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    Chapter 15   

 Building Classifi er Ensembles for B-Cell Epitope Prediction 

           Yasser     EL-Manzalawy      and     Vasant     Honavar    

    Abstract 

   Identifi cation of B-cell epitopes in target antigens is a critical step in epitope-driven vaccine design, immu-
nodiagnostic tests, and antibody production. B-cell epitopes could be linear, i.e., a contiguous amino acid 
sequence fragment of an antigen, or conformational, i.e., amino acids that are often not contiguous in the 
primary sequence but appear in close proximity within the folded 3D antigen structure. Numerous com-
putational methods have been proposed for predicting both types of B-cell epitopes. However, the devel-
opment of tools for reliably predicting B-cell epitopes remains a major challenge in immunoinformatics. 

 Classifi er ensembles a promising approach for combining a set of classifi ers such that the overall per-
formance of the resulting ensemble is better than the predictive performance of the best individual classi-
fi er. In this chapter, we show how to build a classifi er ensemble for improved prediction of linear B-cell 
epitopes. The method can be easily adapted to build classifi er ensembles for predicting conformational 
epitopes.  

  Key words     B-cell epitope prediction  ,   Classifi ers ensemble  ,   Random forest  ,   Epitope prediction toolkit  

1      Introduction 

 Antigen-antibody interactions play a crucial role in the humoral 
immune response. Antibodies, a family of structurally related gly-
coproteins produced in membrane-bound or secreted form by B 
lymphocytes, serve as mediators of specifi c humoral immunity by 
engaging various effector mechanisms that serve to eliminate the 
bound antigens [ 1 ]. The part of the antigen recognized by anti-
bodies is called B-cell epitope. B-cell epitopes often classifi ed into 
two categories: (1) linear (continuous) B-cell epitopes consist of 
amino acid residues that are sequential in the primary structure of 
the protein and (2) conformational (discontinuous) B-cell epitopes 
consist of residues that are not sequential in the protein primary 
structure but come together in the protein 3D structure. 
Conformational B-cell epitopes form the majority of B-cell epit-
opes. Several experimental procedures for mapping both types of 
B-cell epitopes have been presented [ 2 ]. However,  in silico   methods 
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for identifying B-cell epitopes have the potential to dramatically 
decrease the cost and the time associated with the experimental 
mapping of B-cell epitopes [ 3 ]. 

 Several computational methods have been proposed for predict-
ing either linear or conformational B-cell epitopes [ 3 – 5 ]. Methods 
for predicting linear B-cell epitopes range from simple propensity 
scale profi ling methods [ 6 – 9 ] to methods based on state-of-the-art 
machine learning predictors (e.g., [ 10 – 14 ]). Methods for predicting 
conformational B-cell epitopes (e.g., [ 15 – 19 ]) utilize some struc-
ture and physicochemical features derived from antigen-antibody 
complexes that could be correlated with antigenicity [ 3 ]. Despite 
the large number of B-cell epitope prediction methods proposed in 
literature, the performance of existing methods leaves signifi cant 
room for improvement [ 4 ]. 

 One of the promising approaches for improving the predictive 
performance of computational B-cell epitope prediction tools is to 
combine multiple classifi ers. This approach is motivated by the 
observation that no single predictor outperforms all other predic-
tors and that predictors often complement each other [ 20 ]. 

 Against this background, we present a framework for develop-
ing classifi er ensembles [ 21 ] and explain the procedure for building 
several variants of classifi er ensembles based on the framework. 
Specifi cally, we describe a procedure for building classifi er ensem-
bles for predicting linear B-cell epitopes using Epitopes Toolkit 
(EpiT) [ 22 ]. We also show how to adapt the procedure for building 
classifi er ensembles for predicting conformational B-cell epitopes 
( see   Note 1 ). The procedures described in this chapter can be 
adapted for any other machine learning benchmark.  

2    Materials 

  We used the FBCPRED data set [ 11 ], a homology-reduced data 
set of variable-length linear B-cell epitopes extracted from Bcipep 
database [ 23 ]. The data set has 934 epitopes and non-epitopes 
(respectively) such that the length distribution of epitopes and 
non-epitopes is preserved.  

  WEKA [ 24 ] is a machine learning workbench that is widely used 
by bioinformatics developers for developing prediction tools. 
Unfortunately, the vast majority of WEKA-implemented algo-
rithms do not accept amino acid sequences as input. Hence, devel-
opers have to preprocess their sequence data for extracting useful 
features before using WEKA classifi cation algorithms. Alternatively, 
developers of epitope prediction tools can use the Epitopes Toolkit 
(EpiT) [ 22 ] which is built on top of WEKA and provides a spe-
cialized set of useful data preprocessors (e.g., fi lters) and classifi -
cation algorithms for developing B-cell epitope prediction tools. 

2.1  Data Set

2.2  Epitopes 
Toolkit (EpiT)
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A java implementation of EpiT is freely available at the project 
website,   http://ailab.ist.psu.edu/epit    . More information about 
how to install and use EpiT is provided in the project 
documentation.   

3    Methods 

 In this section, we show how to use EpiT to build individual and 
classifi er ensembles for predicting linear B-cell epitopes. The pro-
cedure can be easily adapted for any other machine learning work-
bench (e.g., RapidMiner [ 25 ] and KNIME [ 26 ]). 

  Here, we show how to build a single predictor using FlexLenBCPred.
nr80.arff, FBCPRED data in WEKA format available at   http://
ailab.ist.pdu.edu/red/bcell/FBCPred.zip    , and a Random Forest 
classifi er [ 27 ] with 50 trees (RF50).

    1.    Run EpiT.   
   2.    Go to Application menu and select  model builder  application.   
   3.    In the  model builder  window (WEKA explorer augmented with 

EpiT fi lters and prediction methods) click  open  and select the 
fi le  fbcprednr80.arff .   

   4.    Click  classify  tab.   
   5.    In the  classifi er  panel, click  choose  and browse for weka.meta.

FilteredClassifi er. The FilteredClassifi er is a WEKA class for 
running an arbitrary classifi er on data that has been passed 
through arbitrary fi lter.   

   6.    Click on the  FilteredClassifi er  in the classifi er panel and specify 
the following classifi er and fi lter. For the classifi er, choose 
weka.classifi ers.trees.RandomForest and set  numTrees  to 50. 
For the fi lter, choose epit.fi lters.unsupervised.attribute.
AAP. The AAP fi lter implements the amino acid propensity 
scale features proposed in [ 28 ].   

   7.    Having both the data set and the classifi cation algorithm speci-
fi ed, we are ready to build the model and evaluate it using 
 ten-fold cross-validation ( see   Note 2 ). Just click  start button  
and wait for the ten-fold cross-validation procedure to fi nish. 
The  classifi er output panel  shows several statistical estimates of 
the classifi er using ten-fold cross-validation ( see  Fig.  1 ).

         A classifi er ensemble consists of a collection of individual (or base) 
classifi ers that work together using a suitably designed fusion method 
(e.g., combination rule or second-level classifi er) for optimally com-
bining the outputs of the individual classifi ers. This design process 
involves two basic steps: (1) design a set of complementary or diverse 
base classifi ers: diversity of classifi ers could be ensured by manipulating 

3.1  Building a Single 
Classifi er with EpiT

3.2  Building 
a Classifi er Ensemble 
with EpiT
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the classifi ers’ inputs, outputs, or the training algorithms [ 21 ] 
( see   Notes 3  and  4 ); (2) design a combination rule that exploits the 
behaviors of the individual classifi ers to optimally combine them. 
Figure  2  shows a framework for constructing classifi er ensembles 
using EpiT. In this framework, different classifi er ensembles can be 
developed by using different combinations of choices of fi lters, base 
classifi ers, and combination rules. In this example, we fi x the base 
classifi er to RF50 and use different fi lters for each individual classi-
fi er. We also experiment with different combination rules. To build 
a classifi er ensemble for predicting fl exible-length linear B-cell epit-
opes using EpiT, follow the following procedure:

     1.    Run EpiT.   
   2.    Go to Application menu and select the  model builder  application.   
   3.    In the  model builder  window (WEKA explorer augmented with 

EpiT fi lters and prediction methods) click  open  and select the 
fi le  fbcprednr80.arff .   

   4.    Click  classify  tab.   
   5.    In the  classifi er  panel, click  choose  and browse for weka.meta.

Vote. The Vote classifi er is a WEKA class for combining classi-
fi ers. Different combinations of probability estimates for clas-
sifi cation are available.   

   6.    Click on  classifi ers  and enter four FilteredClassifi ers. Set the 
 classifi er  parameter for each FilteredClassifi er to RF50 and set 

  Fig. 1    Output statistics for ten-fold cross-validation experiment evaluating Vote classifi er with average (AVG) 
of probabilities combination rule       
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the  fi lter  parameter to AAP, CTD, SequenceComposition, and 
SequenceDiCompositions, respectively.   

   7.    Select one of the available combination rule options. In our 
experiment we used the WEKA default setting for this param-
eter, average of probabilities.   

   8.    Click  start  button to start a ten-fold cross-validation experi-
ment and wait for the output results ( see  Fig.  1 ).    

  A more sophisticated way for combining multiple classifi ers 
according to the framework in Fig.  2  is to replace the simple com-
bination rule used with Vote classifi er with a meta-predictor, a 
second-stage classifi er. The procedure for building such a classifi er 
ensemble is as follows:

    1.    Run EpiT.   
   2.    Go to Application menu and select the  model builder  application.   
   3.    In the  model builder  window (WEKA explorer augmented with 

EpiT fi lters and prediction methods) click  open  and select the 
fi le  fbcprednr80.arff .   

   4.    Click  classify  tab.   
   5.    In the  classifi er  panel, click  choose  and browse for weka.meta.

Stacking. The Stacking classifi er is a WEKA class for combining 
several classifi ers using the stacking method [ 29 ].   

  Fig. 2    Framework for building classifi er ensembles using EpiT tool       
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   6.    Click on  classifi ers  and enter four FilteredClassifi ers. Set the 
 classifi er  parameter for each FilteredClassifi er to RF50 and set 
the  fi lter  parameter to AAP, CTD, SequenceComposition, and 
SequenceDiCompositions, respectively.   

   7.    Click on  metaclassifi er  and choose the naïve Bayes (NB) classi-
fi er, weka.classifi ers.bayes.NaiveBayes.   

   8.    Set  numFolds  to 3. This parameter sets the number of folds 
used for cross-validation experiment performed for training 
the meta-classifi er. Click  OK .   

   9.    Click  start  button to start a ten-fold cross-validation experiment.    

  Table  1  compares the performance (in terms of AUC scores ( see  
 Note 5 )) of two classifi ers, NB and RF50, using four sets of input 
features: (1) amino acid pair (AA) propensities [ 28 ]; (2) composition-tran-
sition-distribution (CTD) [ 30 ]; (3) amino acid composition (AAC); 
and (4) dipeptide composition (DC). Table  2  compares the perfor-
mance of a classifi er ensemble that combines four NB classifi ers 

     Table 1  
  AUC values for naïve Bayes (NB) and Random 
Forest (RF50) classifi ers using four different sets 
of input features   

 Features  NB  RF50 

 AAP  0.67  0.72 

 CTD  0.65  0.65 

 AAC  0.66  0.71 

 DC  0.63  0.72 

     Table 2  
  AUC values for a classifi er ensemble that combines 
four NB classifi ers trained using the four sets of 
input features (AAP, CTD, AAC, DC) and a classifi er 
ensemble that combines four RF50 constructed 
using the four sets of input features   

 Combination rule  NB  RF50 

 AVG  0.69  0.74 

 PROD  0.65  0.75 

 MIN  0.64  0.75 

 MAX  0.68  0.74 

  The classifi er ensembles are obtained using the same base 
classifi ers but different combination rules  
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trained using the four sets of input features (AAP, CTD, AAC, DC) 
and a classifi er ensemble that combines four RF50 constructed 
using the four sets of input features. Four simple combination rules 
have been evaluated: AVG, PROD, MIN, and MAX which repre-
sent average, product, minimum, and maximum estimated proba-
bilities from the four base classifi ers for each input instance. Table  3  
compares the performance of the NB- and RF50-based classifi er 
ensembles (reported in Table  2 ) when the simple combination rule 
is replaced with a meta-classifi er (second-stage classifi er).

     Table  1  shows that the predictive performance of each classifi er 
seems to be highly dependent on the input features. For example, 
AUC scores of RF50 range from 0.65 to 0.72 for different choices 
of input features. Tables  2  and  3  show that  combining individual 
classifi ers constructed with different input features and using the 
same classifi cation algorithm (e.g., NB and RF50) not only elimi-
nate the dependency on the input features but also yields a classifi er 
ensemble with performance higher than the best individual classi-
fi er performance obtained in Table  1 . 

 It should be noted that the RF50 classifi er, treated in our 
experiments as an individual classifi er, is itself an ensemble of 50 
different decision tree classifi ers. The performance of RF50 might 
be improved using several approaches including (1) increasing the 
number of trees, (2) selecting a subset of the 50 trees using some 
criteria for eliminating redundant and poor tree predictors [ 31 ], 
and (3) building a multiple classifi er system in which RF50 is 
treated as a base classifi er.   

4    Notes 

        1.    The current implementation of EpiT does not support the 
extraction of evolutionary or structure-based features since 
most of these features require running third-party programs 

    Table 3  
  AUC values for a classifi er ensemble that combines 
four NB classifi ers trained using the four sets of 
input features (AAP, CTD, AAC, DC) and a classifi er 
ensemble that combines four RF50 constructed 
using the four sets of input features   

 Meta-predictor  NB  RF50 

 NB  0.69  0.75 

 Logistic  0.69  0.75 

  The classifi er ensembles are obtained using the same base 
classifi ers but different meta-predictors  
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(e.g., BLAST [ 32 ]). Building classifi er ensemble that uses such 
 features requires preprocessing the training data such that 
each epitope in the original data is represented with a com-
bined set of extracted features (each set of features might be 
extracted using one or more third-party program (s)). The 
resulting combined set of features are used as inputs and the 
fi lter for each FilteredClassifi er will select a range of attribute 
indices (corresponding to a set of features) to pass to the base 
classifi er.   

   2.    In ten-fold cross-validation experiments, the data set is ran-
domly partitioned into ten equal subsets such that the relative 
proportion of epitopes to non-epitopes in each subset is pre-
served. Nine of the subsets are used for training the classifi er 
and the remaining subset is used for testing the classifi er. This 
procedure is repeated ten times, each time setting aside a 
 different subset of the data for testing. The estimated perfor-
mance of the classifi er corresponds to an average of the results 
from the ten cross-validation runs.   

   3.    Classifi er ensembles can be developed using a single set of fea-
tures and a single classifi cation algorithm by training each base 
classifi er with different training data (i.e., sampled instances or 
sampled subspace of the original training data). WEKA pro-
vides built-in classifi cation algorithms for building such ensem-
ble of classifi ers (e.g., Bagging [ 33 ] and AdaBoost [ 34 ]).   

   4.    For unbalanced data, an ensemble of classifi ers system can be 
created by training each single classifi er using all training 
instances from the minority class and an equal number of 
training instances (selected at random) from the majority class 
[ 21 ]. Such base classifi ers can be created using EpiT Balanced 
Classifi er (for more details please refer to EpiT documenta-
tion). The classifi ers can be combined using a combination 
rule via Vote class or using a meta-classifi er via Stacking class.   

   5.    The receiver operating characteristic (ROC) curve is obtained 
by plotting the true positive rate as a function of the false- 
positive rate as the discrimination threshold of the binary classi-
fi er is varied. A widely used measure of classifi er performance is 
the area under ROC curve (AUC). A perfect classifi er will have 
an AUC = 1, while a random guessing classifi er will have an 
AUC = 0.5, and any classifi er performing better than random 
will have an AUC value that lies between these two values.         

  Acknowledgments 

 This work was supported in part by a grant from the National Institutes 
of Health (NIH GM066387) and by Edward Frymoyer Chair of 
Information Sciences and Technology at Pennsylvania State University.  

Yasser EL-Manzalawy and Vasant Honavar



293

   References 

    1.    Abbas AK, Lichtman AH, Pillai S (2007) 
Cellular and molecular immunology, 6th edn. 
Saunders Elsevier, Philadelphia  

    2.    Reineke U, Schutkowski M (2009) Epitope 
mapping protocols, vol 524, 2nd edn, Methods 
in molecular biology. Humana Press, New York  

      3.    Ansari HR, Raghava GP (2013)  In silico  mod-
els for B-cell epitope recognition and signaling. 
Methods Mol Biol 993:129–138  

    4.    El-Manzalawy Y, Honavar V (2010) Recent 
advances in B-cell epitope prediction methods. 
Immunome Res 6(Suppl 2):S2  

    5.    Yao B, Zheng D, Liang S et al (2013) 
Conformational B-cell epitope prediction on 
antigen protein structures: a review of current 
algorithms and comparison with common 
binding site prediction methods. PLoS One 
8(4):e62249  

    6.    Emini EA, Hughes JV, Perlow D et al (1985) 
Induction of hepatitis A virus-neutralizing 
antibody by a virus-specifi c synthetic peptide. 
J Virol 55(3):836–839  

   7.    Karplus P, Schulz G (1985) Prediction of chain 
fl exibility in proteins. Naturwissenschaften 
72(4):212–213  

   8.    Parker JM, Guo D, Hodges RS (1986) New 
hydrophilicity scale derived from high- 
performance liquid chromatography peptide 
retention data: correlation of predicted sur-
face residues with antigenicity and X-ray-
derived accessible sites. Biochemistry 25(19):
5425–5432  

    9.    Pellequer J-L, Westhof E, Van Regenmortel 
MH (1993) Correlation between the location 
of antigenic sites and the prediction of turns in 
proteins. Immunol Lett 36(1):83–99  

    10.    El-Manzalawy Y, Dobbs D, Honavar V (2008) 
Predicting linear B-cell epitopes using string 
kernels. J Mol Recognit 21(4):243–255. 
doi:  10.1002/jmr.893      

    11.    El-Manzalawy Y, Dobbs D (2008) Honavar V 
(3400678) Predicting fl exible length linear 
B-cell epitopes. Comput Syst Bioinformatics, 
In, pp 121–132  

   12.    Larsen JE, Lund O, Nielsen M (2006) 
Improved method for predicting linear 
B-cell epitopes. Immunome Res 2:2. 
doi:  10.1186/1745-7580-2-2      

   13.    Saha S, Raghava GP (2006) Prediction of con-
tinuous B-cell epitopes in an antigen using recur-
rent neural network. Proteins 65(1):40–48  

    14.    Sweredoski MJ, Baldi P (2009) COBEpro: a 
novel system for predicting continuous B-cell 
epitopes. Protein Eng Des Sel 22(3):113–120  

    15.    Haste Andersen P, Nielsen M, Lund O (2006) 
Prediction of residues in discontinuous B-cell 
epitopes using protein 3D structures. Protein 
Sci 15(11):2558–2567  

   16.    Kringelum JV, Lundegaard C, Lund O et al 
(2012) Reliable B cell epitope predictions: 
impacts of method development and improved 
benchmarking. PLoS Comput Biol 8(12):
e1002829  

   17.    Ponomarenko J, Bui H-H, Li W et al (2008) 
ElliPro: a new structure-based tool for the 
prediction of antibody epitopes. BMC 
Bioinformatics 9(1):514  

   18.    Sun J, Wu D, Xu T et al (2009) SEPPA: a com-
putational server for spatial epitope prediction 
of protein antigens. Nucleic Acids Res 37(suppl 
2):W612–W616  

    19.    Sweredoski MJ, Baldi P (2008) PEPITO: 
improved discontinuous B-cell epitope predic-
tion using multiple distance thresholds and half 
sphere exposure. Bioinformatics 24(12):
1459–1460  

    20.    Resende DM, Rezende AM, Oliveira NJ et al 
(2012) An assessment on epitope prediction 
methods for protozoa genomes. BMC 
Bioinformatics 13:309  

      21.    Wozniak M (2013) Hybrid Classifi ers: Methods 
of Data, Knowledge, and Classifi er Combination, 
vol 519. Studies in Computational Intelligence, 
Springer Heidelberg London  

     22.   El-Manzalawy Y (2010) Honavar V A frame-
work for developing epitope prediction tools. 
In: Proceedings of the First ACM International 
conference on bioinformatics and computa-
tional biology. ACM, pp 660–662  

    23.    Saha S, Bhasin M, Raghava GP (2005) 
Bcipep: a database of B-cell epitopes. BMC 
Genomics 6:79  

    24.   Frank E, Hall M, Holmes G, Kirkby R, 
Pfahringer B, Witten IH, Trigg L (2005) Weka: 
A machine learning workbench for data mining. 
In Data Mining and Knowledge Discovery 
Handbook (pp 1305–1314) Springer US  

    25.   Jungermann F Information extraction with 
rapidminer. In: Proceedings of the GSCL 
Symposium’Sprachtechnologie und eHuman-
ities, 2009. pp 50–61  

    26.    Berthold MR, Cebron N, Dill F et al (2008) 
KNIME: The Konstanz information miner. 
Data Analysis, Machine Learning and 
Applications. Springer Berlin Heidelberg, In, 
pp 319–326  

    27.    Breiman L (2001) Random forests. Mach 
Learn 45(1):5–32  

Classifi er Ensembles for B-Cell Epitope Prediction

http://dx.doi.org/10.1002/jmr.893
http://dx.doi.org/10.1186/1745-7580-2-2


294

     28.    Chen J, Liu H, Yang J et al (2007) Prediction 
of linear B-cell epitopes using amino acid pair 
antigenicity scale. Amino Acids 33(3):
423–428  

    29.    Wolpert DH (1992) Stacked generalization. 
Neural Netw 5(2):241–259  

    30.    Cai C, Han L, Ji ZL et al (2003) SVM-Prot: 
web-based support vector machine software for 
functional classifi cation of a protein from its 
primary sequence. Nucleic Acids Res 31(13):
3692–3697  

    31.    Bernard S, Heutte L, Adam S (2009) Towards 
a better understanding of random forests 

through the study of strength and correlation. 
Emerging Intelligent Computing Technology 
and Applications. With Aspects of Artifi cial 
Intelligence. Springer, In, pp 536–545  

    32.    Altschul SF, Madden TL, Schäffer AA et al 
(1997) Gapped BLAST and PSI-BLAST: a 
new generation of protein database search pro-
grams. Nucleic Acids Res 25(17):3389–3402  

    33.    Breiman L (1996) Bagging predictors. Mach 
Learn 24(2):123–140  

    34.    Freund Y (1996) Schapire RE Experiments 
with a new boosting algorithm. ICML, In, 
pp 148–156    

Yasser EL-Manzalawy and Vasant Honavar


	Chapter 15: Building Classifier Ensembles for B-Cell Epitope Prediction
	1 Introduction
	2 Materials
	2.1 Data Set
	2.2 Epitopes Toolkit (EpiT)

	3 Methods
	3.1 Building a Single Classifier with EpiT
	3.2 Building a Classifier Ensemble with EpiT

	4 Notes
	References


