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Abstract: The need for Deep Learning (DL) based services has rapidly increased in the past years. As part of the trend,
the privatization of Deep Neural Network (DNN) models has become increasingly popular. The authors give
customers or service providers direct access to their created models and let them deploy models on devices
or infrastructure out of the control of the authors. Meanwhile, the emergence of DL Compilers makes it
possible to compile a DNN model into a lightweight binary for faster inference, which is attractive to many
stakeholders. However, distilling the essence of a model into a binary that is free to be examined by untrusted
parties creates a chance to leak essential information. With only DNN binary library, it is possible to extract
neural network architecture using reverse engineering. In this paper, we present LibSteal. This framework can
leak DNN architecture information by reversing the binary library generated from the DL Compiler, which
is similar to or even equivalent to the original. The evaluation shows that LibSteal can efficiently steal the
architecture information of victim DNN models. After training the extracted models with the same hyper-
parameter, we can achieve accuracy comparable to that of the original models.

1 INTRODUCTION

Machine learning models, especially deep neural net-
works (DNNs), have been widely deployed to tackle
challenging problems in computer vision (He et al.,
2016; Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2014), speech recognition (Graves et al.,
2013; Hinton et al., 2012), natural language process-
ing (Collobert and Weston, 2008), and autonomous
driving (Kato et al., 2015). Compared to other ma-
chine learning technologies, the outstanding perfor-
mance of DNNs on recognition and prediction tasks
(LeCun et al., 2015; Schmidhuber, 2015) has seen its
commercial adoption with impacts across the field. It
also increases the demand for Deep Learning (DL)
based services and the need to deploy deep learning
model on edge devices like mobile phones (Wu et al.,
2019; Liang et al., 2018). For example, to help users
who are blind or have low vision, some DNN mod-
els need to be deployed on the phone so that users
can use them to identify nearby objects more conve-
niently. Also, giant AI providers provide the so-called
service privatization to sell their high-quality DNN
models to other companies and organizations with a
license fee.

However, over the past decades, the explosion of
both DNN frameworks (Chollet et al., 2015; Abadi
et al., 2016; Markham and Jia, 2017; Chen et al.,
2015; Paszke et al., 2017) and hardware backend
(e.g., CPUs, GPUs, and FPGAs) increase the diffi-
culty of deploying DL based services to target plat-
forms. Such deployment requires significant manual
effort due to the vast gap between DNN frameworks
and the hardware backend. The deep learning com-
piler kills two birds with one stone and draws the at-
tention of many stakeholders. Several DL compilers
have been proposed by both industrial and academic
actors recently, such as TVM (Chen et al., 2018),
Tensor Comprehension (Vasilache et al., 2018), Glow
(Rotem et al., 2018), nGraph (Cyphers et al., 2018),
and XLA (Leary and Wang, 2017). The DL com-
pilers take the models from different DL frameworks
as input and compile them into a lightweight binary
with faster inference efficiency for the target hard-
ware platform. However, the DNN programs gener-
ated from DL compilers make it possible for an at-
tacker to leak the internal work of DNN models by re-
versing or decompiling the stand-alone programs (Liu
et al., 2022; Wu et al., 2022; Chen et al., 2022). Un-
like the existing work targeting the whole DNN ex-
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ecutables, in this paper, we narrow down the threat
model where we only have access to the DNN binary
library. We propose a framework named LibSteal to
leak the network architecture information of the target
DNN model by using only DNN binary library.

The architecture information includes the layer
types, attributes, dimensions, and connectivity of the
layers. In order to get this information, we designed
our framework into three parts: binary analyzer, layer
identification, and search engine. The binary analyzer
slices the program into layer functions and extracts
their I/O dimensions. Also, we find the nested loops
of each control flow graph (CFG) at this step to iden-
tify the most significant features of each layer because
the computation of the DNN layers mostly depends
on the matrix. According to our observation, each
layer has its unique computation pattern and these
computation patterns remain the same across DNN
models. Therefore, at the layer identification part, we
first iterate possible layer attributes to generate layer
functions with the same I/O dimensions and use these
functions to make up the layer repo. Then we com-
pare the similarity between the layer functions of the
victim model and the generated layer functions in the
layer repo to obtain the layer types and attributes. As
for the search engine, we first build a directed graph
based on I/O dimensions. After that, we search for the
possible connection between the layers heuristically.

We implement the prototype of LibSteal based on
Uroboros (Wang et al., 2015) and adopt the idea pro-
posed by Asm2Vec (Ding et al., 2019) to accomplish
the similarity comparison between layer functions. To
demonstrate the practicality and the effectiveness of
our attack framework, we evaluate it against bina-
ries compiled from four widely-used DNN models,
MNIST (LeCun, 1998), VGG (Simonyan and Zisser-
man, 2014), ResNet (He et al., 2016), and MobileNet
(Howard et al., 2017) using TVM (Chen et al., 2018).
The experimental result shows that our framework
can effectively extract the neural network architecture
information. The reconstructed models have similar
or even equivalent network architecture to the origi-
nal. We then re-trained the extracted models and they
all achieved accuracy comparable to that of the origi-
nal models.

In summary, we make the following contributions:

• We narrow down the threat model from the DNN
executable to the DNN binary library. With lim-
ited input, we are able to leak essential informa-
tion about the DNN model architecture.

• We design and implement the framework LibSteal
to achieve our goal, which consists of three parts
and combines various techniques to deliver a de-
cent pipeline.

DL Frameworks …

Computational graph representation
(High Level IR)

Target Hardware Platform: CPU, GPU, some also supports ASIC, …

Low Level IR

Third-party Toolchain
(LLVM, CUDA, OpenCL, …)

Computation 
graph 

Optimizations

Hardware Specific 
Optimizations

Code 
generation

Compiler 
frontend

Compiler 
backend

Figure 1: The overview of deep learning compilers’ com-
monly adopted design architecture.

• We have evaluated our framework on four widely-
used model binaries using the TVM as the DL
compiler. The results indicate that our frame-
work can handle MNIST, VGG, ResNet, and Mo-
bileNet DNN models. With the stolen informa-
tion, the reconstructed models have similar or
even equivalent network architecture to the origi-
nal and can achieve inference accuracy compara-
ble to that of the original.

2 BACKGROUND

2.1 Deep Learning Compiler

The main purpose of deep learning compiler (Leary
and Wang, 2017; Chen et al., 2018; Cyphers et al.,
2018; Vasilache et al., 2018) is to reduce the manual
effort required when deploying DL models to various
hardware backends. As shown in Figure 1, the DL
compiler takes different types of DNN frameworks,
like TensorFlow (Abadi et al., 2016), PyTorch (Paszke
et al., 2017), MXNet (Chen et al., 2015), Caffe2
(Markham and Jia, 2017), and Keras (Ketkar, 2017),
as input and generates the optimized code for the dif-
ferent target hardware platforms. Most DL Compil-
ers support CPU and GPU, and some also support
Application-specific integrated circuits (ASICs) like
TPU (Jouppi et al., 2017).

The key component of the DL Compiler is the
multi-level intermediate representation (IR) (Li et al.,
2020), which is an abstraction of the program and
is mainly used to apply the optimization at differ-
ent levels. The compilation process can be divided
into the frontend and backend. At the compiler fron-
tend, the DL models will be transferred to the high-
level IR, also known as computational graph repre-
sentation. The computational graph is independent
of the target hardware platform. At this level, sev-
eral different-grained optimizations will be applied to
the computation graph. At the compiler backend, the
high-level IR will further be represented as low-level
IR for hardware-specific optimizations and code gen-
eration on the target hardware platform. The DL com-
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Figure 2: Threat Model. The DL compiler compiles the
DNN model and deploys it on the edge device. The attacker
can only access the .so part (i.e., shared library).

piler also supports the existing infrastructures such as
LLVM (Lattner and Adve, 2004) to utilize the third-
party toolchain for further code generation and opti-
mizations. The generated package consists of three
parts: a shared library file with all the layer functions,
a JSON file with the connectivity of the network ar-
chitecture, and a data file with the parameter weights.
Our target in this paper is the shared library file.

2.2 Deep Neural Networks

Deep Neural Network (DNN) is a sub-area of Deep
Learning in Artificial Neural networks (ANNs) with
multiple layers between the input and output. A DNN
can be represented as a function y = f (x) where the
input x ∈ Rn and the output y ∈ Rm. In order to get
the function, massive computation and a large amount
of data are required for the training. A DNN model
has the following essential characteristics: (1) Neural
network architecture consists of layer types, layer
dimensions, connection topology between layers, and
layer attributes. (2) Hyper-parameters are the con-
figuration data for the training process. They control
the efficiency of the training process and affect the
final performance of the model. (3) Parameters are
updated during the training process. The performance
of the model significantly relies on them. In our paper,
we aim to steal the network architecture information
of the DNN model through our framework.

2.3 Binary Reverse Engineering

Binary reverse engineering is the process of analyz-
ing a binary program to identify the program’s com-
ponents and functionalities. It is imperative to under-
stand the inner logic of the program for further op-
erations, especially when the source code is unavail-
able. There are plenty of mature reverse engineer-
ing frameworks from both academia (Brumley et al.,
2011; Wang and Shoshitaishvili, 2017; Wang et al.,

2015; Song et al., 2008) and industry (Eagle, 2011).
These frameworks are designed to recover as much
information as possible on the target program for dif-
ferent purposes, which can either be maintaining the
legacy code, understanding the behavior of the mal-
ware, or exploring the vulnerabilities in the program.
In this paper, we implement our framework based on
the Uroboros (Wang et al., 2015) to analyze the DNN
binaries.

3 THREAT MODEL

This paper uses TVM (Chen et al., 2018) as the tar-
get DL Compiler. Having a concrete target is mostly
to ease the technical discussions. The essence of our
work applies to most major DL compilers on the mar-
ket. As shown in Figure 2, the deployable package
generated by TVM consists of three parts: a JSON-
formatted specification file, a shared library (.so), and
parameter weights (.params). Among them, both the
JSON file and the shared library are important for in-
ferring information about the neural network archi-
tecture. The JSON file contains the connection topol-
ogy between the layers of the DNN models, and the
shared library includes all the unique layer functions.
In this paper, we assume that the attacker is motivated
to leak the DNN model architecture information for
malicious usage and can only access the shared li-
brary. This scenario is reasonable and has a practi-
cal impact because, as far as we know, the JSON file
is a specific implementation of the TVM, and other
DL compilers do not have this design. Even the TVM
community plans to remove this text file in the future.
We also assume that the victim DNN binary libraries
are not obfuscated because, to the best of our knowl-
edge, DL compilers themselves do not apply any soft-
ware defensive mechanism to the generated binary.

4 ATTACK DESIGN

4.1 Overview

As shown in Figure 3, our attack framework consists
of three parts, the binary analyzer, the layer identifica-
tion module, and the search engine. First, we feed the
DNN library to the binary analyzer. The analyzer dis-
assembles the binary and slices it into different layer
functions. We leverage the information from the data
section to extract the layer dimensions for each layer
function. Moreover, we apply nested loop analysis
to identify each layer function’s existing nested loop.
The details will be discussed in Section 4.2.
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Figure 3: LibSteal Workflow Overview. 1 The binary analyzer takes DNN binary library as input and disassembles it to
get the sliced layer function. With further analysis, we also extract the layer dimensions and find the nested loop at this step;
2 At the layer identification step, we leverage the immutable computation pattern to compare the similarity of unknown

victim layer functions with customized candidate layer functions and identify their layer types and attributes. 3 Based on
layer types, attributes, and dimensions, the search engine finds the connectivity between layers and rebuilds the network
architecture of the model.

The next step is to identify the layer type and at-
tributes of the layer functions. We use the layer di-
mensions to generate all possible layer functions with
the same I/O dimension and store them in the can-
didate layer repository. Since the computation pat-
tern of each kind of layer remains the same across
different models, the layers with the same layer di-
mensions, type, and attributes will lead to very simi-
lar layer functions. Therefore, in order to obtain layer
types and attributes, we use collected layer candidates
to train the representative learning model so that we
can check the similarity between victim layer func-
tions and candidate layers functions. We present the
detail in Section 4.3.

In the last step, we use the search engine to recover
the model architecture topology connection using the
information collected in the above two steps. We first
build a directed graph based on the layer dimensions.
Then in order to make the search process more effi-
cient, we make some heuristic pruning based on the
layer types. Along with the built graph, we explore
a result containing all layers and get the connection
topology between layers.

4.2 Binary Analysis

The Binary Analyzer uses Uroboros (Wang et al.,
2015) as the binary reverse engineering framework
to disassemble and analyze the victim DNN library,
which help us to slice the program into separated layer
functions and recover the precise control flow graph
of each function.

4.2.1 Layer Dimensions

This section shows how we infer the layer dimen-
sions. Figure 4 shows a part of a layer function com-
piled from VGG16, which is abstracted from the ac-
tual result, where we only replace the recovered sym-
bol with a more readable one. We find that every

   section .text
    ...
   LAYER_FUNC:   
    ...
 1  cmp dword [rax], 0x1
 2  jne LABEL
 3  cmp dword [rax + 0x8], 0x40
 4  jne (label)
 5  cmp dword [rax + 0x10], 0x20
 6  jne (label)
 7  cmp dword [rax + 0x18], 0x20
 8  jne (label)
    ...
   LABEL:
 9  mov rax, qword [LABEL_GOT]
10  lea rdi, [STR]
11  call qword [rax]
12  pop rcx
13  ret
    ...
   section .rodata
14  STR: "Assert fail" ...
    ...
   section .got
15  LABEL_GOT: qword __TVMAPISetLastError
 

Figure 4: Example of a layer function from VGG16 DNN
model.

layer function will check the constraint of the data
dimensions before the computation so that the mem-
ory will not mess up during the runtime. Therefore,
we locate the Basic Block invoking the error report
function. In line 9, the code loads the address of
TVMAPISetLastError, which sets the last error mes-
sage before return, to the register rax. The function is
indirectly called in line 11 with the error message set
to STR in line 10. According to the message carried
by STR, this is the exception caused by the mismatch
of the input and actual data dimensions. When we
trace back to line 2 in Figure 4, we find the compari-
son between a memory-loaded number and a constant
number in line 1 and figure out that one of the data
dimension numbers is equal to 1. Following the same
routine, we get a set of numbers. The numbers can
be separated into groups based on their memory ad-
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(a) Victim layer (b) MaxPooling2D layer (c) AveragePooling2D layer (d) Conv2D layer

Figure 5: The comparison between layer functions CFG with the same I/O dimensions. All four layer functions have the same
input dimension (1,64,32,32) and the same output dimension (1,64,16,16).

dress. For example, four numbers in Figure 4 are in
one group. According to our observation, each group
represents one data dimension of the layer function.
Therefore, the data dimension extracted from Figure
4 is 1,64,32,32. Typically, one layer function only
has one input dimension and one output dimension.
However, some layers require multiple inputs, like
Add layers whose input can be a list of tensors with
the same shape. Fortunately, all constraints of dimen-
sion data are checked in order.

4.2.2 Nested Loop Analysis

The main goal of nested loop analysis is to find
each layer function’s most significant computation
features. After the DNN model is compiled into
the binary, the layer functions contain computation
code and trivial instructions like push/pop and data
load/store, which will influence the similarity check
in the next step. Moreover, as shown in Figure 5, dif-
ferent types of layer functions have different numbers
of nested loops, which is reasonable because the com-
putation of pooling layers is relatively more straight-
forward than the Conv2D layer. This feature can be
used to validate the result of the layer identification
process to increase accuracy.

In order to find the nested loop from each layer
function, we use Algorithm 1 to apply the analysis.
In this algorithm, we demonstrate CFG as G = (V,E)
where V is the set of basic blocks, and E is the set of
directed flow between basic blocks. In the first step
(Line 1-13), we traverse the whole CFG beginning
from the entry basic blocks (Line 2-3) and timestamp
each basic block when they are popped out from the
stack (Line 10-11). In the second step (Line 14-23),
we first create a reversed CFG, G′ = (V ′,E ′) from the
original CFG, G (Line 14-16). The direction of flows
of G′ are opposite from G. After that, we search V ′

to find the basic block with the latest timestamp (Line
18-20). And starting from this basic block, we try to

Algorithm 1 Nested Loop Analysis Algorithm

Input: G = (V,E) {Control flow graph}
1: stack← /0

2: stack.push(G.entryBlock)
3: visitedBlocks←{G.entryBlocks}
4: while not stack.empty() do
5: u← stack.top()
6: if v∈ u.successors and v /∈ visitedBlocks then
7: stack.push(v)
8: visitedBlocks.add(v)
9: else

10: stack.pop()
11: timestamp(u)
12: end if
13: end while
14: V ′←V
15: E ′← reversed(E) {the directions of all edges are

opposite}
16: G′← (V ′,E ′)
17: nestedLoops← /0

18: while not V ′.empty() do
19: for u ∈V ′ do
20: v← u : v ? u.timestamp > v.timestamp
21: end for
22: blockSet← traverse(G′,v)
23: V ′←V ′−blocksSet
24: if blockSet.size()> 1 or v.isSel f Loop() then
25: nestedLoops.add(blockSet)
26: end if
27: end while

traverse the reversed CFG, G′ (Line 21). All the basic
blocks reached by this point are no doubt members of
a nested loop. We then eliminate these basic blocks
from V ′ (Line 22) and continue the job until all basic
blocks are revisited. For the record, we also consider
the self-loop as the nested loop.
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4.3 Layer Identification

4.3.1 Layer Generator

The fundamental of layer identification is that for two
layers, even if they are from different models, as long
as they share the same layer type, I/O dimensions, and
layer attributes, they are compiled into very similar
layer functions. For many layer types, the relationship
between the output and input dimensions is based on
their attributes. We take the Conv2D layer as an ex-
ample. Assume the input dimension is (N,C,H,W ),
where N is the sample number, C is the channel num-
ber, and H,W is the resolution of the data. Then we
have

Hout = ⌊
H +2 ·P−D · (K−1)−1

S
+1⌋

Wout = ⌊
W +2 ·P−D · (K−1)−1

S
+1⌋

where P is the value of padding, D is the value
of dilation, K is the value of kernel size, and S
is the value of stride. Therefore, for each pair of
I/O layer dimensions, we generate possible candi-
date layer functions to form a layer repo. As shown
in Figure 5, (a) is the computation part of the layer
function we discuss in Figure 4. After applying
the method we present in Section 4.2, we get its
I/O dimensions as (1,64,32,32) and (1,64,16,16).
There are several possible layers with this kind of
I/O dimensions. We choose three representative
layers to illustrate our approach: MaxPooling2D
with pool size=2 (b), AveragePooling2D with
pool size=2 (c), and Conv2D with filters=64,
kernel size=2, strides=2, padding=same (d).
As we can see, the CFG of the victim layer function
shown in (a) is the same as the layer function of Max-
Pooling2D with pool size=2 (b).

4.3.2 Layer Function Representation Learning

Our representation learning model is built based on
the idea proposed by Asm2Vec (Ding et al., 2019).
After finishing the training of the representation learn-
ing model, we first use the nested loop analysis ap-
proach in Section 4.2.2 to lift the computation pattern
of candidate layer functions. We then use the trained
model to produce the vector of each candidate layer
function. The vector of the victim function is also
generated from the nested loop of the functions. Fi-
nally, we calculate the similarity score and make the
inference decision for the victim function.

As for the example shown in Figure 5, the simi-
larity between the victim layer and MaxPooling2D is
0.9356, while its similarity with AveragePooling2D is

0.522 and with Conv2D is 0.272. Therefore, we deter-
mine that the layer function from VGG16 is MaxPool-
ing2D with pool size=2. This result is reasonable
because the computation patterns MaxPooling2D and
AveragePooling2D are similar. They follow the same
routine to slide through the data. However, the key
operations are different.

4.4 Model Reconstruction

After gathering valuable information, including layer
dimensions, types, and attributes, we can reconstruct
the model architecture.

At first, we build a directed graph, Gnn =
(Vnn,Enn), where each layer represents a vertex v, and
an edge e, pointing from v1 to v2 means the output
dimension of v1 matches the input dimension of v2.
Also, we divide the layer into supportive layers (e.g.,
ReLu, BN) and functional layers (e.g., Conv2D, Pool-
ing2D). As we mentioned before, the shared library
only contains unique functions. The victim model
will obviously use the most supportive layers multi-
ple times. Therefore, to reduce the search space, we
assume that each functional layer can only be used
once and should all be used in the final reconstructed
model, and as for the supportive layers, we do not
limit their usage. Moreover, once a functional layer
finds out that it can link multiple supportive layers,
we directly add them to the path. For example, if a
Conv2D layer finds itself connected to a ReLu layer
and a BN layer, we will combine them as Conv2D→
BN → ReLu structure. Additionally, when we meet
the layer with multiple inputs, we trace back the data
flow graph to find another input and link it back to the
former path. Finally, along the directed graph Gnn, we
search from input layer to the output layer and recon-
struct the DNN model.

5 EVALUATION

5.1 Experiment Setup

Environment: All the experiments are run on the
Ubuntu 18.04 LTS server with NVIDIA TITAN XP
GPU and dual-core 2.20 GHz Intel(R) Xeno(R)
Silver 4114 CPU. We pick CUDA 10.3 as the GPU
programming interface. For the training of the repre-
sentative learning model, we choose embedding di-
mension d = 200, 25 negative samples, 3 random
walks, and a learning rate of 0.025.
Victim Model: We evaluate our attack on four
widely-used DNN models: MNIST, VGG16,
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Table 1: Victim Models Information.

Datasets Input Shape # of Parameters # of layers # of layer types
MNIST MNIST (28,28,1) 34,826 11 7
VGG16 CIFAR-10 (32,32,3) 150,001,418 60 7

ResNet20 CIFAR-10 (32,32,3) 19 274,442 72 8
MobileNet CIFAR-10 (32,32,3) 3,239,114 91 9
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(d) MobileNet

Figure 6: Architecture Comparison. This figure partially shows the difference of the network architecture between original
models and extracted models. MNIST

ResNet20, and MobileNet. The detailed information
of all victim models is shown in Table 1. All the pre-
trained models are designed in the Keras framework
(Team, 2022a; Team, 2022b) with Tensorflow as the
backbone and compiled by TVM (Chen et al., 2018)
to generate the binaries. We use LLVM (Lattner and
Adve, 2004) as our host platform. As mentioned in
Section 2, we assume that we only have access to the
DNN binary library during the attack.

5.2 Architectural Completeness

This section compares the architectures of the orig-
inal models and the extracted models. Figure 6 vi-
sualizes part of the architecture of original models
and extracted models for MNIST, VGG16, ResNet20,
and MobileNet. Each block in the figure represents a
DNN layer. As shown in the figure, the basic architec-
ture remains the same in extracted models. However,
several layers are missing. First, the dropout layer is
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Table 2: Statistics of the comparison between original model and extracted model.

Test accuracy Layer number Layer type number
Original (%) Extracted (%) Original Extracted Percentage (%) Original Extracted

MNIST 99.17 99.04 11 10 90.91 7 6
VGG16 93.16 90.59 60 38 63.33 7 6

ResNet20 91.65 83.92 72 49 68.06 8 8
MobileNet 83.16 75.00 91 66 72.53 9 8

used to avoid over-fitting during the training phase by
setting randomly selected input units to 0, so it will be
invalid during the inference.

Regarding other missing layers, as we mentioned
in Section 4.3, the same type of layer with the same
I/O dimensions and attributes will produce the same
layer function. This rule of thumb allows us to iden-
tify the layer type and its related attributes but also
leads to the situation that the layer function can be
reused in the DNN executable. As shown in Figure 6,
the recovery of MobileNet is least satisfying. The rea-
son for missing a larger chunk in this model is because
that the original DNN model is basically the composi-
tion of the same pattern repeated for four times. Since
our attack targets the DNN library, it is difficult to
infer the number of repetitions solely from the code,
as the same code can be executed for arbitrary times
during inference. On the other hand, Figure 6a shows
that as long as each layer of the DNN model holds an
unique layer function, we are able to fully recover the
whole network architecture.

5.3 Accuracy of Extracted Models

We compared other statistics information between
original DNN models with the extracted ones as
shown in Table 2. In order to evaluate the function-
ality of the extracted model, we re-trained the ex-
tracted models and compared their accuracy with the
original models. As for the training settings, we use
the same hyper-parameter as the original one for a
more precise comparison. For the record, we re-train
the model to demonstrate the accuracy of extracted
model architecture which does not assume that our
framework requires the training dataset and the hyper-
parameters. As shown in the Table 2, with the miss-
ing layers, it is not surprising that the accuracy of
VGG16, ResNet20, and MobileNet is worse than the
original ones. However, we can see that the accuracy
drop of ResNet20 and MobileNet is more significant
than that of VGG16, although we recover more lay-
ers for ResNet20 and MobileNet. We guess that the
importance of layers varies inside the neural network
architecture. Although VGG16 missed more layers,
the key skeleton still remains. As for the layer types,
so far, the only layer we are not able to recover is the

Dropout layer, which will disappear during the infer-
ence process.

6 DISCUSSION

The limitation of our attack framework is due to the
connection between layers. The shared library com-
piled from DNN models only contains the distinct
layer functions, so we need to know the exact used
number of each layer function. One solution is that we
can enlarge our search space and use meta-learning to
make us closer to the original network architecture.
For example, we do not limit the usage of any function
layers and allow the search engine to explore the pos-
sible combination. We train and test each explored ar-
chitecture’s accuracy and leave the best result. How-
ever, time-consuming will be out of imagination. On
the other hand, if we can access the JSON file or even
the parameter file, we can recover the precise DNN
models, which makes our work more meaningful.

7 RELATED WORK

The basic logic of the model extraction attack is
leveraging the information gathered from a different
source to leak the vital features of the machine learn-
ing model. The most commonly used source is the
side channel (Hua et al., 2018; Yan et al., 2020; Wei
et al., 2018; Xiang et al., 2020; Duddu et al., 2018;
Hunt et al., 2020; Batina et al., 2019). For example,
by exploiting the memory and timing side-channel,
(Hua et al., 2018) presented a model extraction at-
tack to infer the network architecture and identify the
value of parameters of the convolutional neural net-
work (CNN) running on a hardware accelerator. Bus
traffic is also an important information source (Zhu
et al., 2021; Hu et al., 2019). (Zhu et al., 2021) iden-
tified a new attack surface based on encrypted PCIe
traffic and fully extracted the DNN model with the
exact model characteristics, and achieved the same
inference accuracy as the target model. Some ex-
citing work also relied on the query-prediction pairs
from the target model (Tramèr et al., 2016; Oh et al.,
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2019; Orekondy et al., 2019; Kariyappa et al., 2021).
(Tramèr et al., 2016) relied on the information car-
ried by the output from the ML prediction APIs to
generate a similar or the same model and successfully
applied the attack against the online services.

8 CONCLUSIONS

The rising of DL compilers and the privatization sit-
uation introduce a new threat to the ML community.
Several novel attack framework has been proposed.
However, all of them assume they have full access to
the DNN binaries. In this paper, we narrow down the
threat model and demonstrate that with only the DNN
binary library, we can leak the network architecture
information of DNN models. We propose a frame-
work, namely LibSteal, using only the DNN library
to get the layer types, attributes, dimensions, and even
compatible topology connections. We implemented a
prototype of LibSteal and evaluated it on four DNN
models compiled from TVM. The evaluation results
indicate that our framework can reconstruct a simi-
lar or even equivalent model architecture compared to
the original one, achieving comparable accuracy after
training with the public datasets with only the library
files.
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