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ABSTRACT 

 With the outbreak of Ebola over the past year, attention has been paid on predicting and 

resolving the propagation of infectious disease over network of people and animals. Model 

checking is a commonly used method in the field of software analysis and verification. In this 

thesis, we propose to use model checking to counteract the spread of foot-and-mouth disease 

(FMD) in networks. We abstract the FMD spread model and properties, and encode the system 

using a well-known model checker Spin. Our program is capable of finding intervention policies 

and evaluating the effectiveness of different policies. Moreover, previous works generally use 

simulation models to study the disease control problem which cannot provide certainty as to 

predict whether certain future states of the outbreak are possible under a particular control policy. 

Model checking, on the other hand, is guaranteed to find a path that leads to the future states as 

long as they are possible from a given current configuration of the contagion network under a 

given control policy. It is worth mentioning that the method proposed in this thesis is not limited 

to infectious diseases, but can also be applied to counter the spread of, for example, computer 

virus, forest fire, and public opinions. 
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Chapter 1 

 

Introduction 

Foot-and-mouth disease (FMD) is an infectious viral disease that affects cloven-hoofed 

animals including sheep, pig, and cattle. The virus causes vesicles around hooves and mouths, 

high fever, weight loss, and is sometimes fatal to the infected animals. Given the hardiness of 

virus survival and transmissibility of FMD, which may lead to severe consequences including 

economic loss and trade restrictions posed to the society, it is of great importance to find effective 

policies to control FMD. However, since FMD is a foreign animal disease and field experiments 

are difficult or prohibited, mathematical and computation modeling methods have been proven to 

be successful ways to help control FMD.  

 

The dynamics of the infectious disease spread can be viewed and modeled as the 

evolution of the states of nodes in trees, graphs, and other data structures. When given an initial 

configuration of a network and a propagation function defining how infectious nodes evolve over 

time, the model checking method can be used to find whether an intervention policy exists. We 

can also evaluate the effectiveness of different prevention policies. More importantly, by using 

model checking, we can check whether a future configuration (scenario) is possible or not. The 

result would provide direct insights to many important questions. 

 

In this thesis, we propose to use model checking to resolve the problem of counteracting 

infection spread in networks, specifically for the control of foot-and-mouth disease (FMD). We 

address the following questions in this thesis. First, we construct a network and study the 

propagation function over the network. Second, we use model checking techniques to search for 
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an effective intervention policy based on the initial configuration of the FMD model and 

propagation function. Third, we verify the effectiveness of different intervention policies. Finally, 

we answer some proposed questions by using model checking to examine whether a future 

configuration (scenario) is possible. We also compare our model checking approach with 

simulation on their performances. It is worth mentioning that our approach of identifying and 

verifying effective policies using model checking is not limited to counter-act disease across a 

network of animals. It can also be applied to, for example, virus across a network of computers 

(Serazzi and Zanero, 2004), fire across a network of forests (Finbow and MacGillivray, 2009), 

and rumors across a network of social media (Zanette, 2002). 

1.1 Model Checking 

It is of great importance to verify the correctness of computer systems. Formal 

verification is widely applied in both hardware and software design and system checking. 

Particularly it plays a major role in safety critical systems. Formal verification usually consists of 

three essential parts. 

 

(1) A framework or model for the system: use a description language to model the 

system. 

(2) A specification language: use a specification language to define the properties 

that will be checked for the system. 

(3) A verification method: use a verification method to determine whether the model 

meets the specifications. 
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As one of the common formal verification methods, model checking is an automated 

property verification method originally developed to deal with the bugs in concurrent systems. 

Concurrency bugs are usually difficult to be found by testing due to their non-reproducible 

characteristics and the fact that they are not covered by test cases. Model checking plays an 

important role in finding bugs in the concurrent systems (Huth and Ryan, 2004).  

 

Model checking uses temporal logic, which is propositional and predicated logic. A 

model based on temporal logic has several states and can be true for some states and false for 

other states. For those dynamic formulas, they can change their values with the evolution of the 

system from state to state. For traditional logic, the value may never change when the value of all 

its boolean variables are fixed such as p = A ∧ ¬B ∨ C. Instead, temporal logic uses the concept 

of time, which is represented as the transition between different states. In this sense, the value of a 

formula is not fixed because of its dynamic nature (Huth and Ryan, 2004).  

 

In model checking, we use M to represent the transition system, and 𝜙 to represent the 

properties of the system. To verify whether the property meets the model, model checking 

process usually consists of three general steps. 

 

(1) Use a description language to model the system as model M. 

(2) Use a specification language to encode the property 𝜙. 

 (3) Run the model checker to see whether the property holds for the model M. 

 

Generally speaking, the ultimate goal of model checking is to check the following 

entailment.  
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M, s |= 𝜙 

 

Here M is the model that model checking works on, s is the starting state of the model 

and 𝜙 is the specifications to be checked. The output answer of running the model checker is 

either success, which means the property holds for the model M, or “error”, which means the 

property does not hold for the model M. For most model checkers, if the answer is “error”, they 

will also produce a counter example with traces that lead to the failure. This function is very 

useful in the design and debugging of the system. For our project, we can take advantage of this 

feature to help us find a control policy that can stop the propagation of the infectious disease 

(Huth and Ryan, 2004). 

1.2 Linear Temporal Logic 

Linear time temporal logic (also known as LTL) is a temporal logic that treats the time as 

an infinite sequence of states. If we consider a sequence of states as a path, we can encode all 

future paths using LTL. The formal description of LTL is as follows (Huth and Ryan, 2004).  

𝜙 = T | F | p | (¬𝜙1) | (𝜙1 ∧ 𝜙2) | (𝜙1 ∨ 𝜙2) | (𝜙1 → 𝜙2) | (X𝜙1) | (F𝜙1) | (G𝜙1) | (𝜙1 U 𝜙2) | (𝜙1 W 𝜙2) | (𝜙1 

R 𝜙2) 

 

In the definition above, p is a propositional atom. Also, T, F, ¬𝜙1, 𝜙1 ∧ 𝜙2 and 𝜙1 ∨ 𝜙2 

are all LTL formulas if 𝜙1 and 𝜙2 are LTL formulas. X, G, F, W, U, R are operators. For 

example, X means next, so X𝜙1 is true if 𝜙1 is true in the next state. G means globally all future 

states, so G𝜙1 is true if 𝜙1 is true for all future states. F means some future states, so F𝜙1 is true if 

𝜙1 is true for some future states. U, R, W in the formula represent Until, Release, and Weak-until. 
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The details of all the operators can be found at the book Logic in Computer Science (Huth and 

Ryan, 2004).  

1.3 SMV and Spin 

NuSMV (also known as SMV) that stands for “New Symbolic Model Verifier.” As an 

open and structured platform for model checking, SMV provides a description language for 

system modeling and directly checks the linear-time temporal logic on these models. SMV takes 

(1) a program written in a description language that describes the system, and (2) a specification 

written in linear temporal logic as the input. The output is either true, if the specification holds for 

the system, or a trace that leads to the failure showing why the specification does not hold for the 

system (Huth and Ryan, 2004). 

 

Another model checker, Spin (Simple Promela INterpreter), is developed by Gerard 

Holzmann at Bell Labs in 1980. It is widely used in analyzing Promela programs on system 

design errors such as deadlocks and assertion violations. The systems that Spin works on are 

described in Promela (Process Meta Language), which is a modeling language used to describe 

concurrent and distributed systems such as network protocols. Similar to SMV, Spin verifies 

properties in linear temporal logic formulas. Because most of our experiments are implemented in 

Spin, we will discuss the use of Spin in details in the experiment sections. 

1.4 Thesis Organization 

The remaining of the thesis is organized as follows. Chapter 2 provides the background 

information and discusses the related works of literature on foot-and-mouth disease and model 
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checking. Chapter 3 explains the approach and methods we used in details. Chapter 4 contains 

implementation of the experiments and discussion of the experiment results. The last chapter 

discusses the summary, limitation and future work for this project.  
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Chapter 2 

 

Background and Related Work 

2.1 FMD and Related Research 

Foot-and-mouth disease (FMD) virus can cause symptoms including high fever, weight 

loss, and vesicles around hooves and mouths to cloven-hoofed animals such as cow, sheep and 

pig (Donaldson, 1987).  There is no FMD in US and UK currently; however, given the hardiness 

of FMD virus survival and high transmissibility, it poses a severe threat to the society (Anderson, 

2002). The FMD virus also has a significant impact on the economic aspect. For example, the 

countries that are free of FMD have trade restrictions on any products derived from FMD-

susceptible animals, which causes a huge financial loss for the FMD-susceptible country (Knight-

Jones and Rushton, 2013).  In particular, the impact of the 2001 outbreak of FMD in the UK was 

estimated at £8 billion (Anderson, 2002). Given this background, it is of great importance to find 

effective control strategy to prevent FMD outbreaks. 

 

FMD is a foreign animal disease, and the field experiments are difficult or prohibited. In 

this situation, mathematical and computation modeling methods have been proven to be 

extremely helpful in controlling FMD. Most of the previous researches have utilized stochastic 

microsimulation models to measure the performance of different control policies. For example, 

simulation methods have been used to study control policies for FMD in Australia (Garner and 

Beckett, 2005), Canada (Sanson et al., 2014), Japan (Hayama et al., 2013), North America 

(Harvey et al., 2007), and UK (Tildesley et al., 2006; Keeling et al., 2001). However, for 

stochastic simulation models, the optimality of any control action is presented as an expectation. 

Although other statistics may be investigated (Probert et al., 2016), in general, there is no 
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certainty in determining whether certain future states of the outbreak are possible for a particular 

control action. In comparison, the model checking approach provides new insight into this 

problem since it gives a definite answer to the question of whether particular future states of an 

outbreak are possible when given current configuration of the contagion network.   

2.2 Model Checking and Related Research 

Clarke (2008) gives a thorough introduction of the birth and development to the model 

checking technique. Model checking is very useful in verifying system properties, and the 

combination of model checking and network modeling is novel (Clarke, 2008; Clarke et al., 

2000). The verification process in model checking is automatic while the models such as 

networks of people or animals can be constructed manually or by using other tools. There are 

various model checkers, among which SMV and Spin are modern model checkers that have been 

widely used in both Industry and Academia. SMV is a new symbolic model checker, which 

provides an open and structured platform for model checking (Cimatti et al., 1999; Cimatti et al., 

2002). Spin was developed at the Bell Labs in 1980. It is an open source software that is primarily 

used for the verification of multi-threaded applications (Spin, 1980). 

 

Many references have commented on the difficulties of controlling the spread of infection 

in a network. Dreyer and Roberts studied on the irreversible k-threshold model of disease; they 

examined effective policies that prevent the infection propagation over network without violating 

desired properties (Dreyer and Roberts, 2009). Finbow and MacGillivray, Chlebíková and Chopin 

studied on the classic firefighter problem; they reported that it is, at least, NP-hard for the 

problem of identifying an effective policy to control the spread of infection in a network, even for 

trees or graphs of degree three (Finbow and MacGillivray, 2009; Chlebíková, and Chopin, 2014). 
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Anshelevich et al. presented a method to contain the infection by using targeted vaccinations, 

where they are allowed to vaccinate at most a fixed amount of nodes at each time step 

(Anshelevich et al., 2012). Newman reviewed the development of network systems and examined 

the infection propagation problem with real-time constraints (Newman, 2003). Santhanam et al. 

did a preliminary study on the infection propagation problem; he verified the effectiveness of 

intervention policy that counter-acts the infection spread through model checking technique 

(Santhanam et al., 2011). In this work, they assumed the underlying network and the propagation 

are already known. For our research project in this thesis, we construct both the underlying 

network and propagation function from data.  
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Chapter 3 

 

Approaches and Methods 

3.1 Farm Network and Propagation Function 

The primary task of our work is to choose the best control policy for stopping an FMD 

outbreak. Our control policy consists of culling the infected farm once it is reported after the 

latent period and vaccinating the neighbor farms around the infected ones. Here the neighbor 

farms are those within a certain distance to the infected farms. We define this distance as the 

vaccination radius RV. The control policy can then be changed by setting the parameter RV in the 

model. 

 

There are two important constraints relevant for control of FMD during an outbreak: a 

vaccination schedule constraint and a global carcass constraint. The vaccination constraint means 

that only a limited amount of vaccinations can be used per day. While the carcass limit means that 

only a limited number of carcasses can be presented throughout the landscape at any point in 

time. For our study models in this thesis, we will treat each farm as a whole unit regardless of the 

number of animals in each farm. In other words, we consider all the animals on an infected farm 

as infected and do not model the within-farm dynamics of disease spread. In this case, we do not 

need to consider the carcass limit or the max number of animals the farm can cull each day. 

Instead, we only consider the number of vaccinations that can be used as the main constraints of 

our model.  

 

In the following, we will introduce our model including the network of farms and 

transition rules which describe disease propagation and control action. We assume the whole 
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landscape is a grid, and each farm is represented as a node in the grid. We use enumeration types 

to define the states of the farms as follows.  

 

(1) Healthy: the farms that are healthy and open to infection. 

(2) Infected: the farms that become infected and can infect their neighbors within the 

infection radius. However, an infection cannot be detected at this stage. 

(3) Reported: the infected farms now can be detected and reported.  

(4) Dead: after being detected and reported, the whole farm becomes dead (culled).  

(5) Vaccinated: the farms are vaccinated and immune to the disease.  

 

We can set the initial state so that some farms are infected and other farms are healthy. 

The transition takes place at each discrete timestamp t = 0, 1, 2, etc. We define the following five 

transition rules for our model.  

 

(a). Each infected farm has a 50% possibility to infect its healthy neighbor farms as long 

as the neighbor farms are within a certain distance to the infected farm (state: healthy -> 

infected). Here we define this distance as infection radius R.  

(b). The farms that are infected but not detected will become detected and reported after 

the latent period (state: infected -> reported).  

(c). If a farm has been detected and reported, we vaccinate all the neighbor farms within 

the vaccination ring of the reported farm. If a neighbor farm is healthy before vaccination, the 

farm will become vaccinated and immune to infection in all future timestamps (state: healthy -> 

vaccinated). However, the vaccinations have no effects on farms that have already been infected.  

(d). The infected farm will be culled and becomes dead once reported (state: reported -> 

dead).  
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(e). Except for the above cases, the farm will remain in its current state in the next 

timestamp.  

 

It is worth mentioning that the radius of both infection and vaccination ring can be set as 

the parameters of the model. The infection radius R is set based on a real life scenario, and 

different values of vaccination radius RV are considered as different control policies to deal with 

the infectious disease. The length of the latency period (the time it takes for a farm to change 

from infected state to reported state) can also be changed based on the real scenarios. 

3.2 Identifying a Control Policy 

The primary function of Model checking is to check M, s |= 𝜙, namely to check whether 

some properties 𝜙 hold for a given model M with a given initial state s. The output of the 

program will either be true, if the properties hold for the system, or error. For the latter case, 

model checking provides traces that lead to the error showing why the properties do not hold for 

the system. By taking advantage of this particular design of the model checking technique, we 

can propose different intervention policies and use model checking to check whether each policy 

is successful in stopping the infection. In our experiment, we consider a policy successful if more 

than half of the nodes are in the healthy state (including the vaccinated state). We consider a 

policy failed if less than half of the nodes are in healthy state. Based on this definition, we can 

encode the properties in LTL as below to find a success policy.  

 

ltl p { <> (ltl that describes the opposite of the success policy condition)} 
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The above LTL asserts that there exists a situation in which the policy fails. If the 

program fails to pass the property, the counterexample provided by model checking will be our 

expected result that there is a situation the policy succeeds. Model checking will also show the 

traces of how each node evolves over time that leads to the error. These results can be used as our 

intervention policy to stop the infection. 

 

Another specification that we want to check is the time limit tmax as an expected 

timeframe to prevent the infection. Although tmax is not encoded in the program as LTL, the 

model checking program stops at tmax. It means that we fail to find an effective policy to counter 

the infection propagation within expected time frame. 

3.3 Effectiveness Evaluation of Control Policy 

The effectiveness of different policies can be studied from various aspects. In this thesis, 

we measure the effectiveness of each policy with the following criteria: (1) the number of days 

needed to stop the infection, (2) the number of vaccinations used to stop the infection, and (3) the 

number of dead nodes in total. We run the Spin model with different policies and compare the 

results in regards to those three measurements. In practice, we want to find the policy that takes 

less time and vaccination to stop the infection and results in less dead nodes. Based on different 

constraints and needs in real life scenario, we may also put more emphasize on one of the criteria. 

 

It is worth mentioning that simulation methods are usually used for evaluating the 

effectiveness of control policies. In some simulation process, it will provide a random result from 

all the possible answers. Compared to that, model checking approach itself cannot evaluate the 

policy because it will always return the same result from all possible answers. However, the 
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model checker Spin has a simulation mode that we can utilize to do the evaluation work. We will 

discuss this in details in the experiment and results section. 

3.4 Checking Possible Future State 

A significant advantage of model checking in our project is that it can provide certainty 

as to check whether particular future states of an outbreak are possible or not from a given current 

configuration of the contagion network. By taking advantage of this function, we can answer 

some proposed interesting questions such as whether all nodes become dead is a possible future 

state, or whether is it possible that we can control the infection with a given amount of 

vaccinations. As long as the proposed questions can be encoded in LTL formulas, model 

checking can provide an answer to these questions.  
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Chapter 4 

 

Experiments and Results 

4.1 Experiment Setup 

Model and Data Description 

 We use the model checker Spin to perform the experiments and implement the models. 

Two models are applied in our experiments, the theoretical toy model, and the real data model. 

The theoretical toy model is a 10 × 10 square grid that contains 100 nodes that are used to 

represent farms. The real data model we examine is acquired from Center for Infectious Disease 

and Dynamics (CIDD) at Penn State University, which consists of 4000 farms with 500 animals 

in each farm. Farm locations have been randomly generated in a circle around a single infected 

farm consistent with the spatial distribution of farms in the county of Cumbria, UK, from the 

2001 outbreak of FMD. The location data are numbers representing the x and y coordinates of 

each farm in unit of kilometer (km). Because of scalability issues, we cannot run Spin on a model 

of 4000 farms. We therefore choose the first 500 farms out of the 4000 farms to build the real 

data model. For both models, we store the state of each farm in a one-dimensional array named 

“farm”, the location of the farms (x coordinate and y coordinate) are stored in another two one 

dimensional array named “x” and “y”. The index of the array that stores the state is consistent 

with the index of the arrays that holds the location. For example, the location of farm[0] is stored 

in x[0] and y[0]. The distance between two different farms can be calculated based on their x and 

y coordinates. For example, the distance d between farm[0] and farm[1] is given by  𝑑 =

√(𝑥[1] − 𝑥[0])2 + (𝑦[1] − 𝑦[0])2.  
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Real Data Pre-Processing 

 The original location data we acquired from CIDD are decimal numbers representing the 

x and y coordinates in unit of km.  In order to perform model checking approach to the real data, 

we need to first pre-process the raw data and turn those location numbers into integers because 

Spin does not support double or float type. The largest data type for the numeric numbers in Spin 

is 32-bit Integer. The purpose of the design without floating numbers is to facilitate the 

verification process. We pre-process the raw data as follows. For each location number (x and y) 

in the original file, we multiply them by 100 and round the number to the nearest integer. We then 

add 500 to each number to bring all the x and y values to a positive range. The above operations 

do not change the relative location of each farm but change the unit from km into 10m. Those 

processed data can be directly used to store the location of each farm and calculate the distance 

between farms. 

 

Running Spin 

 Spin and iSpin (with graphical interface) are both able to do verification on a model. 

While iSpin is very convenient and easy to understand because it provides a full menu of choices, 

Spin is more adaptable and can be used in any environment. We use Spin for our experiments. 

The experiments for answering proposed questions are performed in a 2.90 GHz Intel Xeon 

processor with 131GB memory Linux server, and the experiments of evaluation part are 

performed with 2.7 GHz Intel Core i5 processor with 8GB memory on OS X Yosemite. 

  

 We start by building a model with Promela. In our code, the “init()” is used as the main 

function to start the program, the data that consists of locations and state of the farms is defined in 

the “readfile()” prototype, and the infection propagation function is defined in the “infect()” 

prototype. All the properties we want to check in this experiment are written in LTL. The details 
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for LTL in Spin can be found on Spin official website and manual. The commonly used operators 

are listed in the following: [] means always, <> means eventually, and ! means negation. As we 

have mentioned before, the output of model checking is either success if the property (written as 

an LTL formula) holds for the model or error with a counter-example that violates the property. 

Due to this particular point, we can write the negation of the property we want to check as the 

LTL formula. For example, if we want to check whether a > b is a possible state or not, we can 

write a <= b as the LTL formula. In this way, if the property a <= b does not hold for the model, 

model checking will provide us a counter-example which satisfies a > b. All the LTLs in Spin are 

written in ltl [name] {formula} format. They all start with the "ltl" keyword, followed by the 

name of the LTL property, and, at last, the LTL formula written in the {} bracket. 

 

 Spin provides both the model checking (verification) mode, which does a full search of 

the possible states of the model, and the simulation mode, which performs a random simulation 

run of the model. The algorithms of both modes are shown in the figure below (Ruys, 2002). For 

the simulation mode, Spin uses random seeds for a random simulation run. While there is no error 

and deadlock, Spin will collect all current executable actions and randomly chooses one action to 

execute (Ruys, 2002). In our project, it will choose one path from all possible paths. For model 

checking mode, Spin uses depth first search to explore all the possible states. We use the 

exhaustive full search mode (model checking mode) to perform the major experiments. Since this 

mode usually takes a long time to run, we first utilize the simulation mode to do a quick 

debugging on the system. Besides, given a fixed model and a LTL specification, the model 

checking mode always returns the same result. We, therefore, use the simulation mode for 

verifying the effectiveness of a policy.  
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 The memory usage is usually the major challenge for the performance of model checking 

because the model checker Spin stores every state of the model during running. To overcome this 

issue, Spin provides both the exhaustive verification mode and supertrace verification mode. The 

decisions on which mode is proper is based on whether the system can afford CPU and memory. 

A full exhaustive verification guarantees to get an accurate answer, whose performance can be 

improved by either setting the memory limit or use the collapse compression. If the exhaustive 

mode exceeds the memory bound and becomes infeasible, supertrace verification, also known as 

bitstate hashing can be utilized as an alternative approach. It can provide an approximate answer 

to whether errors exist. We use exhaustive search for most of our experiments, but for some part 

of the experiments where exhaustive verification is not feasible, we apply supertrace verification. 

Spin also provides a wide variety of run-time options. We will not discuss those options here, and 

the details can be found on Spin official website and manual. 

  

 

Figure 4-1: Simulation and verification mode algorithms of Spin. 
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 The output from the model checking program is text-based when a violation of the 

property occurs. If needed, structured representation and intermediate steps can be extracted. The 

output can be displayed directly on the console, or be written to an external file. It can be as 

specific as we need because we can encode the program to provide the traces that lead to the 

violation. 

4.2 Checking Possible Future States 

 We answer several interesting questions in this section. Unless otherwise specified, the 

basic settings of the experiment parameters are as follows. We assume the initial configuration as 

that only one farm in the center of the landscape is infectious and all the other farms are healthy 

based on the data. For the theoretical model, both the infectious radius R and the vaccination 

radius RV are equal to 1, which is one tenth of the side length of the landscape. For the real data 

model, both the infectious radius R and the vaccination radius RV are set to 400 (in unit of 10m) 

based on the data, which is also approximately one tenth of the side length. For both models, the 

latent period equals 1 day and the maximum time limit for both models are 100 days. The details 

of the questions and the experiment results are listed as follows.  

 

Q1: Check whether it is possible that all nodes become either infected or dead. 

 During an emergent outbreak of some infectious disease such as a catastrophic event, it is 

critical to check whether it is possible that all nodes are affected (become either infected or dead). 

We encode this property as LTL p1 to solve this problem. The LTL formula written below asserts 

that the sum of infectious nodes and dead nodes will always be smaller than the total number of 

nodes (Nfarm). 
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ltl p1 { [] (count_InfectiousNode + count_DeadNode < Nfarm) } 

 

 For our experiments both on the 10 × 10 theoretical model with R=RV=1 and real data 

model with R=RV=400, the result of LTL p1 is failed, and the property encoded in LTL p1 is 

violated, which means there exists a situation that the sum of infectious nodes and dead nodes is 

equal to or greater than the number of total nodes. Spin also provides a counter example and full 

traces that lead to the end state. The results for both models are listed in Table 4-1. We find that 

there is no node in the vaccinated state for both models, which means the infectious nodes infect 

all healthy nodes within the infection radius R in this counter example. 

 

Table 4-1. The number of nodes in different states at each day for the counter example of 

property p1. 

 
10 × 10 Theoretical Model Real Data Model 

Healthy Infected Vaccinated Dead Healthy Infected Vaccinated Dead 

Day 0 99 1 0 0 499 1 0 0 

Day 1 95 4 0 1 480 19 0 1 

Day 2 87 8 0 5 438 42 0 20 

Day 3 75 12 0 13 370 68 0 62 

Day 4 59 16 0 25 277 93 0 130 

Day 5 41 18 0 41 146 131 0 223 

Day 6 25 16 0 59 15 131 0 354 

Day 7 13 12 0 75 0 15 0 485 

Day 8 5 8 0 87     

Day 9 1 4 0 95     

Day 10 0 1 0 99     

 

Q2: Check whether it is possible that all nodes become dead. 

 When confronting an emergent outbreak, we may want to know how bad the situation 

would be and whether a worst condition could happen. We thus ask whether all nodes become 

dead is a possible state. We encode this property as LTL p2 in the following. 
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ltl p2 { [] (count_DeadNode < Nfarm) } . 

  

 The above LTL formula asserts that the number of dead nodes is always smaller than the 

total number of nodes. We perform experiments on the 10 × 10 theoretical model with R=RV=1 

and real data model with R=RV=400. For both models, the property encoded in LTL p2 is 

violated, indicating the existence of a counter example in which the number of dead nodes 

becomes equal to or greater than the number of total nodes at a particular state. Table 4-2 shows 

the counter example for both models where the numbers of nodes in various states are listed for 

each day. We can see that the results for both models are very similar to the results in Q1, except 

that the violation occurs at one day later than that of Q1. There is no node in the vaccinated state 

throughout the disease propagation, and all nodes become dead in the end. 

 

Table 4-2. The number of nodes in different states at each day for the counter example of 

property p2. 

 
10 × 10 Theoretical Model Real Data Model 

Healthy Infected Vaccinated Dead Healthy Infected Vaccinated Dead 

Day 0 99 1 0 0 499 1 0 0 

Day 1 95 4 0 1 480 19 0 1 

Day 2 87 8 0 5 438 42 0 20 

Day 3 75 12 0 13 370 68 0 62 

Day 4 59 16 0 25 277 93 0 130 

Day 5 41 18 0 41 146 131 0 223 

Day 6 25 16 0 59 15 131 0 354 

Day 7 13 12 0 75 0 15 0 485 

Day 8 5 8 0 87 0 0 0 500 

Day 9 1 4 0 95     

Day 10 0 1 0 99     

Day 11 0 0 0 100     

 

 It is worth mentioning that We can also use the ! in the LTL formula to represent 

negation. LTL p2p written below is equivalent to p2. 
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ltl p2p { ! (<> (count_DeadNode >= Nfarm)) } 

 

 The LTL formula p2p asserts that there does not exist a situation that the number of dead 

nodes is equal to or larger than the total number of nodes. In our experiment, the output of p2p is 

failed and spin provides a counter example that the number of dead nodes equals to the number of 

total nodes at the end, which is exactly the same as the counter example shown in Table 4-2. 

 

Q3: Check whether it is possible to stop the infection with a limit amount of vaccinations. 

 In real life scenario of dealing with the infectious disease, the number of vaccines 

available is often a significant challenge. It is crucial to check whether it is possible to stop the 

disease propagation with a limited amount of vaccines. In our experiment, we define the limit 

number to be 50% of the total nodes, and set the vaccination radius RV to be twice of the 

infection radius R. Now we write down a LTL p3 in the following asserting that it is always true 

that either the number of vaccinated nodes is equal to, or smaller than 0, or the number of 

vaccinated nodes is equal to or larger than 50% of the total number of nodes, or the number of 

infectious nodes is nonzero.  

 

ltl p3 { [] ((count_VaccineDose <= 0) || (count_VaccinatedDose >= Nfarm*5/10) || 

(count_InfectiousNode != 0))} 

 

 Note that we can use “and” and "or" operators to combine multiple logics in the LTL 

formula. For our experiments both on the 10 × 10 theoretical model with R=1 and RV=2, and real 

data model with R=400 and RV=800, the result of LTL p3 is failed. The violation of LTL p3 

means that there exists a state that the number of vaccinated nodes is larger than 0 and smaller 

than 50% of the total number of nodes, and the number of infectious nodes is 0. This particular 
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state is just the successful situation that we are looking for in which the infection is stopped with 

the limited number of vaccines. We show the counter example provided by spin that leads to this 

state for both theoretical and real data models in Table 4-3. We can see that the infection stops at 

the second day with vaccine doses used less than 50% of the number of the total nodes.   

 

Table 4-3. The number of nodes in different states at each day for the counter example of 

property p3. 

 
10 × 10 Theoretical Model Real Data Model 

Healthy Infected Vaccine Dead Healthy Infected Vaccine Dead 

Day 0 99 1 0 0 499 1 0 0 

Day 1 87 4 12 1 416 19 83 1 

Day 2 87 0 12 5 416 0 83 20 

 

 We talk about identifying successful or failed policies in previous sections. Another 

significant aspect of model checking approach is that instead of checking whether a future 

configuration is possible given a policy, it can check whether a policy can succeed or fail with a 

definition of success. In the next steps, we define a policy as successful if the number of 

vaccinated nodes plus healthy nodes is equal to or larger than half of the total nodes when the 

infection stops, and a policy is failing otherwise. After we define what a successful or failing 

policy is, we can also use model checking to answer the following questions Q4 and Q5. 

 

Q4: Check whether it is possible that a policy can succeed.  

 When we talk about stopping the infectious disease, the first important thing comes to 

mind is to find a successful policy. In this case, it is extremely important to verify whether it is 

possible a policy can succeed. The LTL formula written below describes a failing situation, which 

asserts that there exists a state that the number of vaccinated nodes plus healthy nodes is smaller 

than half of the total number of nodes. 
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ltl p4 { <> (count_VaccinatedNode + count_HealthyNode < Nfarm/2) }   

 

 Our goal is to find a counter example in which the total number of vaccinated and healthy 

nodes is always larger than or equal to half of the total node number so that the policy is 

successful in this example. For our experiments both on the 10 × 10 theoretical model with 

R=RV=1 and real data model with R=RV=400, the result of LTL p4 is violated, indicating that 

there exists a path that the control policies taken in our experiments are successful. The counter 

example provided by Spin for both models are listed below in Table 4-4. For both models, the 

results are the same as the results in Q1 for the first 4 days. On the fifth day, the infectious nodes 

only infect some of the healthy nodes within the infection radius and other healthy nodes are then 

vaccinated.  On the sixth day, no healthy nodes become infected and all the healthy nodes within 

RV are vaccinated. 

 

Table 4-4. The number of nodes in different states at each day for the counter example of 

property p4. 

 
10 × 10 Theoretical Model Real Data Model 

Healthy Infected Vaccinated Dead Healthy Infected Vaccinated Dead 

Day 0 99 1 0 0 499 1 0 0 

Day 1 95 4 0 1 480 19 0 1 

Day 2 87 8 0 5 438 42 0 20 

Day 3 75 12 0 13 370 68 0 62 

Day 4 59 16 0 25 277 93 0 130 

Day 5 41 9 9 41 146 27 104 223 

Day 6 32 0 18 50 109 0 141 250 

 

Q5: Check whether it is possible a policy can fail. 

 Similar to what we discussed in Q4, it is equally important to verify whether it is possible 

that a policy would fail. The LTL formula written below asserts a successful situation that the 
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total number of vaccinated and healthy nodes is always greater than or equal to half of the total 

number of the nodes. If violated, the counter example gives the path that the number of 

vaccinated nodes plus healthy nodes becomes smaller than half of the total number of nodes at 

some time so that the policy fails in this example.  

 

ltl p5 { [] (count_VaccinatedNode + count_HealthyNode >= Nfarm/2)} 

 

 We still perform experiments on the 10 × 10 theoretical model with R=RV=1 and on the 

real data model with R=RV=400, and the result of above LTL (p5) is violated. This indicates the 

existence of the failure example, which means the policy taken is possible to be failing. We show 

this counter example in detail for both models in Table 4-5. The results of infection steps here are 

the same as the infection steps in Q1 for the first 4 days. On the fifth day, the violation occurs 

during the infection step once the total number of vaccinated and healthy nodes becomes less than 

half of the total number of nodes. 

 

Table 4-5. The number of nodes in different states at each day for the counter example of 

property p5. 

 
10 × 10 Theoretical Model Real Data Model 

Healthy Infected Vaccinated Dead Healthy Infected Vaccinated Dead 

Day 0 99 1 0 0 499 1 0 0 

Day 1 95 4 0 1 480 19 0 1 

Day 2 87 8 0 5 438 42 0 20 

Day 3 75 12 0 13 370 68 0 62 

Day 4 59 16 0 25 277 93 0 130 

Day 5 49 19 0 32 249 121 0 130 

 

Q6. Finding the lower limit for a policy that can guarantee to stop the infection. 

 Some infectious disease poses severe damage to the economy and human life. We want 

to find effective policies that can guarantee success. We can use the LTL in Q5 to find the lower 



26 

 

limit for a policy that guarantees to stop the infection successfully. When given a fixed model 

(with a fixed model size, infection radius R and latent period L), we can find the lower limit of the 

vaccination radius RV that guarantees to stop the disease propagation.  

  

 The setup of this experiment is different from previous questions. We adapt different 

control policies with vaccination radius RV increasing from the infection radius R. Specifically, 

for the theoretical model, we set R=1 and increase the RV from 1 to 2 with interval of 0.2; for the 

real data model, we set R=400 and increase the RV from 400 to 800 with interval of 100. We use 

the supertrace verification modes for the real data model to afford the memory usage. 

 

 For the theoretical model, when RV < 2, the output of the program is failed (LTL p5 is 

violated) with counter examples that lead to failure of the policy. When we increase the RV to 2, 

the output of the program becomes a success, which means that the policy with RV=2 will be 

successful in all possible future states. For the real data model, a similar behavior is seen. When 

RV<600 the output of the program is a failure but when we increase the RV to 600, the output of 

the program becomes a success, which means that the policy of RV=600 guarantees success in all 

possible future states. The detailed experiment results are shown below. 

 

Table 4-6. The results of finding the lower limit of policies that can guarantee stop the infection 

for both models. 

Theoretical Model (R = 1) 

RV = 1 RV = 1.2 RV = 1.4 RV = 1.6 RV = 1.8 RV = 2.0 

Fail Fail Fail Fail Fail Pass 

Real Data Model (R = 400) 

RV = 400 RV = 450 RV = 500 RV = 550 RV = 600  

Fail Fail Fail Fail Pass  

 

Q7. Evaluate the effectiveness of different policies.  
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 As we discussed in the previous sections, the effectiveness of a policy is based on the 

following criteria: (1) the number of days to stop an infection, (2) the doses of vaccinations 

needed to stop an infection, and (3) the number of dead nodes when infection ends. As we can see 

from the previous experiment results, when fails to pass on a property, model checking always 

returns the same result by giving the same counter example. In this case, we cannot evaluate the 

average performance of an individual policy by using model checking. For this kind of study, 

people usually run a lot of random simulations, and look at the average performance. Spin itself 

provides a simulation mode, and we can use this mode to evaluate the effectiveness of each 

policy. We will study on this in the next section. 

 

Result and Performance Summary 

 For all the questions above, we summarize the performance (running time and memory 

usage) of the above experiments in the table below. With the increase of the input size, model 

checking takes more time to run and uses more memory. Compared to the relatively short running 

time, memory usage is the primary concern for model checking. We can see that Q6 takes more 

time and memory than the other questions. As mentioned in the experiment part, we find that the 

property holds for the model in Q6. In this case, model checking does a full exhaustive search 

that covers all the possible states before it produces the result that the property holds for the 

model. For other questions, the running time and memory usage mainly depends on the number 

of violations existing for this model. In general, the fewer violations exist, the more time and 

memory it takes for the model checker to find the error. 
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Table 4-7. Performance summaries of the experiments on both theoretical model and real data 

model. 

Time 

/Memory 

(Second 

/GB) 

Q1 Q2 Q3 Q4 Q5 Q6 

Theoretical 

Model 
0.31/0.23 0.32/0.24 0.01/0.18 0.18/0.21 0.10/0.20 0.11/0.24 

Real Data 

Model 
12.8/5.22 13.1s/5.37 0.36/0.31 6.76/3.07 3.58/1.47 73.4/2.51 

 

Table 4-8. Summary of comparisons between the model checking and simulation approach. 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Model 

Checking 
Yes Yes Yes Yes Yes Yes No 

Simulation 
Not 

Guaranteed 

Not 

Guaranteed 

Not 

Guaranteed 

Not 

Guaranteed 

Not 

Guaranteed 

Not 

Guaranteed 
Yes 

  

 We also compare model the checking approach and simulation approach with regards to 

whether each method can answer those seven questions we proposed. We summarize the results 

in the table above. Model checking is capable of providing a definitive answer to Q1 to Q6 with a 

single run of Spin. As long as a question can be written in LTL, it can be solved with a single run. 

Simulation might also be able to answer these questions with a single run or a large number of 

runs, but it is not guaranteed because of its random nature. In general, model checking can be 

used to automatically verify whether some future configurations of a system are possible or not 

while simulations cannot. Simulations are mainly used to get the average results of an individual 

policy by running a large number of runs while model checking cannot achieve this. However, 

using Spin’s simulation mode one can also achieve this goal. In the following section, we use 

Spin’s simulation mode to evaluate the effectiveness of different policies. 
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4.3 Evaluating Effectiveness of Policies. 

 In this section, we conduct two groups of experiments: first, we want to evaluate the 

effectiveness of different control policies; second, for a given policy, we want to study how 

different latent period would affect the infection result. For both experiments, we record three 

variables: (1) the numbers of days to stop the infection, (2) the numbers of vaccinations needed, 

and (3) the numbers of dead nodes as criteria for evaluation. We run the spin program with the 

simulation mode on the real data model with 4000 farms. For the first experiment on evaluating 

the effectiveness of different policies, we set the infectious radius R as 100, and the vaccination 

radius RV as from 150, 160, 170, 180, 190, and 200, respectively. Each RV is considered as a 

different control policy. We run each policy 100 times, and the results of the experiments are 

shown below in the boxplots. 

 

 

Figure 4-2. Days used to stop infections on different policies. 
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Figure 4-3.  Number of dead nodes on different policies. 

 

Figure 4-4.  Doses of vaccination used on different policies. 
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 In general, all the three criteria decrease with the increasing of the vaccination radius. In 

specific, with the increasing of the vaccination radius, the number of days needed to stop the 

infection decreases. The number of dead nodes and the doses of vaccine used also decrease but do 

not change much between RV=160 and RV=200. In general, we would consider the policies from 

RV=160 to RV=200 as good policies, and which policy is the best depends on what criterion is 

more important for us. For example, if we care more about the number of dead nodes, the policy 

RV=190 is the best given the least number of dead nodes. If we only have limited number of 

vaccinations, RV=170 might be a better solution given it only needs tiny amount of vaccinations 

to stop the infection. 

  

 For the second experiment on finding how latent period would affect the infection result, 

we set the infectious radius R as 50 and the vaccination radius RV as 100, the latent period L as 

from 1, 2, 3, 4, and 5, respectively. We run Spin with each latent period 100 times, and the results 

of the experiments are shown below in the boxplots. 

 

Figure 4-5. Days used to stop infections on different latent period. 
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Figure 4-6. Number of dead nodes on different latent period. 

 

Figure 4-7. Doses of vaccination used on different latent period. 
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 From the results shown above, all the three quantities increase with increasing latent 

period. The result is very straightforward given the fact that the longer the latent period, the 

longer time it takes for the infectious node to become reported. It will have a longer time to infect 

other nodes before we cull the infected nodes and vaccinate other healthy nodes. 
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Chapter 5  

Summary and Conclusion 

This chapter summarizes the experiment results and the achievement of this project. We 

also discuss the limitation and possible future directions. 

Summary 

In this thesis, we propose to use model checking to resolve the propagation of foot-and-

mouth disease (FMD) over a network of farms on a landscape. We conducted experiments on 

both the small-scale theoretical model and large-scale real data model based on the data acquired 

from the Center for Infectious Disease Dynamics (CIDD) at Penn State. The experiment result 

shows that when given a model with an initial state and a propagation function, model checking 

approach is able to identify an intervention policy and verify the effectiveness of different 

policies. More importantly, as there is no certainty for simulation methods to find whether certain 

future states of the outbreak are possible or not under a particular control action, model checking 

has the advantage that it can provide certainty in checking whether a future configuration is 

possible. This is especially useful for checking rare future events, and helps provide valuable 

insights during an emergent outbreak such as a catastrophic event. 

Limitations 

As we have mentioned in the experiment section, memory issue is still the main 

challenge for the scalability of Spin. A Spin model itself does provide different verification 
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modes to deal with the exceeding memory issue. Collapse compression and bitstate hashing help 

reduce the memory usage to some extent. But still, if we want an accurate result from the 

exhaustive search instead of an approximate result from the memory saving supertrace 

verification, we need to afford a large memory usage. One possible solution to overcome this 

difficulty could be optimizing the way the model is encoded. Given the fact that Spin stores all 

the variables for each state, using fewer amounts of variables and smaller size data type to store 

those variables could help to reduce the memory usage for each state, and result in a less memory 

usage in the full verification process. 

 

Although Spin supports the simulation mode, it is not as convenient as other simulation 

programs for performing experiments on simulation purposes. Spin does not support float or 

double data type. Random function is also not included in Spin. Nevertheless, the primary feature 

of Spin is to check possible future states; thus it is not directly comparable to other programs on 

simulations purposes. In this sense, this is not a serious limitation.  

Future Work 

First of all, we would like to solve the memory usage issue to make the current model 

more scalable. The possible solutions include either optimizing the model itself or exploring more 

Spin running options to find more suitable options for the current model. 

 

Second, in our experiments, we use a grid structure for the theoretical model and an array 

to hold the location for the real data model. For both models, the relations between two nodes are 

based on their distance. In real life scenario, the “distance” could be changing all the time, and the 

relation between two nodes could be based on their connectivity and relationship instead of their 
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distance. In this case, we want to build a model with an arbitrary network as input, where any 

node can be connected to any node. This kind of model could be a useful supplement to our 

current model. 

 

Third, in our current model, the infection probability does not make a difference for the 

model checking results. As long as an infection is possible, the associate state is stored and 

searched regardless of the value of the possibility. In practice, however, it is important to assign 

different weight to an event or a state based on its possibility of occurrence. We plan to use 

probabilistic model checking to deal with this issue in the future. 

 

At last, the approach we used in this thesis could be applied to other fields including 

public opinion and computer virus. As long as the data and propagation function can be modeled, 

and the properties we want to check can be encoded as LTL, model checking is capable of 

solving the problem. We may also apply model checking to other fields in the future. 
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