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Abstract

Fraud detection has emerged as a pivotal process in different fields (e.g., e-commerce, so-
cial networks). Since interactions among entities provide valuable insights into fraudulent
activities, such behaviors can be naturally represented as graphs, where graph neural net-
works (GNNs) have been developed as prominent models to boost the efficacy of fraud
detection. However, the application of GNNs in this domain encounters significant chal-
lenges, primarily due to class imbalance and a mixture of homophily and heterophily of
fraud graphs. To address these challenges, in this paper, we propose LACA, which imple-
ments fraud detection on graphs using Label-Aware feature aggregation to advance GNN
training, which is regularized by Clustering-Augmented optimization. Specifically, label-
aware feature aggregation simplifies adaptive aggregation in homophily-heterophily mixed
neighborhoods, preventing gradient domination by legitimate nodes and mitigating class
imbalance in message passing. Clustering-augmented optimization provides fine-grained
subclass semantics to improve detection performance, and yields additional benefit in ad-
dressing class imbalance. Extensive experiments on four fraud datasets demonstrate that
LACA can significantly improve fraud detection performance on graphs with different im-
balance ratios and homophily ratios, outperforming state-of-the-art GNN models.
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1. Introduction

Increasing connectivity of devices and individuals to the Internet has dramatically reshaped
various aspects of our daily lives. While these advancements offer considerable benefits, they
also create expanding opportunities for fraudsters to exploit these networks for economic,
social, or political gains (Hooi et al., 2017). The surge in fraudulent activities has thus
underscored the importance of fraud detection in the fields of e-commerce (Chen et al.,
2021a), healthcare (Bauder et al., 2017), online reviews (Wang et al., 2019; Li et al., 2019),
and social networks (Feng et al., 2022). Fraudulent entities, such as accounts, reviews,
and transactions, often disguise their malicious intent by blending in genuine information,
making them difficult to detect based solely on individual attributes. However, their in-
teractions with others provide crucial clues that can be analyzed to reveal their deceitful
nature (Pourhabibi et al., 2020). Representing fraudulent activities using graphs thus en-
ables a more intuitive and effective analysis, highlighting suspicious patterns at the graph
level, and facilitating more accurate and comprehensive fraud detection (Qin et al., 2022).
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Due to their exceptional learning capabilities (Chen et al., 2021b; Li et al., 2022), graph
neural networks (GNNs) (Hamilton et al., 2017; Kipf and Welling, 2017) have emerged as
prevalent and powerful tools to enhance fraud detection (Dou et al., 2020; Li et al., 2019;
Shi et al., 2022; Wang et al., 2019). In this line of research work, fraud detection is reduced
to a node classification problem, where GNN models are designed to follow the message-
passing paradigm, enabling the propagation of information from labeled nodes to unlabeled
ones through the graph structure. Nevertheless, when applying GNNs for fraud detection,
two primary challenges arise. (1) Fraudsters tend to intentionally establish relationships
between fraudulent and legitimate entities for camouflage and evasion (Dou et al., 2020).
This results in a high degree of heterophily among fraud nodes, and their embeddings are
significantly smoothed by neighborhood aggregation using GNNs designed for homophily
(Yan et al., 2022; Zhu et al., 2021, 2020), rendering them indistinguishable from legitimate
ones. (2) Graphs used in fraud detection commonly exhibit a natural imbalance among
labeled nodes due to the typical rarity of fraudulent activities. For example, in four real-
world fraud detection datasets (detailed in Section 4.1), most imbalance ratios (as defined in
Section 2) are below 0.1, indicating that fraudulent instances are significantly outnumbered
by legitimate ones. When conventional GNN models are trained on such class-imbalanced
graphs, accurately identifying frauds becomes challenging, leading to biased predictions.

Regarding the first challenge, recent methods have been proposed to mitigate the im-
pact of graph heterophily during the aggregation process, which broadly falls into three
categories: neighbor extension (Liu et al., 2019; Pei et al., 2020), inter-layer connections
(Zhu et al., 2020; Liu et al., 2021a), and adaptive message aggregation (Bo et al., 2021;
Jing et al., 2024b; Du et al., 2022). The first two approaches utilize either long-range de-
pendencies or residuals to complement node representations, while their efficacy is limited
when tackling graphs with high levels of heterophily. In contrast, the adaptive message
aggregation method trains bi-filters to collect neighborhood features that is more adept at
managing local homophily and heterophily. However, it may significantly compromise on
class-imbalanced graphs due to the use of shared filters across neighbors (Alon and Yahav,
2021), which is thus unsatisfactory for fraud detection with intrinsic imbalance. To tackle
the second challenge of class imbalance, data augmentation using oversampling techniques
has recently been developed for graphs (Zhao et al., 2021; Park et al., 2022; Duan et al.,
2022; Ashmore and Chen, 2023). These methods synthesize new nodes in the embedding
space and then generate edges to connect them with existing nodes. However, they may suf-
fer from two major limitations: (1) due to the significant variation in fraudulent activities,
there is a natural scattering among fraud nodes, where nodes synthesized based on the as-
sumption of intra-class similarity may lead to distribution shifts; (2) synthesized edges may
not accurately represent real-world relationships between nodes due to constraints, while
adding such edges may inadvertently introduce noise, potentially undermining the intended
enhancement of neighborhood information and diminishing the efficacy of message passing
and the resulting node embeddings.

This naturally raises the following question: “Can we build up a graph-based fraud de-
tection model that can effectively address both heterophily and class imbalance inherent in
fraud graphs?” To answer this question, in this paper, we accordingly propose LACA,
which implements fraud detection on graphs using Label-Aware feature aggregation to ad-
vance GNN training, which is further regularized by Clustering-Augmented optimization.
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The key idea behind LACA is to learn informative and distinguishable node embeddings
by independently aggregating information from fraudulent and legitimate neighbors, and
incorporating the principle of clustering to regularize cost-sensitive learning and optimize
fraudulent and legitimate node distributions in the embedding space. More specifically,
instead of applying shared filters across all neighbors that potentially intensifies the impact
of class imbalance, LACA designs node-specific filters to dynamically capture the intricate
interactions between a node and its fraudulent and legitimate neighbors. These filters are
customized to reflect each node’s distinct behaviors and characteristics, thus determining
the amount of information it may obtain from its neighbors with differing labels. For la-
beled neighbors, such a node-specific filter—either fraudulent or legitimate—is activated
to exclusively aggregate information from the corresponding neighborhood. For unlabeled
neighbors, the prediction scores α are calculated to quantify their uncertainty, indicating
the likelihood of belonging to the fraudulent class, which, in turn, enables the model to
trade off the fraudulent and legitimate implications from unlabeled neighbors and activate
both filters to perform gated aggregations. This paradigm not only simplifies adaptive
feature aggregation from homophily-heterophily mixed neighborhood, but also avoids the
gradients being dominated by the legitimate (i.e., majority class) nodes, thereby mitigating
the impact of class imbalance on message passing through the graph structure.

Furthermore, a weighted cross-entropy loss is leveraged to optimize the GNN model
against class imbalance. Due to feature diversity and topology complexity, nodes in either
fraudulent or legitimate class may still exhibit significantly different semantics (Yang et al.,
2023). It is thus crucial to sufficiently explore such semantic divergence within them to
enhance label-based optimization. We achieve this by clustering nodes of each class into
multiple semantically coherent subclasses in the learned embedding space, ensuring that the
node sizes across subclasses are comparable to each other, and then assigning the remaining
nodes to the corresponding subclasses to take advantage of unlabeled information. A new
clustering score is devised and calculated to evaluate these clusters, which further regu-
larizes model training. This provides fine-grained subclass semantics to improve detection
performance, and yields additional benefit in addressing class imbalance. In summary, our
major contributions are listed as follows:

• A novel label-aware feature aggregation is designed to address heterophily and class im-
balance in graph-based fraud detection.

• A simple yet effective clustering is leveraged to augment model optimization for better
detection performance and imbalance mitigation.

• Extensive experiments are conducted to demonstrate LACA’s state-of-the-art fraud de-
tection performance on graphs with different imbalance and homophily ratios.

2. Preliminaries

2.1. Notations

A given fraud graph is denoted as G = (V,E,X), where V (n = |V |) is the set of entities
(e.g., accounts, reviews, and transactions), E is the set of edges indicating reciprocal links
between entities, and X ∈ Rn×d is the feature matrix. Edges E can be further encoded
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as an adjacency matrix A ∈ Rn×n and Aij = {0, 1}, where if (vi, vj) ∈ E, then Aij = 1;
otherwise, Aij = 0. The neighbors for vi is represented as N (vi) = {vj |(vi, vj) ∈ E)}. Each
labeled node is associated with a ground truth y ∈ Y = {0 : legitimate, 1 : fraudulent}.

2.2. Graph Neural Networks

In this paper, fraud detection is cast as node classification, which aims to learn a GNN
model fW : (A,X) → y where W is the model parameters and y is the set of labels.
Generally, GNN models enforce each node to aggregate information from its neighbors and
generate higher-level node embedding in a form as follows:

H(l) = aggregate
(
H(l−1),A,W(l)

)
(1)

where H(l−1) and H(l) are the input and output at layer l (l ≥ 1), W(l) is a learnable weight
matrix, and H(0) = X. The final output Z of GNNs with L layers is computed as:

Z = fW(A,X) = softmax
(
H(L)

)
(2)

We focus on transductive inferences in this paper where all node connections and features
are accessible during training.

2.3. Class Imbalance on Graphs

Fraud graphs exhibit a nature of class imbalance due to the fact that fraudulent entities
are often rare. We define the imbalance ratio to quantify such nature to better understand
the data challenge for fraud detection on graphs. Specifically, given a fraud graph G where
Nminor represents the number of fraudulent entities and Nmajor signifies the number of
legitimate entities, the imbalance ratio can be written as ri = Nminor/Nmajor.

2.4. Homophily and Heterophily

When generalizing to graphs, homophily suggests that nodes tend to connect with others
sharing similar features (Zhu et al., 2021). This paper focuses on homophily in class labels
(Zhu et al., 2020), where a graph with good homophily indicates that connected nodes share
the same label with a high probability. Traditionally, homophily ratio can be defined as
the proportion of edges in G that connect nodes sharing the same labels. In fraud graphs,
we are more interested in the homophily ratio for the minority (fraudulent) class to better
understand the impact of heterophily on fraud nodes. rh can be thus constrained by

rh =
|{(vi, vj) : (vi, vj) ∈ E ∧ yvi = yvj = 1}|

|{(vi, vj) : (vi, vj) ∈ E ∧ (yvi = 1 ∨ yvj = 1)}|
(3)

Heterophily is the opposite of homophily to describe the status of connected nodes belonging
to different labels. Graphs with high homophily have rh → 1, while graphs with high
heterophily exhibit low homophily with rh → 0.
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Figure 1: Overview of our proposed model LACA for fraud detection on graphs.

3. Proposed Model: LACA

In this section, we present the technical details of our proposed graph-based fraud detection
model LACA, the overview of which is illustrated in Fig. 1.

3.1. Label-Aware Feature Aggregation

3.1.1. Motivation

To retain the discrimination capability in low-homophily graphs, GNNs must harness nodes’
surrounding dissimilarities, which prompts the use of high-pass filters (Ekambaram, 2014)
to extract neighborhood differences and address heterophily. Following this idea, different
adaptive aggregation methods (Bo et al., 2021; Jing et al., 2024b; Du et al., 2022; Pei et al.,
2020) have been deployed that train separate filters to extract similar and dissimilar signals
from neighbors, enriching node representations while mitigating the impact of heterophily
on graph learning. Nevertheless, these approaches have two limitations: (1) filters are shared
across all neighbors, risking dominance by majority classes and potentially oversmoothing
node embeddings in class-imbalanced graphs; and (2) they are inherently edge-centric, re-
lying on edge properties and neighbor features, which complicates feature aggregation due
to the need for multiple combinatorial operations. To address these limitations, we propose
a label-aware feature aggregation method that elaborates node-specific filters to separately
gather fraudulent and legitimate information from their respective neighbors with the assis-
tance of labeling. This yields two significant advantages: (1) the gradients used to update
node-specific filters are less influenced by majority class nodes, enhancing message pass-
ing; and (2) the center node determines the aggregation of similar and dissimilar signals,
simplifying adaptive aggregation in a mixed homophily-heterophily neighborhood.

3.1.2. Gate Control with Prediction Score

For each center node vi, label-aware feature aggregation applies two node-specific filters—
one fraudulent and one legitimate—for the aggregation of information from its fraudulent
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and legitimate neighbors, respectively. To adaptively adjust the influence of the two filters
on neighborhood aggregation, a gate-control mechanism is employed, which intuitively uti-
lizes neighbor characteristics and their reliable label information to guide the aggregation
process. More specifically, when a neighbor vj is labeled, its label value (either 0 or 1)
straightforwardly acts as a binary gate to determine which filter is allowed for aggregat-
ing information from that neighbor. For an unlabeled neighbor vj , the label is uncertain,
resulting in mixed information available for aggregation; to account for this uncertainty, a

prediction score is calculated on vj using its embedding h
(l−1)
vj , which enables the informa-

tion aggregation to interpolate between its fraudulent and legitimate implications.

Formally, the gate-control signal, represented by the prediction score αj for neighbor vj
at aggregation layer l can be defined as follows:

αj =

{
yj , if vj is labeled

σ(MLP(h
(l−1)
vj )), otherwise

(4)

where yj represents the label of vj if vj is labeled, with 0 indicating legitimate entities and

1 indicating fraudulent entities. When vj is unlabeled, its node embedding h
(l−1)
vj is fed into

an MLP to derive αj , with σ as an activation function mapping the output from the MLP
to a value between [0, 1]. Different from the clear-cut fraudulent and legitimate label values,
the resulting value αj indicates the likelihood of neighbor node vj being fraudulent, which
naturally serves as a gate-control signal to determine the influence of the node-specific filters
and the amount of information the center node vi may obtain from its neighbor vj of mixed
nature that exhibits characteristics with both fraudulent and legitimate categories.

3.1.3. Feature Aggregation with Node-Specific Filters

As previously discussed, the signal αj exclusively controls the impact of two node-specific
filters on neighborhood aggregation. However, the actual feature aggregation operations
depend heavily on the design of these filters, which determine the specific fraudulent or
legitimate information that is gathered to contribute to the behavior of the center node.
Due to the message passing designed in GNNs that first aggregates the neighbor information
and then performs feature learning using AXW, where W is shared across all center nodes,
the influence from differing labeled neighbors is regulated by W that is accordingly adjusted
by the variability of center node attributes. In this respect, we propose to learn these filters
with respect to fraudulent and legitimate neighbors using the unique characteristics of the
center node to reflect its intrinsic dynamics.

To avoid over-complicating the feature aggregation model, we simply apply two MLPs

on the node embedding h
(l−1)
vi of the center node vi to generate two node-specific filters

for the aggregation of fraudulent and legitimate neighbor information. These filters are

represented as W
(l)
fraud,i and W

(l)
legit,i at layer l, which can be calculated as follows:

W
(l)
fraud,i = MLPfraud(h

(l−1)
vi ), W

(l)
legit,i = MLPlegit(h

(l−1)
vi ) (5)
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The resulting W
(l)
fraud,i and W

(l)
legit,i are then used as weight matrices for feature aggregation

performed on node vi, which can be specified as follows:

h(l)
vi = σ(h(l−1)

vi W
(l)
center +

1∑
vj∈N (vi)

αj

∑
vj∈N (vi)

αjh
(l−1)
vj W

(l)
fraud,i+

1∑
vj∈N (vi)

1− αj

∑
vj∈N (vi)

(1− αj)h
(l−1)
vj W

(l)
legit,i)

(6)

where at aggregation layer l ∈ L, W
(l)
center is the weight matrix directly applied to the

center node embedding; W
(l)
fraud,i and W

(l)
legit,i are customized to process the fraudulent

and legitimate neighbor information for center node vi. During feature aggregation, local
information, fraudulent neighbor information, and legitimate neighbor information is first
processed separately, each gated by αj , and then integrated to form the new center node
embedding. To control the scale of aggregated neighborhood information across different
categories, we further perform a weighted average based on αj or 1 − αj on the processed
fraudulent or legitimate neighbor embeddings for normalization. It is worth noting that our
designed node-specific filters capture the distinct features of center nodes while sharing the
learning function, striking a balance between learning effectiveness and training cost.

3.2. Clustering-Augmented Optimization

Both fraudulent and legitimate entities often exhibit significant scattered distributions,
where instances within each category may not share substantial similarities. Unfortunately,
this node feature diversity is further aggravated by complex graph topology, making it
challenging for conventional classification to establish clear decision boundaries between
fraudulent and legitimate entities. To address this challenge, we propose to explore semantic
divergence among nodes and leverage the inherent grouping capabilities of clustering to
handle the dispersed nature of nodes. By clustering fraudulent or legitimate nodes into a
larger number of clusters, we can isolate smaller groups exhibiting similar behaviors, and
enhance the model’s sensitivity to subtle patterns of fraud that may be overlooked by simpler
classification techniques. Moreover, beyond improving fraud detection performance through
regularization, clustering also assists in addressing class imbalance during optimization, as
it relies less on the node label information.

3.2.1. Label-Guided Node Clustering

Unlike typical clustering problems, node embeddings in fraud detection scenarios are par-
tially labeled and plagued by severe data imbalance. The goal of clustering in this context
goes beyond traditional clustering objectives, which aims not only to uncover the substruc-
tures among fraudulent and legitimate nodes, but also to leverage additional information
from unlabeled nodes to enrich node semantics and alleviate the impact of class imbalance
on model training using subclass information. With this in mind, we design a label-guided
node clustering pipeline, which proceeds with the following unique steps:

• Cluster nodes within each class into multiple semantically coherent subclasses in the
learned embedding space. Technically, considering a class k (fraudulent or legitimate)
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and its corresponding nodes Vk ∈ V , we use a selected clustering algorithm, such as
k-means, to partition Vk into multiple subclasses. To ensure a balanced distribution of
nodes across subclasses, the node sizes across subclasses are comparable to each other.

• Assign unlabeled nodes to the corresponding subclasses. Once all labeled nodes are in
place, each unlabeled node is then assigned to the nearest cluster based on the similarity
between its embedding and cluster centroid.

The hyperparameters cfraud and clegit serve to regulate the number of clusters for the
fraudulent and legitimate classes, respectively. Our clustering pipeline (1) ensures the num-
ber of nodes is approximately equal across resulting fraudulent and legitimate subclass, thus
mitigating the class-imbalance issue; (2) accumulates abundant node semantic information
from different subclasses and by incorporating unlabeled nodes; and (3) forms compact and
distinct groupings of distributions in the embedding space with each tightly clustered and
separated from others that further facilitates classification training and inference.

3.2.2. Cluster Evaluation

To evaluate the clustering results, we borrow the silhouette score (Rousseeuw, 1987) to refine
the general metrics of intra-cluster and inter-cluster distances. However, given that many
clusters with the same labels could potentially be merged, enforcing distinct separations
among these clusters is unnecessary. Therefore, rather than treating all clusters equally,
our evaluation focuses only on differentiating clusters with different labels. More specifically,
given node vi with label yi that belongs to cluster ci, we define the inter-cluster distance
score as follows:

Sinter
vi = min

∀cj∈C\ci,yi ̸=yj
Dist(hvi ,hc(vj)) (7)

where Dist() is a distance function, hvi refers to the node representation of node vi, and
hc(vj) refers to the centroid of the cluster which vj belongs to. Similarly, the intra-cluster
distance score can be formulated as follows:

Sintra
vi = Dist(hvi ,hc(vi)) (8)

Finally, the clustering score for a given set of nodes will be defined by the average difference
between the intra-cluster and inter-cluster distance scores, divided by the maximum of these
two, to evaluate how dense the clusters are:

S =
1

|V|
∑
vi∈V

Sintra
vi − Sinter

vi

max{Sinter
vi , Sintra

vi }
(9)

The aforementioned score S is calculated separately on labeled and unlabeled nodes, as we
have less confidence in the cluster assignments of unlabeled nodes. As such, the overall
clustering score that evaluates the clustering results can be written as follows:

Scluster = Slabeled + δSunlabeled (10)

where δ is a hyperparameter; Slabeled and Sunlabeled refers to the result of scoring function
in Eq. (9) on labeled nodes and unlabeled nodes, correspondingly.
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3.3. Model Optimization

To combine label-aware feature aggregation and clustering-augmented optimization, the
overall training procedure of LACA can be described as follows: the given graph G is
first fed into the GNN model to perform label-aware feature aggregation and generate
node embeddings, which are then used to perform label-guided clustering and calculate the
resulting clustering score; based on the predicted results and clustering results, the final
loss to be minimized is formulated, which consists of a supervised loss and a regularization
loss. The supervised loss is a weighted cross-entropy loss function Lwce, which provides
cost-sensitive learning to mitigate class imbalance:

Lwce =
−
∑

vi∈V |Vlegit|yi log(pf ) + |Vfraud|(1− yi) log(1− pf )

|Vlegit|+ |Vfraud|
(11)

where pf is the predicted probability of node i to be fraudulent; yi is the ground truth label
of node i; |Vfraud| and |Vlegit| are the number of labeled fraudulent nodes and legitimate
nodes in the training set, where the ratios of them are used as an estimate for the overall
imbalance ratio. The division of the total number of labeled nodes controls the scale of the
weighted cross-entropy loss. The overall clustering score discussed in Section 3.2.2 is used as
the regularization loss Lreg = Scluster to enforce more distinguishable decision boundaries.
The final loss can then be expressed as:

L = Lwce + λLreg (12)

where λ is a hyperparameter controlling the influence of the clustering-based regularization.
In summary, with the label-aware aggregation scheme mitigating the issues of heterophily
and class imbalance existing in fraud graphs, weighted cross-entropy loss mitigating the
bias introduced by class imbalance, and clustering-augmented optimization enforcing better
decision boundary, LACA allows for a more nuanced analysis of the dataset, facilitating the
development of a more accurate and reliable fraud detection model.

4. Experimental Results and Analysis

4.1. Experimental Setup

Datasets. We evaluate LACA on four real-world fraud detection datasets:

• YelpChi (Rayana and Akoglu, 2015): This dataset identifies anomalous reviews on
Yelp.com that promote or demote products or businesses. It features a graph with three
types of edges: R-U-R, R-S-R, and R-T-R.

• Amazon (McAuley and Leskovec, 2013): This dataset detects compensated users who
write counterfeit reviews for musical instruments on Amazon.com. It includes three types
of relations: U-P-U, U-S-U, and U-V-U.

• T-Finance (Tang et al., 2022): This dataset identifies anomalous user accounts within
transaction networks. Node features include registration duration, login activities, and
interaction rates, while edges signify transactional account interactions.
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Table 1: Statistics of the datasets (Hom. Ratio reports rh for minority class)
Dataset #Nodes #Edges #Features Imb. R Hom. R

Amazon 11,944 4,398,392 25 0.07 0.04
YelpChi 45,954 3,846,979 32 0.17 0.10
T-Finance 39,357 42,445,086 10 0.05 0.30
Elliptic 203,769 234,355 166 0.02 0.12

• Elliptic (Weber et al., 2019): The dataset categorizes Bitcoin transactions into legal
entities (e.g., wallet providers and miners) and illegal entities (e.g., scams, malware, and
terrorists). It is structured as a graph where nodes are transactions and edges represent
the flow of Bitcoin.

We use 40%-30%-30% data-split across all four datasets to train, validate, and test
models, respectively. The data statistics are summarized in Table 1. In the experiments,
all relationships in YelpChi and Amazon datasets are considered the same to align with
homogeneous GNNs. The timestamp in the Elliptic dataset is excluded from data splitting
and removed before being fed into the model.

Baselines. We select 15 different models as our baselines to compare with LACA. These
baselines include four conventional GNNs (GCN (Kipf andWelling, 2017),GAT (Veličković
et al., 2017), GIN (Xu et al., 2018a), and GraphSAGE (Hamilton et al., 2017)), two
heterophily-aware GNNs (JKGCN (Xu et al., 2018b), GPRGNN (Chien et al., 2021)),
and nine advanced models for imbalanced graphs or fraud detection (GraphENS (Park
et al., 2022), GraphSMOTE (Zhao et al., 2021), Graph-Consis (Liu et al., 2020), Care-
GNN (Dou et al., 2020), PC-GNN (Liu et al., 2021b), DOS-GNN (Jing et al., 2024a),
H2-Fdetector (Shi et al., 2022), BWGNN (Tang et al., 2022)), GDN (Gao et al., 2023).
Some of the reported results in this paper are taken from their original papers.

Implementation Details. The number of aggregation layers L is set to 2 for LACA.
All models are trained for 2,000 epochs with a patience of 200 using Adam optimizer with
learning rate lr = 0.01 and 5e − 4 L2 regularization. AUC (Area Under the Receiver Op-
erating Characteristic Curve) and F1-Macro are the primary evaluation metrics to provide
insight into a model’s effectiveness on class-imbalanced fraud detection. All MLP models
will be tuned between 1 and 2 layers, and the coefficients δ and λ are tuned in the range
of [0.1, 0.5] and [0.1, 0.7], correspondingly. The experiment is run on AMD EPYC 7643
48-core processors with an NVIDIA A100-sxm4-80GB GPU.

4.2. Comparison with Baselines

In this section, we would like to evaluate the effectiveness of LACA for class-imbalanced
fraud detection on graphs by comparing our model with 15 selected baselines over four
different public fraud datasets. The comparative results are reported in Table 2. From Ta-
ble 2, traditional GNN models exhibit poor performance in class-imbalanced fraud graphs.
In contrast, advanced models designed for addressing heterophily, imbalanced data, or fraud
detection show significant improvement in detection performance, due to their enhancement
in handling heterophilic neighborhood and class imbalance, preventing fraud nodes from be-
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Table 2: Comparison of different Fraud Detection methods (%) on benchmark datasets.
Some GNN models are highlighted: bold statistics denote the best results. OOM
indicates that the machine runs out of memory before the algorithm terminates.

Dataset
Amazon YelpChi T-Finance Elliptic

AUC F1 AUC F1 AUC F1 AUC F1

GCN 74.34±1.2 67.47±7.2 52.47±0.6 54.31±0.7 64.43±0.7 70.74±1.0 90.47±1.1 83.13±0.9
GAT 75.16±1.8 83.18±4.1 56.24±0.3 54.64±2.3 73.00±1.2 53.86±1.0 63.87±0.8 47.43±0.8
GIN 80.56±2.8 69.26±5.5 74.09±0.8 62.85±1.1 80.02±0.8 65.23±1.3 93.71±1.0 88.78±0.9
GraphSAGE 75.27±0.8 74.17±0.6 54.00±0.2 65.49±0.8 67.12±0.3 52.71±0.5 94.35±0.6 89.04±0.5

JKGCN 89.63±0.8 72.52±0.5 80.74±0.4 59.75±1.6 93.92±0.2 85.39±0.6 93.60±0.5 85.98±0.5
GPRGNN 92.79±0.6 85.47±1.8 81.03±0.7 65.46±0.8 94.25±0.9 87.73±0.4 94.49±0.7 89.71±0.7
GraphENS 80.01±1.8 52.81±1.9 60.12±1.5 47.63±3.3 OOM OOM 83.43±1.1 51.35±1.3
GraphSMOTE 90.79±1.0 88.36±1.5 76.74±0.9 65.22±2.1 OOM OOM 91.46±0.9 86.81±1.5
Graph-Consis 87.41±0.4 75.12±0.5 69.83±0.3 58.70±0.7 91.42±0.5 73.46±0.8 93.93±0.3 89.28±0.4
PC-GNN 95.86±0.1 89.56±0.8 79.87±0.2 63.00±2.3 91.23±0.6 63.18±0.5 94.39±0.4 91.02±0.5
Care-GNN 89.73±1.5 86.39±1.8 75.70±3.0 63.32±1.2 92.16±1.0 77.55±0.9 94.12±1.1 90.55±1.1
H2FDetector 96.11±0.8 86.86±0.9 89.62±1.3 74.39±2.5 94.55±0.7 73.87±0.8 95.91±1.0 90.82±0.7
DOS-GNN 96.55±1.1 92.10±0.9 81.15±1.2 70.46±2.5 96.01±0.6 88.53±0.9 96.32±0.9 92.75±0.8
BWGNN 97.41±0.5 91.72±0.9 90.61±0.6 76.89±0.9 95.82±0.5 88.90±0.6 96.35±0.2 90.95±0.5
GDN 97.02±0.2 90.23±0.4 90.32±0.8 75.99±0.6 95.61±0.9 88.92±2.1 95.80±0.8 90.72±0.7

LACA 97.71±0.4 91.77±0.9 93.28±0.3 80.64±0.6 97.00±0.3 91.11±0.6 97.03±0.5 92.99±0.6

ing overshadowed by many legitimate nodes. Even so, our proposed LACA still manages to
advance the state-of-the-art performance to a higher level. Compared to the best results of
traditional GNN models, LACA improves the AUC and F1 by 23.37% and 24.30% for Ama-
zon, 40.81% and 26.33% for YelpChi, 32.57% and 30.37% for T-Finance, 6.56% and 9.86%
for Elliptic. Compared to the best results of enhanced models for heterophily, imbalanced
data, or fraud detection, LACA further improves the results for all tested datasets.

In summary, LACA achieves state-of-the-art performance across all four public bench-
marks and outperforms the leading GNN models. This comparative study confirms that
the combination of label-aware feature aggregation and clustering-augmented regularization
loss can effectively extract and propagate neighborhood information to derive discriminative
node embedding, while forcing clearer decision boundaries, thus boosting model discrimi-
nation capability in the graphs with heterophily and class imbalance.

4.3. Parameter Evaluation

In this section, we would like to study the sensitivity of the model on the most important
hyperparameters: the coefficient δ which controls the impact of unlabeled data in the cal-
culation of clustering loss; the coefficient λ which controls the influence of the clustering
loss function in the training process; and the number of pre-set clusters clegit for legitimate
class and cfraud for fraud class, which will influence how the nodes will be grouped. The
performance is expected to vary depending on the chosen value of these parameters. From
the experimental results reported in Fig. 2, we make the following observations:

Impact of λ. For coefficient λ, it can be observed that the performance of the model
reaches its highest peak at values 0.5, 0.5, 0.3, and 0.2 for Amazon, YelpChi, T-Finance,
and Elliptic respectively, indicating that the inclusion of clustering loss helps improve the
overall performance of the model.
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Figure 2: Impact of parameters on LACA in terms of AUC (%): (a) different δ to adjust
clustering score; (b) different λ to balance loss function; (c) different cluster
numbers for legitimate and fraud class on Amazon dataset; (d) different cluster
numbers for legitimate and fraud class on YelpChi dataset.

Table 3: Ablation study in terms of AUC (%): LAFA denotes Label-Aware Feature Aggre-
gation and CAO denotes Clustering-Augmented Optimization.

GCN LAFA CAO Amazon YelpChi T-Finance Elliptic
✓ 74.34±1.23 52.47±0.59 64.43±0.72 90.47±1.12

✓ 97.14±0.17 92.89±0.18 96.56±0.25 95.98±0.16
✓ ✓ 97.71±0.41 93.28±0.33 97.00±0.39 97.03±0.50

Impact of δ. For coefficient δ, the performance of the model reaches its highest peak at
values 0.2, 0.2, 0.1, and 0.2 for Amazon, YelpChi, T-Finance, and Elliptic, respectively. It
can be observed that the performance of our model starts to drop when δ exceeds 0.2 on
most of the datasets, indicating that the weighted cross entropy loss still plays a crucial role
during the training despite the support of clustering augmentation.

Impact of cluster numbers. The number of clusters is expected to influence how the
node representations will be clustered and determine the final performance of the model.
Here we provide a heat map to show the influence of the cluster number selection. As
illustrated in Fig. 2(c) and (d), while the initial cluster number setting has a smaller impact
on the Amazon dataset, the YelpChi heatmap has shown a clearer trend that a smaller
number of clusters is preferred for the regularization term to provide support for the model.
Nevertheless, It is worth noting that these fluctuations are relatively small, implying that
our model exhibits high stability across different cluster number selections.

4.4. Ablation Study

LACA leverages two critical designs: label-aware feature aggregation to derive informative
and distinguishable node embeddings and clustering-augmented optimization for regulariza-
tion. To demonstrate their necessity and benefit, we conduct an ablation study to assess the
contributions of these two components to our model’s performance by including/excluding
them and construct three alternative models. As illustrated in Table 3, both components
contribute to the performance of LACA. Notably, label-aware feature aggregation emerges
as the most significant contributor among two components. The findings show that even
without clustering-augmented optimization, a model with label-aware feature aggregation

12
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Figure 3: Visualization of node embeddings derived by GCN and LACA.

alone registers a performance increase exceeding 20% on datasets such as Amazon, YelpChi,
and T-Finance compared to the baseline GCN model. This outcome aligns with our expec-
tations. The core functionality of LACA relies on the aggregation, while collaborating with
clustering-based regularization further alleviates the impact of class imbalance on graphs,
and boosts the model’s performance.

4.5. Case Study

To validate our claim that LACA provides more distinguishable node embeddings in graphs
on fraud datasets, we present a brief case study to showcase the difference between embed-
dings generated by GCN and LACA. Due to the page limit, we only present results on two
datasets, Amazon and YelpChi. We map node embeddings into a two-dimensional space
using t-SNE, and the resulting embeddings are visualized in Fig. 3. For Amazon, GCN
fails to generate clear clusters between fraud and non-fraud points and suffers from fuzzy
boundaries (Fig. 3(a)); in contrast, LACA exhibits better-distinguished boundaries with
higher cohesion for fraud nodes(Fig. 3(b)). For YelpChi, GCN again fails to generate any
associations with fraud points being scattered among legitimate points (Fig. 3(c)), while
LACA redistributes the nodes, making them further apart (Fig. 3(d)). These observations
reaffirm the effectiveness of LACA in learning more distinct node embeddings for fraud
detection in graphs characterized by heterophily and class imbalance.

5. Conclusion

In this paper, we introduce LACA for fraud detection on graphs with class imbalance and
a mixture of homophily and heterophily. LACA consists of label-aware feature aggregation
and employs clustering-augmented optimization, both of which contribute to the solutions
that address the issues of class imbalance and graph heterophily. Label-aware feature ag-
gregation enables LACA to create informative node embeddings using node-specific filters
that dynamically capture the interactions between a node and its varied neighbors, while
clustering-augmented optimization leverages the inherent grouping capabilities of clustering
algorithms to handle the dispersed nature of fraudulent and legitimate nodes. Overall, these
strategies enhance the ability of LACA to discern subtle patterns indicative of fraud, mak-
ing it a more robust tool in the detection of fraudulent activities within networked systems.
Evaluation through extensive experiments demonstrates that our model achieves state-of-
the-art performance, which affirms its effectiveness in class-imbalanced node classification
and practical significance in handling fraud detection tasks on graphs with heterophily.
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