserve local neighborhood similarities and dissimilarities,

and promote long-range information propagation, which, in

3



turn, boosts node representation expressiveness and model

discrimination power.

B. Dual-Feature Aggregation

1) Edge Identification: Dual-feature aggregations rely on

edge property specified by the labels of connected nodes,

which requires a priori knowledge across the whole graph.

However, this knowledge is not always available in real-world

fraud graphs, as most of nodes are not annotated. Therefore,

we need to introduce an edge identifier to discriminate if an

edge is homophilic or heterophilic. A traditional way is to

apply multi-layer perceptron (MLP) on the representations of

its connected nodes to learn edge identification probability.

Considering that node representations vary at each aggregation

layer, such a learning process would significantly increase

model complexity. Here we offer a simplified implementation

to reduce training effort. The edge identifier αij for the edge

evjvj reveals the association between nodes vi and vj , which

can be interpreted, in a simpler way, as a similarity measure

between them. In other words, αij at aggregation layer l can

be calculated using a similarity metric:

αij = sim(h(l−1)
vi ,h(l−1)

vj ) (7)

where αij (0 ≤ αij ≤ 1) is equivalent to a prediction score,

indicating how possible an edge evivj is homophilic.

To exclude large weight matrix updates and multiplications,

we borrow the idea of residual framework [34] to assemble all

weights into a single linear layer gW(·) with weight matrix W
that maps the original feature matrix X to a low-dimensional

feature matrix, which can be formulated as follows:

X(0) = gW(X) ∈ Rd×k, k � d (8)

such that hv(v ∈ V ) is initialized as hv = {X(0)
v ,0}, where

h1
v = X

(0)
v , h2

v = 0. Afterwards, graph layers attend to

edge identification and feature aggregation without adding any

weighted operations.

2) Neighborhood Aggregation: The normalized adjacency

matrix Ã is generally considered a low-lass filter in GNNs

to retain the commonality of neighboring features [23], [30],

while I − Ã provides diversification operation that is con-

sidered as high-pass filter to extract neighborhood differences

[25]. This inspires us to directly employ the soft prediction of

edge identifier αij (0 ≤ αij ≤ 1) instead of hard prediction

to perform dual-feature aggregation, which enables αij and

1 − αij to act like advanced dual filters that control the

number of similarities and dissimilarities from each neighbor

to be aggregated and accordingly refine node representations.

Formally, for a given node vi, the dual-feature aggregations

are implemented as follows:

h1,(l)
vi =σ(h1,(l−1)

vi +

1

|N (vi)|
∑

vj∈N (vi)

αh1,(l−1)
vj + (1− α)h2,(l−1)

vj ) (9)

h2,(l)
vi =σ(h2,(l−1)

vi +

1

|N (vi)|
∑

vj∈N (vi)

(1− α)h1,(l−1)
vj + αh2,(l−1)

vj ) (10)

For node vi at layer l, h
1,(l)
vi aggregates neighboring features

and produces its new similarity feature vector, while h
2,(l)
vi

produces its new dissimilarity feature vector, both of which

contribute to the new hidden representation. More specifically,

such a dual-feature aggregation absorbs the corresponding

signals from neighbors through connection property (i.e., if

the edge connecting the target node and its neighboring node

is homophilic or heterophilic):

• When αij → 1, the edge is homophilic; thus more

similarities from h
1,(l−1)
vj and less dissimilarities from

h
2,(l−1)
vj would flow into h

1,(l)
vi and less similarities from

h
1,(l−1)
vj and more dissimilarities from h

2,(l−1)
vj would

flow into h
2,(l)
vi .

• When αij → 0, the edge is heterophilic; then the dual

aggregations would be proceeded in the opposite manner.

In other words, less similarities from h
1,(l−1)
vj and more

dissimilarities from h
2,(l−1)
vj would flow into h

1,(l)
vi and

more similarities from h
1,(l−1)
vj and less dissimilarities

from h
2,(l−1)
vj would flow into h

2,(l)
vi .

By leveraging dual-feature aggregations, features contributing

to the node’s ground truth can be effectively preserved in h1
v ,

while features correlated to other classes can be explicitly

saved in h2
v to support higher-order information enhancement,

where heterophily can barely impact on the outputs from

different classes.

C. Oversampling in Node Embedding Space using SMOTE

After L-layer dual-feature aggregations on the initial graph,

H1,(L) and H2,(L) are further concatenated to form the refined

node embeddings H, which is then utilized to synthesize new

fraudulent entities to balance class distribution. As the refined

node embeddings H encode both node features and graph

structure, edge synthesis becomes unnecessary. This not only

simplifies the oversampling operation but also prevents the

introduction of noisy node connection information. Due to

its popularity and performance in oversampling, we deploy

SMOTE as our oversampling algorithm [35]. Given node

embeddings H, for a fraud node vi and a randomly selected

fraud node vj from vi’s nearest neighbors, their embeddings

are specified as hvi and hvj . Accordingly, a new fraudulent

entity can be synthesized as follows:

s = hvi + δ(hvj − hvi) (11)

where s is a synthesized node embedding and δ is a random

variable ranging from 0 to 1. Since both hvi and hvj are

fraud nodes, s equalizes the same class distribution. In this

way, we can oversample m fraud nodes S ∈ Rm×k that are

integrated with initial labeled nodes H ∈ Rn×k for fraud

detector training.

4



Algorithm 1: DOS-GNN: Dual-feature aggregations

with over-sampling for class-imbalanced fraud detec-

tion on graphs.

Input: G = (V,E,X): a fraud graph with feature

matrix X and adjacency matrix A; L: number

of layers in the GNN model; Tgnn, Tmlp:

training epochs for GNN and MLP models.

Output: f : class-imbalanced fraud detection model.

// GNN model training:

for each epoch t ≤ Tgnn do
Initialize H1,(0) = X and H2,(0) = 0;

for each layer 0 < l ≤ L do
Calculate H1,(l) using Eq. (9);

Calculate H2,(l) using Eq. (10);

end
Calculate H = H1,(L)||H2,(L);

Calculate Z on H using linear layer;

Calculate Lgnn from Z using Eq. (13);

Update model parameters by minimizing Lgnn;

end
// MLP model training:

Extract H from the trained GNN model;

Synthesize fraud samples S from H using Eq. (11);

Construct X′ by concatenating S and H;

for each epoch t ≤ Tmlp do
Calculate Lmlp using Eq. (14);

Update model parameters by minimizing Lmlp;

end

D. Loss Optimization

DOS-GNN first trains a GNN model on the provided

fraud graph G for dual-feature aggregation to acquire node

embeddings facilitating oversampling, and subsequently trains

a MLP model on the integrated embeddings X′ for fraud

detection, which can be derived by concatenating the initial

labeled nodes H and the synthesized fraud nodes S:

X′ = S||H, X′ ∈ R(m+n)×k (12)

where || represents the concatenation operation. The former

training formulates a cross-entropy loss Lgnn between predic-

tions and ground truth of initially labeled nodes, which can be

formulated as follows:

Lgnn = − 1

n

n∑
i=1

yi logZi (13)

where Z is the final output of the GNN model with L layers

that can be calculated as Z = softmax(H(L)), and n is the

number of initially labeled nodes with the label vector y.

The latter training leads to another cross-entropy loss Lmlp

between predictions and labels of both initial annotated nodes

and synthesized nodes, which is formulated as:

Lmlp = − 1

n+m

n+m∑
i=1

y′i logZ
′
i (14)

TABLE I: Statistics of the datasets (Hom. Ratio reports rh for

minority class)

Dataset #Nodes #Edges #Features Imb. Ratio Hom. Ratio
Amazon 11,944 4,398,392 25 0.07 0.04
YelpChi 45,954 3,846,979 32 0.17 0.10
T-finance 39,357 42,445,086 10 0.05 0.30
Elliptic 203,769 234,355 166 0.02 0.12

where Z′ is the final output of the MLP model and y′

is the label vector for both the initial labeled nodes and

the synthesized fraud nodes. The respective model weights

can be updated by minimizing Lgnn and Lmlp using Adam.

Algorithm 1 illustrates the full steps of DOS-GNN for class-

imbalanced fraud detection.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the performance of DOS-GNN

on four real-world fraud detection datasets to answer the

following research questions:

• RQ1: How does DOS-GNN perform compared with

state-of-the-art GNN models in fraud detection tasks?

• RQ2: How do different model parameters impact on the

performance of DOS-GNN?

• RQ3: How do different components contribute to the

performance of DOS-GNN?

A. Experiment Setup

Datasets. We evaluate DOS-GNN on four real-world fraud

detection datasets with extremely low imbalance ratios and

low homophily ratios for the minority class:

• YelpChi [36]: This dataset identifies anomalous reviews

on Yelp.com that promote or demote products or busi-

nesses. It features a graph with three types of edges: R-

U-R, R-S-R, and R-T-R.

• Amazon [37]: This dataset detects users who are compen-

sated to write counterfeit reviews for musical instruments

on Amazon.com. It includes three types of relations: U-

P-U, U-S-U, and U-V-U.

• T-finance [38]: This dataset identifies anomalous user

accounts within transaction networks. Node features in-

clude registration duration, login activities, and inter-

action rates, while edges signify transactional account

interactions.

• Elliptic [39]: The dataset categorizes Bitcoin transactions

into legal entities (e.g., wallet providers and miners) and

illegal entities (e.g., scams, malware, and terrorists). It is

structured as a graph where nodes are transactions and

edges represent the flow of Bitcoin.

We use 40%-30%-30% data-split across all four datasets to

train, validate, and test models, respectively. The data statistics

are summarized in Table I. In the experiments, all relationships

in YelpChi and Amazon datasets are considered the same to

align with homogeneous GNNs. The timestamp in the Elliptic

dataset is excluded from data splitting and removed before

being fed into the model.

5



TABLE II: Comparison of different Fraud Detection methods (%) on benchmark datasets. Some GNN models are highlighted:

bold statistics denote the best results. OOM indicates that the machine runs out of memory before the algorithm terminates.

Dataset Amazon YelpChi T-Finance Elliptic
AUC F1 AUC F1 AUC F1 AUC F1

GCN 74.34 67.47 52.47 54.31 64.43 70.74 90.47 83.13
GAT 75.16 83.18 56.24 54.64 73.00 53.86 63.87 47.43
GIN 80.56 69.26 74.09 62.85 80.02 65.23 93.71 88.78
GraphSAGE 75.27 74.17 54.00 65.49 67.12 52.71 94.35 89.04

JKGCN 89.63 72.52 80.74 59.75 93.92 85.39 93.60 85.98
GPRGNN 92.79 85.47 81.03 65.46 94.25 87.73 94.49 89.71
GraphENS 80.01 52.81 60.12 47.63 OOM OOM 83.43 51.35
GraphSMOTE 90.79 88.36 76.74 65.22 OOM OOM 91.46 86.81
Graph-Consis 87.41 75.12 69.83 58.70 91.42 73.46 93.93 89.28
PC-GNN 95.86 89.56 79.87 63.00 91.23 63.18 94.39 91.02
Care-GNN 89.73 86.39 75.70 63.32 92.16 77.55 94.12 90.55

DOS-GNN 96.55 92.10 81.15 70.46 96.01 88.53 96.32 92.75

Baselines. We select 11 different models as our baselines,

which include four conventional GNNs, two heterophily-wise

GNNs, and five advanced models for imbalanced graphs or

fraud detection, which are briefly introduced as follows:

• GCN [13]: The vanilla GCN model applies convolution

operation to graph data.

• GAT [27]: GAT introduces the attention mechanism to

GNN for feature aggregation.

• GIN [40]: GIN uses a more complicated aggregation

method to make GNN more powerful.

• GraphSAGE [12]: GraphSAGE samples from node

neighbors and aggregates their embeddings.

• JKGCN [41]: JKGCN combines learned embeddings at

each model layer to generate the final node embeddings.

• GPRGNN [42]: GPRGNN combines generalized PageR-

ank techniques with GNNs to overcome heterophily.

• GraphENS [18]: GraphENS is an augmentation method

that synthesizes ego networks for generated minor nodes.

• GraphSMOTE [17]: GraphSMOTE synthesizes more

nodes and related edges for minority class nodes.

• Graph-Consis [43]: Graph-Consis utilizes context em-

bedding, neighbor sampling, and relation attention for

fraud detection tasks.

• PC-GNN [44]: PC-GNN uses samplers to construct sub-

graphs and sample from neighborhood for aggregation.

• Care-GNN [14]: Care-GNN uses a special mechanism to

select informative neighbors for aggregation.

Some of the reported results in this paper are taken from

their original papers.

Implementation Details. The number of aggregation layers

L for the feature extraction model is set to 2 for DOS-GNN.

All models are trained for 2,000 epochs with a patience of

200 using Adam optimizer with learning rate lr = 0.01 and

5e− 4 L2 regularization. sim(·) used in edge identification is

cosine similarity and the size of hidden units is explored within

k ∈ {16, 32, 64}. AUC (Area Under the Receiver Operating

Characteristic Curve) and F1-Macro are the primary evaluation

metrics to provide insight into a model’s effectiveness on class-

imbalanced fraud detection. The MLP model consists of 2

(a) (b)

Fig. 3: Impact of parameters on DOS-GNN: (a) AUC of DOS-

GNN using different hidden layer sizes; (b) AUC of DOS-

GNN using different oversampling ratios.

layers, and the oversampling ratio is searched within the range

of {0.25, 0.5, 0.75, 1.0}.

B. Comparison with State-of-the-Art Baselines

In this section, we would like to answer RQ1 to evaluate

the effectiveness of DOS-GNN for class-imbalanced fraud

detection on graphs by comparing our model with 11 se-

lected baselines over four different public fraud datasets. The

comparative results are reported in Table II. From Table II,

traditional GNN models exhibit poor performance in class-

imbalanced fraud graphs. In contrast, advanced models de-

signed for addressing heterophily, imbalanced data, or fraud

detection show significant improvement in detection perfor-

mance, due to their enhancement in handling heterophilic

neighborhood and class imbalance, preventing fraud nodes

from being overshadowed by a large number of legitimate

nodes. Even so, our proposed DOS-GNN still manages to

advance the state-of-the-art performance to a higher level.

Compared to the best results of traditional GNN models, DOS-

GNN improves the AUC and F1 by 15.99% and 9.08% for

Amazon, 4.95% and 3.94% for YelpChi, 15.99% and 17.79%
for T-Finance, and 1.97% and 3.71% for Elliptic. Compared

to the best results of models for heterophily, imbalanced data,

or fraud detection, DOS-GNN further improves the AUC and

F1 by 1.37% and 2.83% for Amazon, 0.14% and 7.63% for

6



(a) (b) (c) (d)

Fig. 4: Visualization of node embeddings: (a) Amazon processed by GCN, (b) Amazon processed by DOS-GNN, (c) T-finance

processed by GCN, (d) T-finance processed by DOS-GNN.

YelpChi, 1.86% and 0.91% for T-Finance, and 2.04% and

1.90% for Elliptic.

In summary, DOS-GNN achieves state-of-the-art perfor-

mance across all four public benchmarks and outperforms the

leading GNN models. This comparative study confirms that

the combination of local feature separation and dual feature

aggregation can extract, preserve, and propagate similar and

dissimilar features effectively, which thus boosts node embed-

dings and model discrimination capability. The refined node

embeddings can further facilitate oversampling of fraudulent

entities to create a balanced class distribution, which, in turn,

enables the training of an unbiased detector to effectively

identify frauds across various types of networks.

C. Parameter Evaluation

In this section, we further analyze the impacts of parameters

to answer RQ2. The performance of DOS-GNN can be

potentially affected by the hidden layer size and oversampling

ratios. The experimental results are reported in Fig. 3. It can

be observed that different parameters contribute to slightly

different results. More specifically, DOS-GNN achieves the

best performance with hidden layer sizes 32, 16, 32, and

64 on Amazon, YelpChi, T-finance, and Elliptic, respectively.

This is not surprising given that the initial feature vector

sizes for YelpChi, T-finance and Amazon are 32, 10, and

25 respectively. Providing a hidden layer size larger than the

initial feature length is not likely to generate more informa-

tive node embeddings, but might have increased the chance

of overfitting. The best sampling ratios for DOS-GNN are

1.0, 0.5, 0.75, and 1.0 for Amazon, YelpChi, T-finance, and

Elliptic. Overall, these fluctuations are relatively small, which

implies that our model exhibits a high degree of stability across

various parameter settings.

D. Ablation Study

In response to RQ3, we set up the ablation study to investi-

gate how different components contribute to the performance

of our model. We investigate the two components in our

model design: due-feature aggregation and oversampling. As

illustrated in Table III, both components contribute to the

performance of DOS-GNN. Among these two components, the

dual-feature aggregation contributes the most to DOS-GNN.

Even without oversampling on the learned node embeddings,

the performance of standalone dual-feature aggregation model

TABLE III: Evaluation on model components in terms of AUC

(%): Dual-Feature Aggregation (DFA) and Oversampling (OS)

GCN DFA OS Amazon YelpChi T-Finance Elliptic
� 74.34 52.47 64.43 90.47
� � 83.28 77.25 87.61 91.56

� 91.59 71.89 94.13 93.35
� � 96.55 81.15 96.01 95.43

achieves a performance boost of over 20% on Amazon,

YelpChi, and T-finance from GCN. Utilizing oversampling

provides further improvements for both GCN and DFA-based

GNN, while the improvement range of [2%, 7%] on all datasets

for DOS-GNN is more significant. This outcome aligns with

our expectations. The core functionality of DOS-GNN relies

on the collaboration of dual-feature aggregation and oversam-

pling to alleviate the impact of class imbalance on graphs.

E. Case Study

To validate our claim that DOS-GNN provides more dis-

tinguishable node embeddings in graphs on fraud datasets,

we present a brief case study to showcase the difference

between embeddings generated by GCN and DOS-GNN. Due

to page limit, here we only present results on two datasets,

Amazon and T-finance. We map node embeddings into a two-

dimensional space using t-SNE, and the resulting embeddings

are visualized in Fig. 4. For Amazon, GCN fails to generate

clear clusters between fraud and non-fraud points and suffers

from fuzzy boundaries (Fig. 4(a)); in contrast, DOS-GNN

exhibits better-distinguished boundaries with higher cohesion

(Fig. 4(b)). For T-finance, GCN again fails to generate any

associations with fraud points being scattered among legiti-

mate points (Fig. 4(c)), while DOS-GNN forms clear bound-

aries and redistributes the nodes, making them further apart

(Fig. 4(d)). These observations reaffirm the effectiveness of

DOS-GNN in learning more distinct node embeddings for

synthesized node generation and fraud detection.

V. CONCLUSION

In this paper, we introduce a new model DOS-GNN for

fraud detection. DOS-GNN employs feature separation and

dual feature aggregation guided by edge identification to better

preserve and propagate both similarities and dissimilarities for

each node and refine node embeddings, and oversampling on

7



the refined node embeddings to further mitigate the effect

of data imbalance. Evaluation through extensive experiments

demonstrates that our model achieves state-of-the-art perfor-

mance, which affirms its effectiveness in class-imbalanced

node classification, superiority over baselines, and practical

significance in handling fraud detection tasks on graphs.

ACKNOWLEDGMENTS

L. Chen’s work is partially supported by the NSF under

grant CNS-2245968. The authors would also like to thank the

reviewers for their valuable feedback.

REFERENCES

[1] B. Hooi, K. Shin, H. A. Song, A. Beutel, N. Shah, and C. Faloutsos,
“Graph-based fraud detection in the face of camouflage,” TKDD, vol. 11,
no. 4, pp. 1–26, 2017.

[2] L. Chen, Y. Fan, and Y. Ye, “Adversarial reprogramming of pretrained
neural networks for fraud detection,” in CIKM, pp. 2935–2939, 2021.

[3] W. Lin, L. Sun, Q. Zhong, C. Liu, J. Feng, X. Ao, and H. Yang, “Online
credit payment fraud detection via structure-aware hierarchical recurrent
neural network.,” in International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 3670–3676, 2021.

[4] R. Bauder, T. M. Khoshgoftaar, and N. Seliya, “A survey on the state of
healthcare upcoding fraud analysis and detection,” Health Services and
Outcomes Research Methodology, vol. 17, pp. 31–55, 2017.

[5] J. Wang, R. Wen, C. Wu, Y. Huang, and J. Xiong, “Fdgars: Fraudster
detection via graph convolutional networks in online app review system,”
in Proceedings of the ACM Web Conference (WWW), 2019.

[6] A. Li, Z. Qin, R. Liu, Y. Yang, and D. Li, “Spam review detection with
graph convolutional networks,” in CIKM, pp. 2703–2711, 2019.

[7] S. Feng, Z. Tan, R. Li, and M. Luo, “Heterogeneity-aware twitter bot
detection with relational graph transformers,” in Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 3977–3985, 2022.

[8] T. Pourhabibi, K.-L. Ong, B. H. Kam, and Y. L. Boo, “Fraud detec-
tion: A systematic literature review of graph-based anomaly detection
approaches,” Decision Support Systems, vol. 133, p. 113303, 2020.

[9] Z. Qin, Y. Liu, Q. He, and X. Ao, “Explainable graph-based fraud de-
tection via neural meta-graph search,” in Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management
(CIKM), pp. 4414–4418, 2022.

[10] L. Chen, X. Li, and D. Wu, “Enhancing robustness of graph convolu-
tional networks via dropping graph connections,” in Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings,
Part III, pp. 412–428, Springer, 2021.

[11] Q. Li, X. Li, L. Chen, and D. Wu, “Distilling knowledge on text graph
for social media attribute inference,” in SIGIR, pp. 2024–2028, 2022.

[12] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[13] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[14] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing
graph neural network-based fraud detectors against camouflaged fraud-
sters,” in CIKM, 2020.

[15] F. Shi, Y. Cao, Y. Shang, and et al., “H2-fdetector: A gnn-based fraud
detector with homophilic and heterophilic connections,” in Proceedings
of the ACM Web Conference (WWW), pp. 1486–1494, 2022.

[16] B. Ashmore and L. Chen, “Hover: Homophilic oversampling via edge
removal for class-imbalanced bot detection on graphs,” in CIKM,
pp. 3728–3732, 2023.

[17] T. Zhao, X. Zhang, and S. Wang, “Graphsmote: Imbalanced node
classification on graphs with graph neural networks,” in WSDM, pp. 833–
841, 2021.

[18] J. Park, J. Song, and E. Yang, “GraphENS: Neighbor-aware ego network
synthesis for class-imbalanced node classification,” in ICLR, 2022.

[19] X. Zheng, Y. Liu, S. Pan, M. Zhang, D. Jin, and P. S. Yu, “Graph
neural networks for graphs with heterophily: A survey,” arXiv preprint
arXiv:2202.07082, 2022.

[20] Y. Yan, M. Hashemi, and et al., “Two sides of the same coin: Heterophily
and oversmoothing in graph convolutional neural networks,” in IEEE
International Conference on Data Mining (ICDM), pp. 1287–1292,
2022.

[21] J. Zhu, R. A. Rossi, A. Rao, T. Mai, N. Lipka, N. K. Ahmed, and
D. Koutra, “Graph neural networks with heterophily,” in Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 11168–11176, 2021.

[22] J. Zhu, Y. Yan, L. Zhao, and et al., “Beyond homophily in graph
neural networks: Current limitations and effective designs,” Advances
in neural information processing systems (NeurIPS), vol. 33, pp. 7793–
7804, 2020.

[23] D. Bo, X. Wang, C. Shi, and H. Shen, “Beyond low-frequency infor-
mation in graph convolutional networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 3950–3957, 2021.

[24] L. Du, X. Shi, Q. Fu, X. Ma, H. Liu, S. Han, and D. Zhang, “Gbk-gnn:
Gated bi-kernel graph neural networks for modeling both homophily
and heterophily,” in Proceedings of the ACM Web Conference 2022,
pp. 1550–1558, 2022.

[25] S. Luan, C. Hua, Q. Lu, and et al., “Is heterophily a real nightmare
for graph neural networks to do node classification?,” arXiv preprint
arXiv:2109.05641, 2021.

[26] Q. Li, L. Chen, S. Jing, and D. Wu, “Pseudo-labeling with graph active
learning for few-shot node classification,” in ICDM, pp. 1115–1120,
2023.

[27] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[28] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[29] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,
“Simplifying graph convolutional networks,” in International conference
on machine learning (ICML), pp. 6861–6871, 2019.

[30] H. Nt and T. Maehara, “Revisiting graph neural networks: All we have
is low-pass filters,” arXiv preprint arXiv:1905.09550, 2019.

[31] V. N. Ekambaram, Graph-structured data viewed through a Fourier lens.
University of California, Berkeley, 2014.

[32] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-gcn: Geo-
metric graph convolutional networks,” arXiv preprint arXiv:2002.05287,
2020.

[33] U. Alon and E. Yahav, “On the bottleneck of graph neural networks
and its practical implications,” International Conference on Learning
Representations (ICLR), 2021.

[34] X. Liu, J. Ding, W. Jin, H. Xu, Y. Ma, Z. Liu, and J. Tang, “Graph
neural networks with adaptive residual,” Advances in neural information
processing systems (NeurIPS), vol. 34, pp. 9720–9733, 2021.

[35] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” J. Artif. Int. Res., vol. 16,
no. 1, p. 321–357, 2002.

[36] S. Rayana and L. Akoglu, “Collective opinion spam detection: Bridging
review networks and metadata,” in KDD, pp. 985–994, 2015.

[37] J. J. McAuley and J. Leskovec, “From amateurs to connoisseurs:
modeling the evolution of user expertise through online reviews,” in
Proceedings of the ACM Web Conference (WWW), pp. 897–908, 2013.

[38] J. Tang, J. Li, Z. Gao, and J. Li, “Rethinking graph neural networks for
anomaly detection,” in International conference on machine learning
(ICML), pp. 21076–21089, 2022.

[39] M. Weber, G. Domeniconi, and et al., “Anti-money laundering in
bitcoin: Experimenting with graph convolutional networks for financial
forensics,” arXiv preprint arXiv:1908.02591, 2019.

[40] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?,” arXiv preprint arXiv:1810.00826, 2018.

[41] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in International conference on machine learning, pp. 5453–5462,
PMLR, 2018.

[42] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal
generalized pagerank graph neural network,” in International Conference
on Learning Representations, 2021.

[43] Z. Liu, Y. Dou, P. S. Yu, Y. Deng, and H. Peng, “Alleviating the incon-
sistency problem of applying graph neural network to fraud detection,”
in SIGIR, pp. 1569–1572, 2020.

[44] Y. Liu, X. Ao, Z. Qin, J. Chi, J. Feng, H. Yang, and Q. He, “Pick and
choose: A gnn-based imbalanced learning approach for fraud detection,”
in Proceedings of the Web Conference 2021, pp. 3168–3177, 2021.

8



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




