1 Untyped λ-calculus

Terms. The set of lambda expressions or terms can be defined inductively.

1. If x is a variable, then x is a lambda expression;
2. If x is a variable and e is a lambda expression, then $\lambda x.e$ is a lambda expression. This is called λ-abstraction.
3. If e_1 and e_2 are lambda expressions, then $(e_1 e_2)$ is a lambda expression. This is called application.

$$e ::= x \mid \lambda x.e \mid e_1 e_2$$

Free and bound variables.

$$\text{FV}(x) = \{x\}$$
$$\text{FV}(\lambda x.e) = \text{FV}(e) \setminus \{x\}$$
$$\text{FV}(e_1 e_2) = \text{FV}(e_1) \cup \text{FV}(e_2)$$

Capture-avoiding substitutions.

$$x[e/y] = \begin{cases}
 e & \text{if } x = y \\
 x & \text{if } x \neq y
\end{cases}$$

$$(\lambda x.e)[t/y] = \begin{cases}
 \lambda x.e & \text{if } x = y \\
 \lambda x.(e[t/y]) & \text{if } x \neq y \text{ and } x \not\in \text{FV}(t)
\end{cases}$$

$$(e_1 e_2)[t/y] = (e_1[t/y] e_2[t/y])$$
α-conversion. Also called alpha renaming, or α-equivalence, allows bound variable names to be changed.

\[\lambda x. e \equiv \lambda y. (e[y/x]) \]

where \(y \) is a fresh variable, or \(y \neq x \) and \(y \notin \text{FV}(e) \).

In a nameless notation called De Bruijn index [1], any two α-equivalent terms are literally identical.

beta-reduction
Beta-reduction is a kind of function application.

\[(\lambda x. e)e' \beta e'[x/x] \]

η-conversion
η-conversion defines function extensionality: Two functions are extensionally equivalent if and only if they compute the same result for all the inputs.

\[\lambda x. (fx) \equiv f \quad (x \notin \text{FV}(f)) \]

2 Simply typed λ-calculus

Terms.

\[e ::= x | \lambda x : \tau. e | e_1 e_2 \]

Typing

\[
\begin{align*}
\frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} & \quad \text{TyVar} \\
\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x. \tau_1 e : \tau_1 \rightarrow \tau_2} & \quad \text{TyAbs} \\
\frac{\Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash (e_1 e_2) : \tau_2} & \quad \text{TyApp}
\end{align*}
\]

3 Homework 2

The project in Rojas [3].

4 Bibliography Notes and Further reading

Chapter 5–7, 9–10 of Pierce [2].

References

