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Abstract. As social networks become indispensable for people’s daily
lives, inference attacks pose significant threat to users’ privacy where
attackers can infiltrate users’ information and infer their private
attributes. In particular, social networks are represented as graph-
structured data, maintaining rich user activities and complex relationships
among them. This enables attackers to deploy state-of-the-art graph neu-
ral networks (GNNs) to automate attribute inference attacks for users’ pri-
vacy disclosure. To address this challenge, in this paper, we leverage the
vulnerability of GNNs to adversarial attacks, and propose a new graph
adversarial method, called Attribute-Obfuscating Attack (AttrOBF) to
mislead GNNs into misclassification and thus protect user attribute pri-
vacy against GNN-based inference attacks on social networks. Different
from the prior attacks using perturbations on graph structure or node
features, AttrOBF provides a more practical formulation by obfuscating
optimal training user attribute values, and also advances the attribute
obfuscation by solving the unavailability issue of test attribute anno-
tations, black-box setting, bi-level optimization, and non-differentiable
obfuscating operation. We demonstrate the effectiveness of AttrOBF on
user attribute obfuscation by extensive experiments over three real-world
social network datasets. We believe our work yields great potential of
applying adversarial attacks to attribute protection on social networks.

Keywords: Attribute privacy · Inference attack · Social networks ·
Graph adversarial attack · Attribute obfuscation

1 Introduction

Social networks have emerged as an indispensable part of our daily lives, allow-
ing us to conveniently share personal ideas for social engagements. Such an
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Fig. 1. GNN-based inference attack and graph adversarial attack leading to attribute
obfuscation (attribute of target user gets misclassified) through traditional perturbation
on graph structure/node feature or AttrOBF operation.

interactive environment generates a large amount of user-oriented data. Due to
its accessibility and information richness, this data attracts attackers to disclose
users’ sensitive information and fulfill their malicious intents (e.g., unwanted
advertising, user tracing) [3,35]. This puts users’ privacy at risk. In fact, with
the revolutionary development in machine learning, such privacy risk is not rare
on social networks, and could be quickly transmitted and propagated through
attribute inference attacks in an automatic fashion [9,13,16,22,26,37].

In particular, social networks are naturally represented as graph-structured
data, maintaining user activities and complex relationships among them. For
example, nodes in these social graphs usually encode users’ profiles, posts, pho-
tos, or other statuses, while edges connect users with their friendships, kin-
ships, or follower-followee relationships. In the meanwhile, graph neural net-
works (GNNs) provide powerful techniques for graph understanding and mining
[1,15,19,34]. These GNNs take graph connectivity structure as filter to per-
form neighborhood information aggregation and extract high-level features from
nodes and their neighborhoods [4], which have boosted the state-of-the-art for a
variety of downstream tasks over graphs. Therefore, a surge of effective inference
attacks utilize GNNs to reveal personal attributes (e.g., age, gender, location,
career, and political views) that people are unwilling to disclose on social net-
works [7,21,32]. The idea is visualized as an example on the left-hand side of
Fig. 1 illustrating that the attribute of the target user can be correctly identified
by leveraging GNNs over graph structure and user features.

In this work, we demonstrate an attribute privacy threat on social networks
as the scenario that an attacker trains a well-performed GNN model to infer
users’ private attributes from graph-structured data such as Facebook friend-
ship networks and Twitter follower-followee networks. With this in mind, some
previous attempts have paid close attention to protect these attributes against
inference attacks [3,12,16,18,23,25,27], which, however, limit to unstructured
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image or text data [12,18,23,27]. Thus, our goal here is to generalize the investi-
gation to more challenging graph-structured data, and protect personal attribute
privacy in this regard from a novel and practical adversarial learning perspective.
Despite great success, recent studies [5,8,31,33,38,39] have shown that GNNs
remain vulnerable to adversarial attacks [6] that can easily fool the models into
misclassification by performing small perturbations to graph structures and/or
node features, which is shown in Fig. 1. As the effectiveness of attribute inference
attacks depends on high learning performance from GNN model while adversar-
ial attacks substantially decrease its performance, this observation accordingly
inspires us to take advantage of such a vulnerability and cast personal attribute
privacy protection problem on social networks as an adversarial attack formu-
lation problem against GNN-based attribute inference attacks. To achieve this
goal, we face two challenges: (1) as inference attackers have a variety of choices
in GNN construction, it is impossible for us to access the inference models for
crafting graph adversarial attacks; (2) due to multimodality of user represen-
tations and intractability of relationship manipulations, modifications on either
graph structures or node features cannot guarantee the validity of adversarial
social networks, which are impractical in the real-world settings.

To address these challenges, in this paper, we design a black-box adversarial
attack, called attribute-obfuscating attack (AttrOBF), which aims to deterio-
rate GNNs into misclassification and thus protect personal attribute privacy
against GNN-based attribute inferences on social network data. Given a social
network, AttrOBF proceeds by modifying a small fraction of optimal training
users’ attribute values, while the obfuscated attribute information can propagate
along the whole graph through layer-wise neighborhood aggregations, such that
the overall performance of attribute inferences by a surrogate GNN model is dras-
tically degraded. Figure 1 illustrates the goal of our work. Due to transferability
in adversarial machine learning [24], the obfuscated attribute over social net-
works is very likely to mislead the real attackers’ inference GNN models. More
importantly, it is necessary for inference attackers to collect initial attribute
annotations for training, while users’ annotating on social networks generally
relies on their self-reporting; therefore, attribute obfuscating can be conveniently
and proactively realized by users and data publishers, and also easily passed
to subsequent inference attacks. These advantages allow a refined paradigm to
efficiently mitigate the impacts of GNN-based inference attacks on attribute dis-
closure and enhance personal privacy protection in practice. In summary, our
major contributions of this work are listed as follows:

– A novel and practical perspective of protecting privacy on social networks
that leverages adversarial attacks to mitigate GNN-based inference attacks.

– A new adversarial attack AttrOBF for attribute obfuscation. To avoid NP-
hard search, AttrOBF employs gradient-based method to obfuscate optimal
training attribute values in an efficient way, where the problems regarding
unavailability of test attribute annotations, black-box setting, bi-level opti-
mization, and non-differential obfuscating operation are specially addressed.

– Extensive experiments on real-world social network datasets to evaluate the
effectiveness of AttrOBF on attribute obfuscation and privacy protection.
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2 Background and Related Work

2.1 Graph Neural Network for Attribute Inference

Social networks may indicate users’ sensitive information, and thus easily expose
them to the attackers who can access the data and infer the private attributes of
interest to fulfill the economic, social, or political intents [27]. Considering that
social networks are represented as graph-structured data, here we assume that
the attackers would take advantage of user features and relationships to train
GNN models so as to achieve their attribute inference goals [7,21,32].

Without loss of generality, we denote social network data G to be of the
form G = (V,E,X), where V (n = |V |) is the set of user nodes, E is the set
of edges specifying relationships among users, and X ∈ R

n×d is feature matrix.
Nodes V can be further divided into annotated node set Vl (nl = |Vl|) and
unannotated node set Vu (nu = |Vu|), where each annotated node is associated
with a ground-truth attribute value y ∈ Y = {0, 1, · · · , k − 1}. For instance,
for gender attribute, Y = {0:male, 1:female}. Edges E can be encoded as an
adjacency matrix A ∈ R

n×n and Aij = {0, 1}. That is, if (vi, vj) ∈ E, then
Aij = 1; otherwise, Aij = 0. Given A, X, and Vl with attribute values yl, a
GNN model Z = fW(A,X) (Z ∈ R

n×k and k = |Y |) is well trained to predict
the attribute value for each node in Vu by minimizing the training loss as follows,

W∗ = argmin
W

Lgnn(fW(A,X),yl) = argmin
W

l(Zl,yl) + λ‖W‖2
2 (1)

where W is the trainable weight matrix, and l(·, ·) is the loss function. A GNN
model fW(A,X) can be specified as graph convolutional networks (GCNs) [15],
graph attention networks (GATs) [28], or others [1,10,34]. GNNs can be applied
under inductive and transductive settings. In this paper, we focus on transductive
inferences where all node connections and features are accessible during training.

2.2 Graph Adversarial Attack for Attribute Protection

Given a private attribute, a graph adversarial attack attempts to perturb the
graph to obfuscate that attribute and prevent GNN-based inference attack mod-
els from correctly identifying users’ private attribute values. Generally, it modi-
fies G with its structure and/or node features to an adversarial graph Ĝ = (Â, X̂)
[8,38,39], such that the test loss over nodes in Vu can be maximized as follows,

max
Â,X̂

Latk(fW∗(Â, X̂),yu)

s.t.W∗ = argmin
W

Lgnn(fW(Â, X̂),yl), ‖G − Ĝ‖0 ≤ Δ
(2)

where a budget constraint Δ is imposed on perturbations to limit the number of
changes over node features and edges to ensure the imperceptibility of attacks.

Clearly, this is a challenging bi-level optimization problem: the attacker aims
to maximize the test loss achieved after optimizing the model parameters on the
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modified graph Ĝ; also, the action space of the attacker from G to Ĝ are dis-
crete, enforcing vast combinatorial search [39]. Even worse, these attacks based
on either graph structure or node feature manipulations are impractical in real-
world social graph setting: (1) user nodes usually encode multi-modal data (e.g.,
profiles, posts, and other activities), where perturbations computed from the fea-
ture space are hard to map into user information space in an end-to-end manner;
(2) due to limited access to large-scale social networks (especially for ones built
on private interactions like Facebook), it is unreasonable to assume that users
can alter any relationship as they wish. By contrast, users’ attribute values can
be easier to manipulate through users’ self-reporting. It is necessary for infer-
ence attackers to collect initial attribute values for training, while these attribute
values on social networks generally come from users’ self-reporting. Therefore,
attribute value manipulation has a direct impact on the model training and
effectiveness of GNN-based inference attacks. Recent studies [20,36] show that
flipping a few training labels successfully drags down node classification accuracy
to a great extent for graph models, which, however, can merely apply to binary
classification tasks. To this end, in this paper, we would like to formulate a more
general attribute-obfuscating method on social graphs to protect user attributes
in practice, which specifically addresses the aforementioned challenges.

3 AttrOBF for User Privacy Protection

In this section, we first identify our goal and challenges, and then detail the
technical steps of AttrOBF. The overview of AttrOBF is illustrated in Fig. 2.

3.1 Attack Goal and Challenges

In our application setting, AttrOBF is designed to obfuscate a small fraction of
optimal training users’ attribute values so as to maximally decrease the overall
performance of GNN-based attribute inferences trained on the modified graph.
More specifically, given a target attribute with either binary or multiple classes,
the goal is to have the test users classified as any attribute value different from
the true one. In this regard, we can update the general graph adversarial attacks
in Eq. (2), and the final objective function of AttrOBF has the following form.

min
Φ(yl)

− Latk(fW∗(A,X),yu)

s.t.W∗ = argmin
W

Lgnn(fW(A,X),Φ(yl)), ‖Φ(yl) − yl‖0 ≤ εnl

(3)

where Φ(yl) denotes the attribute obfuscating operation on the training attribute
values yl, and ε is the obfuscating rate to nl to ensure that AttrOBF is unno-
ticeable. Equation (3) indicates the objective of AttrOBF that directly relates
to the loss maximization on the test attribute values yu. Also, AttrOBF only
performs changes to the training attribute values yl; hence we treat the graph
structure A and node features X as two constants during our attack formulation.
Equation (3) poses four unique challenges to the design of our attack AttrOBF.
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Fig. 2. The overview of AttrOBF to protect attribute privacy on social networks.

Black-Box Setting. AttrOBF is put under the black-box setting, where it is
not aware of the GNN model fW(·, ·) used by inference attackers, including model
choice, and parameters. As AttrOBF is a data poisoning attack while we aim to
prevent inference attackers from disclosing users’ private attribute values on our
modified social networks, it is reasonable to assume that AttrOBF has access to
the social graph data with respect to A, X, and yl, which will be collected by
inference attackers after attribute obfuscating in real-world scenarios.

Bi-level Optimization. The problem formulation in Eq. (3) is of bi-level
nature: the optimization on the attack loss Latk is achieved after the optimiza-
tion on the classification loss Lgnn. In this respect, maximizing the test loss
to obtain the optimal attribute obfuscating operation Φ(yl) requires retraining
the GNN model, while the GNN model parameters W∗ is constrained by the
obfuscating operation Φ(yl) on the training attribute values. Optimizing such a
bi-level problem is highly challenging by itself.

Non-differentiable Obfuscating Operation. In our graph setting, the train-
ing attribute data and the action space of the attribute obfuscating are discrete:
the training attribute values are yl = {0, 1, · · · , k−1}nl , and the possible actions
are attribute value changes from the current one to any others. This makes the
action space of the problem vast: given the maximum allowed training attribute
value changes εnl, the number of possible attacks is in O((k−1)εnlnεnl

l ); exhaus-
tive search is clearly infeasible, while greedy search easily leads to sub-optimal
solution. Gradient-based methods can avoid the combinatorial search; however,
discrete obfuscating operation Φ(yl) is non-differentiable, preventing AttrOBF
from directly applying gradients to optimize the test loss.

3.2 Test Attribute Value Prediction

Transductive inferences over a graph imply that all node connections and fea-
tures are accessible during training. Thus, we can use those annotated data to
learn a GNN model described in Eq. (1) to estimate attribute values yu of the
unannotated or test nodes Vu

yu ≈ y∗
u = argmax

i∈Y
Zu,i, Z = fW(A,X) (4)
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The advantage yielded here is that we can designate the surrogate model, which
will be introduced in Sect. 3.3, as fW(A,X) in Eq. (4) to estimate yu; if the
adversarial attack formulated in a self-learning manner (i.e., using these pre-
dicted attribute values) has a high test error, it is very possible to also generalize
poorly with the same surrogate model used to perform AttrOBF over the same
graph. It is worth noting that only the attribute values yl of the training nodes
Vl are used to optimize the GNN model, while the test attribute annotations yu

from estimation are only used to maximize the test loss for attack formulation.

3.3 Surrogate Model

Under the black-box setting, we use two-layer Simple Graph Convolution (SGC)
[30] as a surrogate model to perform our attribute-obfuscating attack on social
graphs. Specifically, SGC is a linearized two-layer GCN

Z = fW(A,X) = softmax(Â2XW), Z ∈ R
n×k (5)

where Â = D− 1
2 ÃD− 1

2 , Ã = A+I, and D is the diagonal degree matrix defined
on Ã, i.e., Dii =

∑n
j=1 Ãij .

There are three reasons behind this surrogate model choice: (1) SGC removes
the non-linearity between GCN layers, which not only makes the model more
tractable with less unnecessary complexity, but also captures the idea of graph
convolutions (as demonstrated in [30], compared to those regular GNNs like
GCN [15], GAT [28], FastGCN [4], SGC achieves the comparable or better test
accuracy on different classification tasks); (2) SGC has been widely deployed
as surrogate model in some successful graph adversarial attack formulations
[36,38,39]; (3) SGC of linearity provides a simple closed form solution for W∗,
and thus transforms the bi-level optimization in Eq. (3) into single-level, which
will be discussed in the following subsection. Due to transferability in adversarial
machine learning [24], the attribute obfuscating operation optimized to mislead
the surrogate model is very likely to degrade the real attackers’ inference models.

3.4 Closed Form Solution

To solve the aforementioned bi-level optimization, nettack [38] trains a fixed sur-
rogate model to reduce the attack to the problem simply built upon Latk; metat-
tack [39] approximates the attack by choosing Lgnn as an alternate of Latk, argu-
ing that a model of high training loss very likely misclassifies test nodes; some
other attacks [20,36] derive the model parameters and transform the bi-level
optimization into single-level. Here, we leverage the closed form transformation
idea to compute W∗ and simplify the optimization on Latk.

Based on Eq. (1), Eq. (3), and Eq. (5), W∗ can be rewritten as

W∗ = argmin
W

l((Â2X)lW,Φ(yl)) + λ‖W‖2
2 (6)

After replacing the loss function l(·, ·) with mean square loss function, and con-
sidering attribute obfuscating operation Φ(yl) as an nl × k-dimensional matrix
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where each row is a one-hot vector specifying new attribute value, Eq. (6) can
be further updated as

W∗ = argmin
W

1
nl

‖(Â2X)lW − Φ(yl)‖2
2 + λ‖W‖2

2 (7)

In this way, we can approximately obtain the closed form of W∗ through the
derivation as follows,

1
nl

∂

∂W
(‖(Â2X)lW − Φ(yl)‖2

2 + λ‖W‖2
2) = 0

=⇒ (Â2X)T
l ((Â2X)lW − Φ(yl)) + λW = 0

=⇒ (Â2X)T
l (Â2X)lW + λW = (Â2X)T

l Φ(yl)

=⇒ W∗ = ((Â2X)T
l (Â2X)l + λI)−1(Â2X)T

l Φ(yl)
=⇒ W∗ = KΦ(yl)

(8)

where we use K = ((Â2X)T
l (Â2X)l + λI)−1(Â2X)T

l for the sake of simplicity.
Given the closed form of W∗, the bi-level optimization of AttrOBF in Eq. (3)
can be updated as the following single-level optimization on Φ(yl).

min
Φ(yl)

− Latk(fW∗(A,X),yu) ⇒

min
Φ(yl)

− l((Â2X)uKΦ(yl),yu) + λ‖Φ(yl)‖2
2

s.t. ‖Φ(yl) − yl‖0 ≤ εnl

(9)

3.5 Gumbel Estimator

To solve the optimization problem in Eq. (9), the attribute obfuscating operation
Φ(yl) is the key component. However, Φ(yl) is discrete thus non-differentiable,
which means that we cannot directly use gradient-based methods to make
updates on Φ(yl). To facilitate closed form solution in Sect. 3.4, we consider
Φ(yl) as an nl × k-dimensional matrix, each row of which is represented as a
one-hot vector to indicate the new attribute value. From the probabilistic per-
spective, we can model each attribute obfuscating operation as a categorical
distribution, and this one-hot vector can be then sampled from k label prob-
abilities (p0, p1, · · · , pk−1), where the position of 1 (i.e., the best obfuscating
operation) is decided by the highest probability: one hot(argmaxi[pi]).

In other words, given the categorical distribution P ∈ R
nl×k, the test loss of

AttrOBF defined in Eq. (9) is an expectation over categorical variables.

min
P

− Latk(P) ⇒ min
P

− EΦ(yl)∼Pl((Â2X)uKΦ(yl),yu) + λ‖P‖2
2 (10)

The categorical sampling Φ(yl) ∼ P is still non-differentiable. To solve Eq. (10),
we need to find a good gradient estimator. To this end, we use Gumbel estimator
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Algorithm 1: AttrOBF for attribute privacy protection.
Input: G = (A,X): Social graph G with graph structure A and user features

X, Vl: nl training user nodes with attribute values yl, Vu: nu test user
nodes without attribute values, ε: obfuscating rate, τ : temperature
parameter, T : epochs.

Output: yl: the obfuscated training attribute values.

Train a GNN model using A, X and yl through Eq. (5);
Estimate yu for the unannotated nodes Vu;

Pre-calculate Â2X;

Pre-calculate K = ((Â2X)Tl (Â2X)l + λI)−1(Â2X)Tl ;
for each epoch t ≤ T do

Sample G ∼ Gumbel(0, 1);
Calculate h(P,G) using Eq. (11);

Calculate test loss −Latk(P) ≈ −l((Â2X)uKh(P,G),yu) + λ‖P‖2
2;

Update P by minimizing −Latk(P);

end
Φ(yl) = one hot (argmax (P, axis = 1));
Update yl using new attribute values in Φ(yl) with top εnl highest probabilities
in P;

[11] to draw samples Φ(yl) from P in a simple and efficient way. Different from
performing argmax to search for the maximal probability, the Gumbel estima-
tor utilizes the Gumbel-Softmax function to generate continuous differentiable
approximation to original categorical sampling. Specifically, let φ (one row of
Φ(yl)) be sampled from the corresponding categorical distribution p (one row
of P); φ is approximated as

φi = h(p,g) =
exp ((log(pi) + gi)/τ)

∑k−1
j=0 exp ((log(pj) + gj)/τ)

, for i = 0, 1, · · · , k − 1 (11)

where g ∼ Gumbel(0, 1) is Gumbel distribution, and τ is the temperature con-
trolling the steepness of softmax function. As the temperature increases, the
expected value converges to a uniform distribution over the categories; on the
contrary, as τ approaches 0, samples from the Gumbel-Softmax distribution
become one-hot. Monte Carlo sampling from g makes Gumbel estimator unbi-
ased and low variance [20]. Let G = [g0, ...,gk−1]T ; by replacing Φ(yl) with
h(P,G), the final test loss of AttrOBF is updated as

min
P

− Latk(P) ⇒ min
P

− EGl((Â2X)uKh(P,G),yu) + λ‖P‖2
2 (12)

Accordingly, the derivative of −Latk(P) regarding the categorical distribution P
can be computed in an approximate way.

− ∂Latk(P)
∂P

≈ − ∂

∂P

[
l((Â2X)uKh(P,G),yu) + λ‖P‖2

2

]
(13)
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The problem in Eq. (13) is differentiable and tractable. Therefore, it can be easily
solved by gradient-based methods (e.g., stochastic gradient descent, Adam).

After the categorical distribution P is optimally updated, the attribute obfus-
cating operation Φ(yl) is uniquely defined as:

Φ(yl) = one hot (argmax (P, axis = 1)) (14)

Note that, Φ(yl) indicates the obfuscating operation on the whole training
attribute values yl. As specified in Eq. (3) and Eq. (9), to ensure the imper-
ceptibility of attack, the attribute obfuscating operation is constrained by
‖Φ(yl)−yl‖0 ≤ εnl. That is, the number of maximum allowed training attribute
value changes is εnl. As such, we leverage Φ(yl) and P to decide the actual
attribute obfuscating: we first collect all new training attribute values from Φ(yl)
that are different from the original and their corresponding probabilities from
P, and then use those new attribute values with top εnl highest probabilities
to update yl so as to guarantee the optimal operation. Algorithm 1 illustrates
our proposed attribute-obfuscating attack AttrOBF to protect attribute privacy
on social networks. As graph structure A and node features X are constants
during attribute-obfuscating attack, we can pre-calculate Â2X and K using
O(max(n3, d3)), which significantly decreases the time complexity for each opti-
mization iteration to O(nlnud) (k � d). Therefore, this efficient attack strategy
has implications on its applicability for attribute protection on large social net-
works in practice.

4 Experimental Results and Analysis

4.1 Experimental Setup

Datasets. In our practical setting, we utilize three real-world social network
datasets to conduct our experiments: Polblogs [2], Yale [17], and Rochester [17].
Polblogs represents a political blog network where their attribute values indicate
political view of each user. Yale and Rochester datasets collect all the Facebook
friendships of Yale University and Rochester University as well as some user
attributes, in which career, gender, class year serve as private attributes. We
train GNN models in a standard transductive setting where all node features
are utilized and 20 nodes are annotated per class, and another 500 annotated
nodes are viewed as validation set. Then, we randomly sample 1,000 nodes to
evaluate the performance. Table 1 presents the dataset statistics.

Baseline Methods and Parameter Settings. In our study, the proposed
AttrOBF is designed for practical attribute privacy protections in social media,
and to the best of our knowledge, graph adversarial attacks via modifications on
multi-class annotations have not yet been explored. Thus, we formulate a couple
of baselines in this regard to compare against AttrOBF: (1) Random attribute-
obfuscating attacks (Rand-obf) where we randomly select a number of training
nodes and obfuscate their attribute values to a random one. (2) Degree-based
attribute-obfuscating attacks (Deg-obf) where we obfuscate the training nodes
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Table 1. Statistics of three social network datasets in five attribute settings.

Dataset Attr. Nodes Edges Classes Train./Val./Test

Polblogs Politics 1,490 19,025 2 40/500/950

Yale Career 8,578 405,450 2 20 × classes/500/1000

Class-year 6

Rochester Gender 4,563 167,653 2 20 × classes/500/1000

Class-year 5

with the highest degrees because we believe these nodes play a more important
role in the information propagation for GNNs than those with lower degrees;
similarly, for all inference settings, we modify the attribute values of the selected
nodes to a random one. Note that, as we only focus on attribute obfuscating,
those adversarial methods designed for different settings, such as manipulat-
ing graph structure or node features, are not comparable here. Following the
baseline designs in [36], in order to investigate how different components affect
the performance of AttrOBF, we further formulate two variants as baselines by
replacing surrogate model and loss function: (3) AttrOBF-lp follows the same
steps of AttrOBF except that we use label propagation as our surrogate model,
which accordingly updates the closed form in Eq. (8) and single-level optimiza-
tion in (9). (4) AttrOBF-cse replaces mean square error in loss function to
cross-entropy, which updates the final test loss of AttrOBF in Eq. (12). In our
parameter settings, we set the optimization epoch in AttrOBF as 1,000 and
training epoch of GNN models as 200. The temperature parameter for Gumbel
estimator τ introduced in Eq. (11) is set as 0.2 and λ = 0.01 for optimization.

Attack Model for Attribute Inference Attacks. Attackers conduct attribute
inference attacks to disclose private attributes of users by learning a GNN model on
public social network data. Since we do not know the attacker’s model, we use SGC
to solve black-box setting and closed form for AttrOBF. In our experimental set-
ting, we train simple graph convolution (SGC) [30], graph convolutional network
(GCN) [15], graph attention network (GAT) [28], and GCN-based label propaga-
tion network (GCN-LP) [29] to perform the inference attack. We mainly use GCN
to evaluate the effectiveness of AttrOBF and the impacts of different parameters,
while the comparisons among these four models are leveraged for transferability
evaluation in Sect. 4.4. To be comparable, these four GNN models are of two-layer
structure and the dimension of the hidden layer is set as 16. All other model param-
eters align with their original works [15,28–30].

4.2 Evaluation of AttrOBF

Effectiveness. In our experiments, we test the results of five inference set-
tings (i.e., Polblogs-politics, Yale-career, Yale-class, Rochester-class, Rochester-
gender) while using AttrOBF to obfuscate the training attribute values with
obfuscating rate ε ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where 0.0 means no attack in
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Fig. 3. (a) represents the test accuracy of all inference tasks on different attribute
obfuscating rate ε, while (b) specifies the evaluation results of AttrOBF under different
values of temperature parameter τ .

place. It is worth mentioning that we merely modify 10 training nodes per class
even when reaching the largest obfuscating rate 0.5. We believe this complies
with its practicability requirement considering the large graph volume. In this
experiment, we use test accuracy to evaluate attribute privacy protection perfor-
mance. The lower test accuracy represents the better performance of our method.
The experimental results are shown in Fig. 3(a). We can see that the attribute
inference accuracy for Polblogs-politics, Yale-career, Yale-class, Rochester-class
and Rochester-gender on clean data is 81.1%, 88.1%, 84.5%, 82.8%, and 71.4%,
which are relatively close to the state-of-the-art results on each dataset. Obvi-
ously, AttrOBF drastically decreases all the accuracy of inference attacks and
thus achieves the goal of protecting users’ attribute privacy on social networks.

Impact of Attribute Obfuscating Rate ε. Intuitively, when we enlarge the
ε, the number of the training node attribute values obfuscated by AttrOBF
increases and the accuracy of inference attacks should decrease. The results
in Fig. 3(a) confirm this point: as the obfuscating rate increases from 0.0 to
0.5, the inference accuracy drops 45.3% for Polblogs-politics, 57.6% for Yale-
career, 41.2% for Yale-class, 41.3% for Rochester-class, and 44.2% for Rochester-
gender. We can also observe that AttrOBF obtains better performance on binary
inference settings than multi-class inference tasks. The reason behind this could
be that attacking space on multi-class social graphs is larger, which leads to
more uncertainty and difficulty than binary problems that flipping labels can
directly impact on neighborhoods and thus more easily mislead the GNN model.

Impact of Temperature for Gumbel Estimator τ . The temperature τ for
Gumber estimator is an important parameter in our method that controls the
effectiveness of the one-hot sampling. We gradually increase the value of τ in
AttrOBF to analyze its impact to the attack performance. In the experiments, we
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Table 2. Inference accuracy of using true or estimated test attributes.

Test labels Pol-politics Yale-career Yale-class Roch-class Roch-gender

True 33.1% 29.3% 43.0% 40.9% 25.7%

Estimated 35.7% 30.5% 43.3% 41.5% 27.1%

assess the effectiveness of AttrOBF with temperature τ ∈ {0.2, 0.5, 1.0, 5.0, 10.0}
in five inference settings when ε = 0.5. We show the results in Fig. 3(b). We can
see from the figure that AttrOBF achieves the best performance when τ = 0.2
for all inference tasks. As τ increases, the capability of our adversarial attack
in alleviating the inference models is degraded. This is because when we con-
tinuously amplify the τ value, Gumbel-Softmax distribution becomes closer to
uniform distribution, which more significantly deviates from one-hot sampling
and thus affects the effectiveness of attribute obfuscating operation. There is a
trade-off between near-zero temperatures, where samples are identical to one-
hot but the variance of the gradients is large as well. Based on this fact, we use
τ = 0.2 throughout the following evaluations.

Impact of Test Attribute Annotations yu. We use the prediction results
of the surrogate model to estimate the test attribute values in our evaluations,
and compare with the true test attribute annotations to investigate the impact
of them on the performance of AttrOBF. The comparative results are shown
in Table 2 with obfuscating rate ε = 0.5. We can observe that integrating
true test attribute annotations in our objective loss function can obtain bet-
ter attack results than the estimated ones, as the estimation might introduce
extra loss in our objectives. However, the inference accuracy difference between
using true and estimated test attribute annotations seems not very significant.
The reason behind this could be that the surrogate model’s inference accu-
racy for different attribute settings is relatively high (i.e., 81.1%, 88.1%, 84.5%,
82.8%, and 71.4% for Polblogs-politics, Yale-career, Yale-class, Rochester-class
and Rochester-gender respectively), which makes the estimation closer to ground
truth. This implies that our method is not tightly coupled with true test attribute
annotations, and can be easily feasible in practical applications.

4.3 Comparisons with Other Attack Baselines

In this section, we compare our method AttrOBF against four baselines: Rand-
obf, Deg-obf, AttrOBF-lp and AttrOBF-cse. For all methods, we set the obfus-
cating rate ε as 0.5, and use GCNs as the attack model to assess the infer-
ence accuracy. The results of five inference settings are presented in Table 3. We
can observe that our method AttrOBF significantly outperforms Rand-obf on
all inference tasks. Under Rand-obf attack, the inference accuracy only slightly
decreases for all obfuscating rates, which indicates that GCNs are quite robust
to random label noise. This also benefits from the powerful learning capability
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Table 3. Comparisons with other attack baselines (inference accuracy).

Setting Rand-obf Deg-obf AttrOBF-lp AttrOBF-cse AttrOBF

Pol-politics 55.7% 37.0% 42.5% 36.5% 35.7%

Yale-career 61.2% 47.2% 49.4% 38.6% 30.5%

Yale-class 72.0% 53.1% 45.5% 43.8% 43.3%

Roch-class 69.6% 54.2% 43.5% 42.1% 41.5%

Roch-gender 46.7% 42.1% 39.9% 31.0% 27.1%

of GCNs on graph data of embracing both node features and graph topolog-
ical structure. Therefore, GCNs are resilient against random node obfuscating
operations but still vulnerable to our well-designed adversarial attacks. AttrOBF
also achieves better performance than Deg-obf attack, especially for multi-class
inference problems. For instance, AttrOBF reduces the inference accuracy to
43.3% and 41.5% for Yale-class and Rochester-class while the results of Deg-obf
attack are 53.1% and 54.2%, respectively. This is due to the fact that adversarial
attribute values generated by AttrOBF are specifically derived from the goal of
misleading the learning model, which are much more effective to degrade the
performance of node classification, while Deg-obf identifies the degree informa-
tion of nodes as the only influential factor for graph learning but ignores other
conditions (e.g., node features) leveraged by GCNs.

Regarding to AttrOBF-lp, AttrOBF achieves better results for all classi-
fication settings. Compared to graph neural networks, label propagation only
aggregates the label information from nodes’ neighbors without considering the
important feature information. Therefore, choosing SGC to be the surrogate
model to compute the closed form solution is more reasonable and effective for
our formulation. The similar variant AttrOBF-cse can achieve comparable results
but still slightly underperforms our method. The reason behind this performance
difference could be that mean square error can better formalize the discrepancy
between ground truth and prediction results in the embedding space.

4.4 Transferability of AttrOBF

Under the black-box setting, we don’t know what model the attacker is using to
infer private attributes. This naturally leads us to the question: can our attack
strategy generalize to other inference attack models? To answer this question, in
this evaluation, we explore the transferability of our method AttrOBF. Specifi-
cally, we deploy AttrOBF to obfuscate the training attribute values and generate
adversarial graph on five attribute inference settings. Then we test the inference
results of the poisoned data against four state-of-the-art GNN models, including
SGC [30], GCN [15], GAT [28] and GCN-LP [29] under five obfuscating rates
(i.e., ε = {0.1, 0.2, 0.3, 0.4, 0.5}). To ensure our results are comparable, we build
up these models with the same parameter and data settings.
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(a) SGC (b) GCN

(c) GAT (d) GCN-lp

Fig. 4. (a), (b), (c) and (d) specify the inference accuracy of SGC, GCN, GAT and
GCN-lp while conducting AttrOBF on our surrogate model over different data settings;
lower inference accuracy indicates better attack transferability.

The results presented in Fig. 4 show that the adversarial attack performed
by AttrOBF can successfully transfer to different graph neural networks. Our
AttrOBF method learned on a linearized GCN (i.e., SGC) presents the simi-
lar effectiveness against different GNN models under the same inference setting.
For example, when ε is set as 0.5, AttrOBF reduces the accuracy of SGC, GCN,
GCN-LP to 35.6%, 35.7% and 36.4% on polblogs-politics inference attack and
33.5%, 27.1% and 34.2% on Rochester-gender inference setting. For Yale-career,
the inference accuracy of all GNN models drops over 30% when increasing ε
from 0.1 to 0.5. While for Yale-class and Rochester-class inference settings, the
transferability of AttrOBF on four GNN models are very close and slightly under-
perform other inference tasks. On the other hand, the results also imply that
the complexity of the surrogate model and the intrinsic adversarial vulnerability
of the target model contribute to attack transferability: the attack results on
SGC and GCN outperform those with more complex model structure such as
GAT and GCN-LP. Since the target models are uncontrollable, when applying
AttrOBF in practice, we may need to elaborate the surrogate model for better
transferability. We leave it as our future exploration.
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5 Impact, Applicability and Limitation

Our previous method formulation and experimental evaluations demonstrate the
impact of our proposed graph adversarial attack solution for attribute privacy
protection on social networks: (1) as graph structure and node features are not
perturbed, the utilities of social networks regarding user activities and rela-
tionships are well preserved without any influence on other downstream tasks;
(2) mere small yet optimal training annotation changes can effectively miti-
gate attribute inference attacks; (3) attribute obfuscating is easy to operate for
both data publishers and users. Therefore, in practice, AttrOBF can work as
an easy-to-use API provided on the social network server side that enables data
publishers to either locally or globally manipulate user attribute values before
making the social graphs publicly available, or warn users of potential attribute
privacy threats such that users can proactively change their attribute informa-
tion on the client side. Nonetheless, our approach also poses a limitation which
we discuss as follows. In our experiments, we train some regular GNN-based
attack models for attribute inferences on social networks. Though AttrOBF has
been validated to be transferable to these GNNs, the attackers could take advan-
tage of more advanced and robust GNN models (e.g., adversarial training via
latent perturbation [14]) to infer attributes and thus deteriorate AttrOBF. We
acknowledge this limitation and leave the investigation on this arms race as our
future work, yet it does not impact the great value and general validity of our
new insight about leveraging graph adversarial attacks for attribute obfuscation
and privacy protection on social networks in practice, as graph learning models
of inherent vulnerability could always be evaded by more complicated and more
sophisticated adversarial techniques.

6 Conclusion

In this paper, we investigate adversary for social good, and cast attribute privacy
protection problem on social networks as a graph adversarial attack formulation
problem to defend against GNN-based attribute inference attacks. We design
a black-box attribute-obfuscating attack AttrOBF, where a linearized two-layer
GCN is used as a surrogate model to perform our attack. Under the help of this
surrogate model, a closed form of model weights is obtained to transform the bi-
level optimization for AttrOBF into single-level. To address non-differentiable
attribute obfuscating operation, we introduce Gumbel estimator to generate
continuous differentiable approximation that enables gradient-based methods
to search for the optimal training attribute values to change. We conduct exten-
sive experimental studies on real-world social network datasets to evaluate the
performance of AttrOBF, which validate its effectiveness against GNN-based
attribute inference attacks. Despite the limitation, we believe that our work has
implications on the applicability of adversarial attacks for attribute obfuscation
and privacy protection in practice.
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39. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via
meta learning. arXiv preprint arXiv:1902.08412 (2019)

http://arxiv.org/abs/1902.08412

	Adversary for Social Good: Leveraging Attribute-Obfuscating Attack to Protect User Privacy on Social Networks
	1 Introduction
	2 Background and Related Work
	2.1 Graph Neural Network for Attribute Inference
	2.2 Graph Adversarial Attack for Attribute Protection

	3 AttrOBF for User Privacy Protection
	3.1 Attack Goal and Challenges
	3.2 Test Attribute Value Prediction
	3.3 Surrogate Model
	3.4 Closed Form Solution
	3.5 Gumbel Estimator

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 Evaluation of AttrOBF
	4.3 Comparisons with Other Attack Baselines
	4.4 Transferability of AttrOBF

	5 Impact, Applicability and Limitation
	6 Conclusion
	References




