
Non-target-specific Node Injection Attacks on Graph Neural
Networks: A Hierarchical Reinforcement Learning Approach

Yiwei Sun
The Pennsylvania State University

University Park, PA, USA
yus162@psu.edu

Suhang Wang
The Pennsylvania State University

University Park, PA, USA
szw494@psu.edu

Xianfeng Tang
The Pennsylvania State University

University Park, PA, USA
xut10@psu.edu

Tsung-Yu Hsieh
The Pennsylvania State University

University Park, PA, USA
tuh45@psu.edu

Vasant Honavar
The Pennsylvania State University

University Park, PA, USA
vuh14@psu.edu

ABSTRACT
Graph Neural Networks have achieved immense success for node
classification with its power to explore the topological structure
in graph data across many domains including social media, E-
commerce, and FinTech. However, recent studies show that GNNs
are vulnerable to attacks aimed at adversely impacting their per-
formance, e.g., on the node classification task. Existing studies of
adversarial attacks on GNN focus primarily on manipulating the
connectivity between existing nodes, a task that requires greater
effort on the part of the attacker in real-world applications. In con-
trast, it is much more expedient on the part of the attacker to inject
adversarial nodes, e.g., fake profiles with forged links, into existing
graphs so as to reduce the performance of the GNN in classifying
existing nodes.

Hence, we consider a novel form of node injection poisoning
attacks on graph data. We model the key steps of a node injec-
tion attack, e.g., establishing links between the injected adversarial
nodes and other nodes, choosing the label of an injected node, etc.
by a Markov Decision Process. We propose a novel reinforcement
learning method for Node Injection Poisoning Attacks (NIPA), to
sequentially modify the labels and links of the injected nodes, with-
out changing the connectivity between existing nodes. Specifically,
we introduce a hierarchical Q-learning network to manipulate the
labels of the adversarial nodes and their links with other nodes
in the graph, and design an appropriate reward function to guide
the reinforcement learning agent to reduce the node classification
performance of GNN.

The results of our experiments show that NIPA is consistently
more effective than the baseline node injection attack methods for
poisoning graph data used to train GNN on several benchmark
data sets. We further show that the graphs poisoned by NIPA are
statistically similar to the original (clean) graphs, thus enabling the
attacks to evade detection.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380149

KEYWORDS
Adversarial Attack; Graph Poisoning; Reinforcement learning;

ACM Reference Format:
Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant
Honavar. 2020. Non-target-specific Node Injection Attacks on Graph Neural
Networks: A Hierarchical Reinforcement Learning Approach. In Proceedings
of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380149

1 INTRODUCTION
Graphs, where nodes and their attributes denote real-world entities
(e.g., individuals) and links encode relationships (e.g., friendship)
between entities, are ubiquitous in many application domains, in-
cluding social media [1, 21, 34, 48, 49], e-commerce[16, 46], and
FinTech [25, 32]. Many real-wold applications are involve classify-
ing the nodes in graph data based on the attributes of the nodes, and
their connectivity and attributes of the nodes that are connected to
them in the graph. Thus,revealing a user’s level of risk in financial
platform such as AliPay1 can be formulated as a node classifica-
tion problem [25, 40]. Graph Neural Networks (GNNs) [13, 23],
currently offer the state-of-the art approach to node classification
in graph-structured data.

However, recent studies [12, 37, 43, 50] have shown that GNNs
are vulnerable to adversarial attacks that perturb or poison the
graphs used for training the GNNs. For example, Nettack [50] in-
volves perturbing the targeted node’s attributes and connectivity
so as to adversely impact the performance of the node classifier.
Such an attack can be target-specific [43, 50] so as to ensure that
the GNN is fooled into misclassifying the targeted node; or non-
target-specific [12], so as to reduce the overall accuracy of node
classification in a graph. In this paper, we focus on the latter. How-
ever, the success of such attack strategy requires that the adversary
is able to control the nodes targeted by the attack and manipulate
their connectivity. In other words, poisoning the real-world graphs
such as Facebook and twitter requires breaching the security of the
database that stores the graph data, or manipulating the requisite
members into adding or deleting their links to other selected mem-
bers. Consequently, such attack strategy is expensive and usually
requires more budgets for the adversary to execute without being
caught.

1https://intl.alipay.com/

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

Thus, we need a more efficient way to poison the graphs to in-
crease the node mis-classification rate of GNNs without changing
the link structure between the existing nodes in the graph. Injecting
fake nodes (users) to social networks with carefully crafted node
labels and connecting them to carefully chosen existing nodes offers
a promising approach to accomplishing this objective. For example,
in the financial platform, there is significant financial incentives
for adversaries to attack the GNNs and manipulate the risks level
of the real users. However, it is impossible for an attacker to breach
the database. In contrast, an attacker could easily sign up fake ac-
counts, create the social identity of the profiles and send friendship
requests to the real members. And as the social users always want
to have the social influence[9, 30], they tend to accept the friendship
requests from the others. With some of the real users accept the
friendship from the attacker, the fake accounts are connected to
the real users and thus such social network is poisoned. Once the
GNNs are trained on the corrupted graph, the propagation of the
fake information will misclassify the predicted level of risks on real
users. Such node injection poisoning attacks are easier and less
expensive to execute compared to those that require manipulating
the links between existing nodes in the graph. However, there has
been little work on NIPA.

Therefore, in this paper, we investigate NIPA, a novel form of
adversarial attack on GNN. Specifically, we address two key chal-
lenges: (i) How to effectively establish links between an injected
adversarial (fake) node to existing nodes in the original graph or
to other injected adversarial nodes. As shown in Figure 1, both the
attackers in (b) and (c) seek to inject two fake nodes into the clean
graph in (a). Obviously, the "smart attacker" who carefully designs
the links and labels of the injected nodes (shown using dashed
lines) could more effectively poison the training graph than the
"naive attacker" who randomly establishes the links between the
fake node and other nodes and randomly generates the attributes
of the fake node and links between it and other nodes; and (ii) How
to efficiently solve the resulting nonlinear discrete optimization
problem. To address these two challenges, we propose NIPA, a novel
family of attacks on GNN. We observe that the sequential addition
the adversarial connections and the design of adversarial labels for
the injected fake nodes can be naturally formulated as a Markov
decision process (MDP). Hence, NIPA uses Q-learning algorithms
[35], which has proven effective for solving such problems [7, 42].
Our Q-learning formulation of NIPA naturally addresses the un-
derlying discrete optimization problem by mapping the addition
of an edge to a discrete action within the reinforcement learning
framework. To effectively cope with the large search space, NIPA
adopts hierarchical Q-learning to take advantage of a hierarchical
decomposition of the set of candidate actions.. To cope with the
non-linearity of the mapping between states and actions, NIPA uses
a deep Q network and GNN based encoding of the states into their
low-dimensional latent representations. The key contributions of
the paper are as follows:

• We study node injection poisoning attacks, a novel family of
adversarial attacks on GNNs that are designed to adversely
impact the node classification accuracy of GNNs without
manipulating the link structure of the original graph.

(b)(a) (c)

dummy attacker smart attackerclean graph

Figure 1: (a) is the toy graph where the color of a node rep-
resents its label; (b) shows the node injection poisoning at-
tack performed by a naive attacker; (c) shows the node injec-
tion poisoning attack performed by a smart attacker using
a smart strategy. The injected nodes are circled with dashed
line.

• We propose NIPA, a novel hierarchical Q-learning based
framework for launching such node injection poisoning at-
tacks against GNNs. The resulting framework effectively
addresses several non-trivial challenges presented by the
resulting reinforcement learning problem.
• Wepresent the results of experiments with several real-world
graphs data that show that NIPA outperforms the state-of-
the-art non-target-specific attacks on GNNs (as measured
by the reduction in accuracy of node classification of a GNN
trained on the poisoned graph).

The rest of the paper is organized as follows: Section 2 reviews
the related work on adversarial attacks and reinforcement learning
on graph data; Section 3 formally defines the non-target-specific
node injection poisoning attack problem. Section 4 presents NIPA,
our proposed solution; Section 5 describes our experimental results;
section 6 concludes with a summary and an outline of promising
directions for future work.

2 RELATEDWORK
Our study falls in the general area of data poisoning attacks on
machine learning [4], that aim to corrupt the data so as to adversely
impact the performance of the predictive model that is trained on
the data. Such attacks have been extensively studied in the case
of non graph-structured data in supervised [3, 24, 28], unsuper-
vised [44], and reinforcement [18, 22, 26] learning. Specifically,
recent work has shown that deep neural networks are particularly
vulnerable to data poisoning attacks [8, 19, 20, 36]. However, our
focus is on such attacks on classifiers trained on graph-structured
data.

2.1 Adversarial Attacks on Graph Neural
Networks

Recent work has highlighted the vulnerability of graph neural net-
works to adversarial attacks [12, 43, 50]. As already noted, such
attacks can be target-specific (where the goal is to reduce the accu-
racy of classification of a specific target node) or non-target specific
(where the goal is to reduce the overall accuracy of node classifi-
cation across the graph). Both kinds of attacks can be executed by

WWW ’20, April 20–24, 2020, Taipei, Taiwan

selectively adding adversarial edges or removing existing edges
between the existing nodes in the graph [12, 43, 50].

Nettack [50] perturbs the graph data to poison the graph data
used to train graph convolutional neural networks (GCN) [23]. RL-
S2V [12] uses reinforcement learning to perform an attack aimed
at evading detection during classification. Others focus on poison
attacks that exploit the gradient of the loss function of the neural
network with respect to the node labels or encoding of the link
structure of the input graph [10, 43]; or the use of meta learning
to perform a data poisoning attack [51]. Yet others formulate the
adversarial attack on a graph as an optimization problem solve it
using approximation techniques [38].

All of the preceding adversarial attacks on graphs focus on ma-
nipulating links among the existing nodes in the graph being at-
tacked. In real-world settings, such attack strategies are impractical
because the nodes in question are not typically under the control
of the attacker. We consider a more realistic attack scenario that
does not assume that the attacker can manipulate the links among
existing nodes. Instead, we consider NIPA, a novel poisoning attack
on graph data, that injects fake nodes (e.g., fake accounts in a social
networks) into the graph, and uses carefully crafted labels for the
fake nodes together with links between them and other (fake as
well as genuine) nodes in the graph to poison the graph data.

2.2 Reinforcement Learning in Graph
Reinforcement learning(RL) offers a powerful approach to solv-
ing challenging problems in a variety of domains including robot
control [33], game playing [29], code retrieval [45], among others.

More recently, reinforcement learning has begun to find applica-
tions that involve graph data. For example, NerveNet [41] uses a
graph representation of the body of a robot to learn to control policy
for the robot using a Graph Neural Network; Graph Convolutional
Policy Network (GCPN) [47] uses graph representations of molecu-
lar structures to learn to generate molecular structures; Other work
[14] learns to predict the products of chemical reactions.

In work that is most closely related to ours, RL-S2V [12] uses
reinforcement learning to accomplish target evasion (a form of
target-specific graph data poisoning attack) by manipulating the
links among existing nodes. However, there are several main differ-
ences between RL-S2V and NIPA, our proposed model: (1) RL-S2V
is a target-specific attack, whereas NIPA is non-target-specific; (2)
Whereas RL-S2V learns to attack the targeted nodes in the graph
by modifying the link structure of the original graph, NIPA instead
establishes adversarial connections and labels for the fake nodes
injected into the network; (3) There are major differences in the
reward functions used by RL-S2V and NIPA.

3 NODE INJECTION POISONING ATTACKS
ON GRAPH DATA

We first introduce the semi-supervised node classification problem
before proceeding to formulate the non-target-specific node injec-
tion poisoning attacks on graph data aimed at decreasing the node
classification accuracy of a predictive model trained on the graph
data to perform node classification.

3.1 Semi-Supervised Node Classification
Definition 3.1. (Semi-Supervised Node Classification) Let G =

(V ,E,X) be an attributed graph, where V = {v1, . . .vn } denotes
the node set, E ⊆ V × V means the edge set and X represents
the nodes features. T = {vt1 , . . . ,vtn } is the labeled node set and
U = {vu1 , . . . ,vun } is the unlabeled node set with T ∪ U = V .
Semi-supervised node classification task aims to correctly label the
unlabeled nodes inU using a node classifier C.

In the semi-supervised node classification task, the node clas-
sifier C(G) learns the mapping V 7→ L̃ to label nodes vj ∈ U
by exploiting the structure and the attributes of the nodes in the
graph G, e.g., vj and its neighbors. The classifier C is parameter-
ized by θ and hence denote the classifier by Cθ . We use Cθ (G)i to
denote the label predicted by the classifier for node vi and Ti as
the ground truth label of vi . During training, we aim to learn an
optimal classifier C with the corresponding parameters θL :

θL = arg min
θ

∑
vi ∈T

L(Ti ,Cθ (G)i) (1)

where L is an appropriately chosen loss function such as cross
entropy. In this paper, we focus on non-targeted graph poisoning
attack problem where the attacker A poisons the the training data
used to train the classifier C so as to reduce the overall performance
of the resulting classifier on the unlabeled nodesU.

Definition 3.2. (Non-Target-SpecificNode PoisoningAttack) Given
the attributed graph G = (V ,E,X), the labeled node set T , the un-
labeled node setU and an algorithm for learning C from the graph
G, the attacker A aims to modify the graph G within a specified
attack budget ∆ (which controls the amount of change in the poi-
soned graph relative to the original graph so as to ensure that the
change is virtually un-noticeable) so as to reduce the accuracy of
the classifier C learned from the poisoned data onU.

We proceed to propose a novel node injection poisoning attack
to inject a set of adversarial nodes VA to modify the node set V to
realize a non-target-specific node poisoning attack.

Definition 3.3. (Node Injection Poisoning Attack (NIPA). Given
a clean graphG = (V ,E,X), the attacker A injects the adversarial
node set VA with its adversarially established features XA and
labels TA to augment the clean node set V . After injecting VA ,
the attack A creates adversarial edges EA ⊆ VA ×VA ∪VA ×V
to poison G, yielding a poisoned graph G ′ = (V ′,E ′,X ′) where
V ′ = V ∪ VA , E ′ = E ∪ EA , X ′ = X ⊕ XA with ⊕ is append
operator and T ′ is the labeled set with T ′ = T ∪ TA . The graph
classifier is then trained on poisoned graph G ′.

With the preceding definitions in place, we are ready to specify
an objective function for the non-target-specific node injection
poisoning attack:

max
EA,TA

∑
vj ∈U

1(Uj , CθL (G
′)j) (2)

s .t . θL = arg min
θ

∑
vi ∈T′

L(T ′i ,Cθ (G
′)i) (3)

|EA | ≤ ∆ (4)

Here 1(s) is the indicator function such that 1(s) = 1 if s is True
and 0 otherwise, andUj denotes the label of the unlabeled node

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

vj . If the attacker has access to the ground truth label for the a
node that is unlabeled from the perspective of the end user, thenU
corresponds to the ground truth label. The attacker maximizes the
prediction error for the unlabeled nodes inU as in Eq. (2), subject
to two constraints. The first constraint (3) ensures that the classifier
is learned from the poisoned graphG ′. and the second constraint (4)
ensures that the modifications of adversarial edges by the attacker
stay within the attack budget ∆. However, if attacker doesn’t have
the access to the ground truth labels of the unlabeled nodes, the
attacker cannot not directly use the objective function in Eq.(2). In
this case, we can consider two alternative solutions [51]: The first
is to maximize the loss of the classifier on the labeled (training)
nodes; the second is to adopt self-learning, i.e. use the predicted
labels to compute the loss of the classifier on the unlabeled nodes.

3.2 Graph Convolution Network
In this paper, we use a Graph Convolution Network (GCN) [23], a
widely used state-of-the-art model for node classification, as our
graph classifier C. The convolutional layer of a GCN considers
the topological structure of the input graph and aggregates the
attributes of the node and its neighbors followed by the non-linear
transformation such as ReLU. The equation for a two-layer GCN is
given by:

f (A,X) = softmax(Â ReLU (ÂXW (0))W (1)) (5)

where Â = D̂−
1
2 ÃD̂−

1
2 denotes the normalized adjacency matrix,

Ã = A + IN denotes adding the identity matrix IN to the adjacency
matrix A. D̂ denotes the diagonal matrix with diagonal elements
D̂ii =

∑
j Ãi j .W (0) andW (1) denote the weights of first and sec-

ond layer of GCN, respectively. We use ReLU(0, a) = max(0,a) to
introduce nonlinearity into GCN. We use cross-entropy as the loss
function L.

For the convenience of the reader, the notations used in the paper
are summarized in Table 1.

4 NODE INJECTION POISONING ATTACK
(NIPA) ALGORITHM

Deep reinforcement learning offers a promising approach for realiz-
ing non-target-specific node injection poisoning attacks on graphs.
Specifically, deep reinforcement learning offers two key advantages
over methods that directly optimize the adjacency matrix with tradi-
tional matrix optimization methods: (i) Addition of edges between
fake nodes and other (fake or genuine) nodes and the assignment
of labels to fake nodes are naturally modeled by actions in a re-
inforcement learning model [35]; (ii) The mapping between the
underlying graph structure and its low-dimensional representation
is typically non-linear [39]. Such non-linearity is easily modeled by
a deep neural network. Hence, a deep reinforcement learning frame-
work that combines incorporates non-linear mappings of states to
actions via deep neural networks offers an attractive framework for
solving the optimization problem specified by Eq.(2) to accomplish
non-target-specific node injection poisoning attacks.

The proposed deep reinforcement learning framework for non-
target-specific adversarial attacks on graphs is shown in Figure 2.
The key idea behind our proposed framework is to use a deep re-
inforcement learning (DRL) agent to iteratively perform actions

Table 1: Notations and Explanations

Notation Explanation
VA Adversarial node set
V ′ Poisoned node set, V ∪VA
EA Adversarial Edge set
E ′ Poisoned Edge set, E ∪ EA
T Labeled node sets
U Unlabeled node set, V \ T
G ′ Poisoned graph $ Cθ
Cθ (G

′) Prediction of classifier C on G ′
L Label sets
∆ Attack budget
G ′t Poisoned graph at time t
TAt Labels of Adversarial nodes at time t
zAt One-hot encoding of TAt at time t
st = {G

′
t ,TAt } State at time t

at = (a
(1)
t ,a

(2)
t ,a

(3)
t) Hierarchical action at time t

rt Reward function at time t
π (s) Policy of state to action distribution
Q = {Q(1), Q(2), Q(3)} Hierarchical action-value functions
la(1)t

Labels of fake node a(1)t at time t

aimed at poisoning the graph. The actions involve addition of ad-
versarial edges and modification of the labels of the nodes injected
into the graph. More specifically, the DRL agent needs to pick a
node from injected nodes setVA and then select another node from
poisoned node set V ′ to add an adversarial edge, and modify the
labels of the injected nodes so as to reduce the accuracy of the node
classifier C. We now proceed to describe the DRL environment and
the reward function designed to accomplish this goal by optimizing
the objective function specified by Eq.(2).

4.1 Attack Environment
Wemodel the proposed poisoning attack by a Finite HorizonMarkov
Decision Process (S,A, P ,R,γ) where S denotes the set of states,
A the set of actions, P the matrix of state transition probabilities,
R is the reward function, and γ < 1 is a discounting factor that
discounts delayed reward relative to immediate reward.

4.1.1 States and Actions. The state st contains the intermediate
poisoned graph G ′t and labels TAt of the injected nodes at the
time t . To capture the highly non-linear information and the non-
Euclidean structure of the poisoned graph G ′t , we embed G ′t into
a latent space as e(G ′t) by aggregating the graph structure and
attributes using a graph neural network. We use e(TAt) to encode
the adversarial labels LAt using the neural network. Since in the
injection poisoning environment, the node setV ′ remains identical
the DRL agent performs poisoning actually on the edge set E ′t .

In the poisoning attack environment, the DRL agent is allowed
to (1) add the adversarial edges between the injected nodes VA or
between the injected nodes and the original (genuine) nodes; (2)
craft the adversarial labels of the injected nodes. However, directly
adding one adversarial edge presentsO(|VA |2+ |VA | ∗ |V |) possible
choices and modifying the adversarial label of an injected node
requires O(|L|) space where |L| is the number of possible labels.

WWW ’20, April 20–24, 2020, Taipei, Taiwan

𝑉

state		𝑠$

𝑉

RL Agent

𝑎$
(')~𝞹(𝑠$, 𝑎$

,)

𝑒 𝐺$/ 	𝑒(𝑣12
(3))

……

……

……

𝑎$
(,)~𝞹(𝑠$)

……

……

……

𝑎$
(4)~𝞹(𝑠$, 𝑎$

(,))

𝑉 𝑉 𝑉

action 	𝑎$ = (𝑎$
(,),	𝑎$

(4),𝑎$
(')) state		𝑠$6,

……

……

……
GCN	
𝑪𝑺

𝑎$
(,) 𝑎$

(4)

𝑎$
(')

reward	𝑟$

(𝑠$, 𝑎$)

𝑒 𝐺$/ 	𝑒(𝑣12
(3))	𝑒(𝑣12

(:)) 𝑒 𝐺$/ 	𝑒(𝑣12
3)	𝑒(𝒯12

(<))

design	labelpick	nodepick	node

Label
Emb.

𝑒(𝐺$ ’)

𝐺$/

Graph
Emb.

𝒯𝓐2

𝑒(𝒯𝓐2)

𝑉𝒜 𝑉𝒜 𝑉𝒜 𝑉𝒜 𝑉𝒜

Figure 2: Overview of NIPA

Hence, performing an action that simultaneously adds an adversar-
ial edge and changes the label of a node presents a search space of
size O(|VA | ∗ |V ′ | ∗ |L|), which is infeasible, especially in the case
of large graphs. Thus, after [12], we adopt a hierarchical decompo-
sition of actions to reduce the action space and hence the resulting
state space.

As shown in Figure 2, in NIPA, at time t , the DRL agent first
performs an action a

(1)
t to select an injected node from VA . The

agent then picks a second node from the node set V ′ using action
a
(2)
t . After performing the actions a(1)t and a(2)t , the agent connects
these two selected nodes to establish the adversarial edge which is
denoted by a dashed line in the Figure 2. Finally, the agent crafys
the label of the selected fake node using action a(3)t . The resulting hi-
erarchical decomposition of the actions at = (a

(1)
t ,a

(2)
t ,a

(3)
t), yields

a reduction in the size of the action space from O(|VA | ∗ |V
′ | ∗ |L|)

to O(|VA | + |V
′ | + |L|). With the hierarchy action a = (a(1), a(2),

a(3)), the trajectory of the proposed MDP is (s0,a
(1)
0 ,a

(2)
0 ,a

(3)
0 , r0,

s1, . . . , sT−1,a
(1)
T−1,a

(2)
T−1,a

(3)
T−1, rT−1, sT).

4.1.2 Policy network. After [12] we use Q-learning to find a policy
that is optimal in the sense that it maximizes the expected value
of the total reward over any and all successive steps, starting from
the current state. Q-learning is an off-policy optimization which
aims to satisfy the the Bellman optimality equation as follows:

Q∗(st ,at) = r (st ,at) + γ max
a′t

Q∗(st+1,a
′) (6)

The greedy policy to select the action at with respect to Q∗ is:

at = π (st) = arg max
a

Q∗(st ,a) (7)

However, because we have to accommodate a hierarchical de-
composition of actions, we cannot directly use the policy network in
Eq.(6) and Eq.(7). Hence, we adopt a hierarchical Q function for the
actions and propose the hierarchical framework which integrates
three deep Q networks (see below)

4.1.3 Reward Function. The design of a reward function for DRL
for NIPA presents some non-trivial challenges. (1) Because the learn-
ing trajectory for NIPA in the attack environment is usually quite
long, it is beneficial to introduce intermediate rewards to provide
feedback to the DRL agent on how to improve its performance
at various states along the trajectory; (2) Unlike in the case of a
target-specific data poisoning attack where the success or failure of
an attack on the targeted node can be used to derive the reward, in
the case of a non-target-specific data poisoning attack, we need to
aggregate the node classification results over the entire network to
determine the reward based on the objective function Eq. (2). For
each state st , we firstly define the attack success rate At as:

At =
∑
vj ∈T

1(Tj , CθS (G
′
t)j)/|V| (8)

θS = arg min
θ

∑
vi ∈T′

L(T ′i ,Cθ (G
′)i) (9)

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

Here T is the training set used to compute the reward as specified
by the Eq.(2). It is important to note that the CθS is not the graph
classifier C which is used to estimate the node classification ac-
curacy from the perspective of the end user. Because the attacker
usually does not have the model being used by the end user, it
represents a simulated graph classifier constructed by the attacker
to drive DRL. However, direct use of the success rate At as the re-
ward could slow down training since the accuracy might not differ
significantly between two consecutive states. Hence, we design a
guiding binary reward rt to be 1 if the action at = (a

(1)
t ,a

(2)
t ,a

(3)
t)

could reduce the accuracy of attacker’s simulated graph classifier
CθS at time t , and to be -1 otherwise. The proposed guiding reward
rt is defined as follows:

rt (st ,a
(1)
t ,a

(2)
t ,a

(3)
t) =

{ 1; if At+1 > At

−1; otherwise. (10)

Our experiments show that such a guiding reward is effective in
our setting.

4.1.4 Terminal. In NIPA, the number of allowed adversarial edges
added is constrained by the budget ∆ to ensure that the poisoned
graph is hard to distinguish from the original graph. Hence, once
the DRL agent adds a maximum number of edges (T = ∆), it stops
taking further actions. In terminal state sT , the poisoned graph G ′
containsT (adversarial) edges in excess of those present in the clean
graph G.

4.2 Embedding of States
As mentioned above, the state st contains the poisoned graph G ′t
and injected nodes labels TAt at time t . As shown in Figure 2, NIPA
represents the state st by non-linear embeddings e(G ′t) and e(TAt).
Specifically, to encode the non-Euclidean structure of the poisoned
graph G ′t with vector e(G ′t), the latent embedding e(vi) of each
node vi inG ′t is first learned using struct2vec [11]. Then the state
vector representation e(G ′t) is obtained by aggregating the node
embeddings as follows:

e(G ′t) =
∑

vi ∈V ′
e(vi)/|V

′ | (11)

To represent the label of the injected fake nodes, we use the
two layer neural networks to encode the one-hot embedding of the
node labels TAt as follows:

e(TAt) = σ (W
(2)
l (σ (W

(1)
l zAt + b1) + b2) (12)

Here, zAt denotes the one-hot embedding of the labels TAt , σ is
the non-linear activation function and {W (1)l ,W

(2)
l ,b1,b2} are the

parameters of the corresponding neural networks 2.
To avoid notational clutter, we use e(s) to denote the embedding

of the state, and e(va) and e(Ta) to denote embeddings of the node
selected by action a and label selected by action a respectively.

4.3 Hierarchical Q Network
Given the state st and action at , the action-value functionQ(st ,at)
scores the current state and selected actions to guide a Q learning
agent. However, because we have hierarchically decomposed each
2Note that the embedding methods that can be used to encode states and the nodes
and edges are not limited to those proposed here

action a into three component actions {a(1),a(2),a(3)} because of
efficiency considerations, it is hard to design a single Q function
Q(st ,a

(1)
t ,a

(2)
t ,a

(3)
t) to optimize the policy.

Hence, we adopt a hierarchical deepQ networksQ = {Q(1),Q(2),Q(3)}
which integrate three distinct Q networks to model the Q values for
each of the three actions. Figure 2 illustrates the selection of action
at = {a

(1)
t ,a

(2)
t ,a

(3)
t)} at time t performed by our proposed NIPA.

Based on the state representation e(st), the first deep Q network
(DQN) Q(1) guides the policy to choose a node from the injected
node set VA ; Based on a

(1)
t , the second DQN Q(2) learns the policy

to pick the second node from the node set V ′, thus introducing an
adversarial edge; The third DQN Q(3) learns the policy for crafting
the label of the fake node injected by the first DQN.

The DRL agent first selects one node from the injected node set
VA and calculates the Q value of the state-action pair based on the
action-value function Q(1) as follows:

Q(1)(st ,a
(1)
t ;θ (1)) =W (1)1 σ (W

(1)
2 [e(st) ∥ e(va(1)t

)]) (13)

where θ (1) = {W (1)1 ,W
(1)
2 } denotes the trainable weights of the

first DQN and ∥ is the concatenation operation. The action-value
function Q(1) estimates the Q value of each injected fake node
given the state representation st and action embedding e(va(1)t

).

The greedy policy for selecting the action a
(1)
t based on optimal

action-value function Q(1)∗ in Eq.(13) is given by:

a
(1)
t = π (st) = arg max

a∈VA
Q(1)(st ,a;θ (1)); (14)

With the first action a(1)t selected, the DRL agent picks the second
action a

(2)
t based on Q(2) as follows:

Q(2)(st ,a
(1)
t ,a

(2)
t ;θ (2)) =W (2)1 σ (W

(2)
2 [e(st) ∥ e(va(1)t

) ∥ e(va(2)t
)])

(15)
where θ (2) = {W (2)1 ,W

(2)
2 } denote the trainable weights. The action

value function Q(2) scores the candidate nodes for establishing an
edge based on the state st , and the selected action a

(1)
t . The greedy

policy for the second action a
(2)
t with the optimal Q(2)∗ in Eq.(15)

is given by:

a
(2)
t = π (st ,a

(1)
t) = arg max

a∈V ′
Q(2)(st ,a

(1)
t ,a;θ (2)); (16)

Note that the DRL agent only modifies the label of the selected
injected fake node a(1)t . Hence, the action-value function for the
third action is not directly related to the action a

(2)
t . The action-

value functionQ(3) which scores the candidate labels for an injected
fake node is given by:

Q(3)(st ,a
(1)
t ,a

(3)
t ;θ (3)) =W (3)1 σ (W

(3)
2 [e(st) ∥ e(va(1)t

) ∥ e(Ta(3)t
)])

(17)
In Eq.(17), θ (3) = {W (3)1 ,W

(3)
2 } denote the trainable weights in Q

(3).
The action value function Q(3) models the score of each candidate

WWW ’20, April 20–24, 2020, Taipei, Taiwan

label for the injected node a(1)t . The greedy policy for the corre-
sponding action is given by:

a
(3)
t = π (st ,a

(1)
t) = arg max

a∈L
Q(3)(st ,a

(1)
t ,a;θ (3)); (18)

Thus, the proposed hierarchical deepQ networksQ = {Q(1),Q(2),Q(3)}
in Eq.(13), Eq.(15) and Eq.(17), NIPA integrate hierarchical action-
value functions to model the Q values for the hierarchical actions
a = {a(1),a(2),a(3)}.

4.4 Training Algorithm
To train the proposed hierarchical DQNs Q = {Q(1),Q(2),Q(3)}
and the parameters in states representation methods, we adopt
the experience replay technique with memory bufferM [29]. The
key idea behind experience replay is to randomizes the order of
data used by Q learning, so as to remove the correlations in the
observation sequence. We simulate action selection and store the
resulting data in a memory bufferM. During training, a batch of
experience (s,a, s ′) where a = {a(1),a(2),a(3)} is drawn uniformly
at random from the stored memory bufferM. The Q-learning loss
function is given by:

E(s,a,s ′)∼M [(r + γ max
a′

Q̂(s ′,a′ |θ−) −Q(s,a |θ))2] (19)

where Q̂ represents the target action-value function and its param-
eters θ− are updated with θ every C steps. To improve the stability
of the algorithm, we clip the error term between −1 and +1. The
DRL agent adopts ϵ-greedy policy that select a random action with
probability ϵ . The overall training framework is summarized by
Algorithm 1.

In the proposed DRL, we use two layer neural networks to encom-
pass the trainable parameters θ in action-value functionsQ = {Q(1),
Q(2), Q(3)} and structure2vec 3.

5 EXPERIMENTS AND RESULTS
We proceed to experiments that compare NIPA with several base-
line methods for non-target-specific graph data poisoning attacks.
poisoning attack methods using several benchmark data sets. Our
experiments are designed to answer the following research ques-
tions:
• (RQ1) Can the NIPA algorithm effectively perform a non-
target-specific node injection poisoning attack on the graph
data and hence a GCN model trained on the graph data for
node classification?
• (RQ2) How closely does the poisoned graph resemble the
original graph (based on the the key statistics of the two
graphs)?
• (RQ3) How does the effectiveness of NIPA vary as a function
of factors such as sparseness of the graph being attacked,
the average degree of fake nodes, etc.?

5.1 Experimental Setup
5.1.1 Datasets. We report results of experiments with three widely
used benchmark data sets for node classification, which include
CORA-ML [5, 27], CITESEER [17] and DBLP [31]. After [51], we

3The proposed framework admits more complex deep neural network architectures

Algorithm 1: The training algorithm of framework NIPA
Input: clean graph G(V ,E,X), labeled node set T , budget ∆,

number of injected nodes |VA |, training iteration K
Output: G ′(V ′,E ′,X ′) and LA

1 Initialize action-value function Q with random parameters θ ;
2 Set target function Q̂ with parameters θ− = θ ;
3 Initialize replay memory bufferM;
4 Randomly assign Adversarial label LA ;
5 while episode ≤ K do
6 while t ≤ ∆ do
7 Compute state representation according to Eq.(11) and

Eq.(12);
8 With probability ϵ select a random action a

(1)
t ,

otherwise select a(1)t based on Eq.(14);
9 With probability ϵ select a random action a

(2)
t ,

otherwise select a(2)t based on Eq.(16);
10 With probability ϵ select a random action a

(3)
t ,

otherwise select a(3)t based on Eq.(18);
11 Compute reward rt according to Eq.(8) and Eq.(10);
12 Set st+1 = {st ,a

(1)
t ,a

(2)
t ,a

(3)
t };

13 Update edges as EAt+1 ← EA ∪ (a
(1)
t ,a

(2)
t) and labels

as la(1)t+1
← a

(3)
t ;

14 Store {st ,a
(1)
t ,a

(2)
t ,a

(3)
t , rt , st+1} in memory bufferM;

15 Sample minibatch transition randomly fromM;
16 Update parameter according to Eq.(19);
17 Every C steps update θ− = θ ;
18 end
19 end

consider only the largest connected component (LCC) from each
graph data set. The statistics of the data sets computed from the
LCC are summarized in Table 2. For each data set, we randomly
split the nodes into two disjoint sets: (20%) of the labeled nodes
are used for training the node classifier and (80%) of the unlabeled
nodes nodes as test set to evaluate the model. The labeled nodes
are further split into training and validation sets of equal size. We
report results averaged over 5 different random splits.

Table 2: Statistics of benchmark datasets

Datasets NLCC ELCC |L|
CITESEER 2,110 3,757 6
CORA-ML 2,810 7,981 7
PUBMED 19,717 44,324 3

5.1.2 Baseline Methods. Recall that the attack executed by NIPA is
quite distinct from those executed by Nettack [50] and RL-S2v [12],
because the latter, unlike the former, can manipulate links between
existing nodes in the graph. Consequently it does not make sense
to use Nettack and RL-S2v as baselines for comparison with NIPA.
Because NIPA is a novel form of attack, there are few baseline
methods that we can compare it with. Hence, we consider the

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

following four baselines, two of which are based on classical graph
attack models, one is a variant of fast gradient attack, and one is a
variant of NIPA.

• Random Attack [15]: The attacker A first adds adversarial
edges between the injected nodes according to classic Erdős–
Rényi model G(VA ,p), where the probability p = 2 |E |

|V |2 is
proportional to the average degree of the clean graphG(V ,E).
This ensures that the density of the injected graph GA is
similar to that of the clean graph. The attacker then randomly
adds adversarial edges that link the nodes in the injected
graph GA with those in the clean graph G until the attack
budget ∆ is used up.
• Preferential attack [2]: The attacker A iteratively adds the
adversarial edges based on a preferential attachment mecha-
nism. The probability of connecting the injected node vi ∈
VA to any other node vj ∈ |V ∪VA | is proportional to the
degree of the node. As before, the number of adversarial
edges is constrained by the budget ∆.
• A variant of the Gradient Attack (FGA) [10]: The attacker
A attacks the graph by introducing or removing adversarial
edges guided so as to maximize the node mis-classification
rate as a function of addition or deletion of adversarial edges
until the attack budget ∆ is used up. Because the original
Fast Gradient Attack (FGA) [10] is not directly applicable
in the node injection poisoning setting where the injected
nodes are isolated from the rest of the graph and can be
easily filtered out as fake by the node classifier. Hence, we
apply FGA to the graph poisoned by preferential attack. The
resulting attack uses the gradient ∇i jLGCN with vi ∈ VA
andvj ∈ V ′, to add or remove the adversarial edges between
(vi ,vj) to maximize the gradient of the GCN loss ∇i jLGCN .
The number of adversarial edges added or deleted is con-
strained by budget ∆. The attacker is allowed to perform
20∆ modifications in total as suggested by [10].
• NIPA-w/o: This attack is a variant of NIPA where we do not
optimize the objective function with respect to the labels of
fake nodes, i.e., it randomly labels to the fake nodes. In all
other respects, NIPA-w/o behaves like NIPA.

5.2 Performance of NIPA Compared with the
Baseline Methods

To answer RQ1, we assess the decrease in accuracy of node classi-
fication on the poisoned graph as compared with that on the clean
graph. The larger the decrease in node classification performance
on the poisoned graph relative to the clean graph, the more effective
the attack.

5.2.1 Node Classification on Clean Graph. After [50] we adopt the
transductive learning setting. The parameters of GCN are trained
according to Eq. (1). We report the node classification accuracy of
the GCN trained on the clean graph averaged over the five inde-
pendent runs (see above) in Table. 3.

5.2.2 Node Classification on the Poisoned Graph. The attack bud-
get ∆ controls the number of added adversarial edges impacts the
effectiveness of the attack. On the one hand, if the budget is too

Table 3: Node classification results on clean graph

Dataset CITESEER CORA-ML Pubmed
Clean data 0.7730 ± 0.0059 0.8538 ± 0.0038 0.8555 ± 0.0010

small eg., ∆ < |VA |, then at least |VA | − ∆ injected nodes are iso-
lated. Such isolated nodes have no effect on the node classification
accuracy since they can be easily detected as fake by the classifier.
On the other hand, if the attack budget is too large, the density of
the poisoned graph will be different from that of the clean graph,
thus putting the injected nodes at risk of being detected by methods
designed to defend the network against attacks. Hence, to simulate
real-world attack scenarios where the attacker has every incentive
to ensure that the attack goes undetected, we ensure that the den-
sity of the poisoned graph is similar to that of the clean graph by
setting ∆ = r |V |deд(V)where r is the fraction of the injected nodes
relative to the number of nodes in the clean graph and deд(V) is
the average degree of the clean graph G. Hence, the number of
injected nodes is |VA | = r |V |. We also evaluate the effectiveness of
the attack as a function of the degree of the injected nodes (See Sec-
tion 5.4.1). For a comprehensive comparison of the different attacks,
we experiment with different choices of r ∈ {0.01, 0.02, 0.05, 0.10}.
We do not consider values of r > 0.10 because higher values of r
make it difficult for the attack to be unnoticed. Similar considera-
tions dictate that the features of the injected fake nodes be similar
to those of the genuine nodes in the clean graph. For each injected
node, we set its feature values to be those obtained by perturbing
the mean X̄ of the features of the nodes in the clean graph with
zero mean Gaussian noise N(0, 1) 4. Because the baseline meth-
ods cannot modify the adversarial labels of the injected nodes, we
randomly generate the adversarial labels in the case of all baseline
methods, including NIPA-w/o. In both NIPA and NIPA-w/o, we set
the discount factor γ = 0.9 and the injected nodes VA . Needless to
day, in all cases, the graph is poisoned only prior to training the
node classifier.

The mean and the standard deviation of the accuracy of node
classification (obtained from 5 independent runs - see above) are
reported in Table 4. The results included in Table 3 and 4, show
that:
• As expected, regardless of the attack method chosen, the
effectiveness of the attack improves with higher values of r
which translate to greater numbers of injected nodes.
• NIPA significantly outperforms all baseline methods.
• The FGA variant marginally outperforms the RandomAttack
and the Preferential Attack. This is explained by the fact that
unlike the FGA variant which adaptively inserts fake nodes
and links to maximize the decrease in node classification
accuracy, the Random and the Preferential attack simply
insert fake nodes according to a predefined strategy.
• NIPA significantly outperforms the FGA variant. We at-
tribute the greater effectiveness of NIPA to its effective use
of hierarchical deep reinforcement learning to optimize the
effectiveness of the attack.

4It is possible to further optimize the node features to maximize the effectiveness of
the attack while minimizing the likelihood of being detected

WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 4: Classification results after adversarial attack on graphs

Dataset Methods r = 0.01 r = 0.02 r = 0.05 r = 0.10
Random 0.7582 ± 0.0082 0.7532 ± 0.0130 0.7447 ± 0.0033 0.7147 ± 0.0122

Preferrential 0.7578 ± 0.0060 0.7232 ± 0.0679 0.7156 ± 0.0344 0.6814 ± 0.0131
CITESEER FGA 0.7129 ± 0.0159 0.7117 ± 0.0052 0.7103 ± 0.0214 0.6688 ± 0.0075

NIPA-wo(ours) 0.7190 ± 0.0209 0.6914 ± 0.0227 0.6778 ± 0.0162 0.6301 ± 0.0182
NIPA (ours) 0.7010 ± 0.0123 0.6812 ± 0.0313 0.6626 ± 0.0276 0.6202 ± 0.0263
Random 0.8401 ± 0.0226 0.8356 ± 0.0078 0.8203 ± 0.0091 0.7564 ± 0.0192

Preferrential 0.8272 ± 0.0486 0.8380 ± 0.0086 0.8038 ± 0.0129 0.7738 ± 0.0151
CORA-ML FGA 0.8205 ± 0.0044 0.8146 ± 0.0041 0.7945 ± 0.0117 0.7623 ± 0.0079

NIPA-w/o (ours) 0.8042 ± 0.0190 0.7948 ± 0.0197 0.7631 ± 0.0412 0.7206 ± 0.0381
NIPA (ours) 0.7902 ± 0.0219 0.7842 ± 0.0193 0.7461 ± 0.0276 0.6981 ± 0.0314
Random 0.8491 ± 0.0030 0.8388 ± 0.0035 0.8145 ± 0.0076 0.7702 ± 0.0126

Preferrential 0.8487 ± 0.0024 0.8445 ± 0.0035 0.8133 ± 0.0099 0.7621 ± 0.0096
PUMBED FGA 0.8420 ± 0.0182 0.8312 ± 0.0148 0.8100 ± 0.0217 0.7549 ± 0.0091

NIPA-w/o(ours) 0.8412 ± 0.0301 0.8164 ± 0.0209 0.7714 ± 0.0195 0.7042 ± 0.0810
NIPA (ours) 0.8242 ± 0.0140 0.8096 ± 0.0155 0.7646 ± 0.0065 0.6901 ± 0.0203

• NIPA out performances NIPA-w/o, which shows the benefits
of optimizing the labels of the injected nodes labels in node
injection attacks.

5.3 Key Statistics of the Poisoned Graphs
To answer RQ2, we analyze several key statistics of the poisoned
graphs. A desired property of the poisoning attack is that the poi-
soned graph is statistically similar to the clean graph. After [6],
we report the graph statistics of the poisoned graphs for all three
benchmark data sets in Table 5. The statistics considered include
the Gini coefficient, characteristic path length, distribution entropy,
power law exponent and the triangle counts. The detailed equations
and descriptions are available in [6]. The graph statistics included
in Table 5 show that:
• For smaller values of r , the graphs poisoned by NIPA gener-
ally are statistically very similar to the corresponding clean
graph.
• For larger values of r , the graphs poisoned by NIPA become
more distinguishable from the corresponding clean graph.
• Larger values of r lead to an increase in the number of tri-
angles in the graph poisoned by NIPA. Thus, NIPA results
in not only fake nodes getting connected to other nodes,
but also in the introduced edges leading to the formation of
triangles, causing the edges to affect additional nodes in the
graph.

5.4 Effectiveness of NIPA Under Different
Scenarios

In this subsection, we report the results of experiments designed
to answer RQ3, i.e., how does the performance of NIPA vary as
as function of different parameters of NIPA and the graph being
attacked.

5.4.1 Average Degrees of Injected Nodes. Recall that∆ = r |V |deg(vA)
which plays a role in the effectiveness of NIPA. Hence, we investi-
gate impact of the average degree of injected nodes on the effective-
ness of NIPA. Specifically, we experiment with different values of

2 3 4 5 6 7 8 9 10 11
Degree

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

(a) CITESEER

r = 0.01

r = 0.02

3 4 5 6 7 8 9 10 11
Degree

0.62

0.64

0.66

0.68

0.70

0.72

0.74

(b) CORA-ML

r = 0.01

r = 0.02

Figure 3: Node classification performance on a graph poi-
soned by NIPA, in the case of (a) CITESEER and (b) CORA-
ML, as a function of average node degree of injected nodes

deg(vA) ∈ {3, . . . 10}. We do not consider values of deg(vA) > 10
since injecting ’celebrity’ or ’hub’ nodes into the network is gener-
ally not an effective graph poisoning attack strategy.

The performance of NIPA with injected node ratio r = 0.01 and
r = 0.02 on CITESEER and CORA-ML are shown in Fig. 3(a) and
Fig. 3(b), respectively. We observe that the node classification accu-
racy on the graph poisoned by NIPA decreases or the effectiveness
of NIPA increases as the average degree of the injected nodes in-
creases. This observation is consistent with the fact that the greater
the number of links a fake node can have, the greater its ability to
poison the graph.

5.4.2 Sparsity of the Clean Graph. We examine the effect of spar-
sity of the graph on the effectiveness of NIPA. In this experiment,
we ensure that the average degree of injected nodes to be same
as the the average degree of genuine nodes. To simulate a sparse
network, we randomly remove Sp = {0, 10%, . . . , 90%} edges from
the clean graph and execute NIPA on the resulting sparsified graph.
The results with injected node ratio r = 0.01 and r = 0.02 on CIT-
SEER and CORA-ML are shown in Fig.4(a) and Fig.4(b) respectively.
We observe that as the graph more and more sparse, NIPA becomes

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

Table 5: Statistics of the clean graph (r = 0.00) and the graphs poisoned by NIPA averaged over 5 runs.

Dataset r Gini Coefficient Characteristic Path Length Distribution Entropy Power Law Exp. Triangle Count
0.00 0.4265 ± 0.0000 9.3105 ± 0.0000 0.9542 ± 0.0000 2.0584 ± 0.0000 1083.0 ± 0.0
0.01 0.4270 ± 0.0012 8.3825 ± 0.3554 0.9543 ± 0.0001 2.0296 ± 0.0024 1091.2 ± 6.6

CITESEER 0.02 0.4346 ± 0.0007 8.3988 ± 0.2485 0.9529 ± 0.0005 2.0161 ± 0.0007 1149.8 ± 32.4
0.05 0.4581 ± 0.0026 8.0907 ± 0.7710 0.9426 ± 0.0009 1.9869 ± 0.0073 1174.2 ± 42.8
0.10 0.4866 ± 0.0025 7.3692 ± 0.6818 0.9279 ± 0.0012 1.9407 ± 0.0088 1213.6 ± 61.8
0.00 0.3966 ± 0.0000 6.3110 ± 0.0000 0.9559 ± 0.0000 1.8853 ± 0.0000 1558.0 ± 0.0
0.01 0.4040 ± 0.0007 6.0576 ± 0.1616 0.9549 ± 0.0004 1.8684 ± 0.0016 1566.2 ± 7.4

CORA-ML 0.02 0.4075 ± 0.0002 6.1847 ± 0.1085 0.9539 ± 0.0002 1.8646 ± 0.0006 1592.0 ± 17.4
0.05 0.4267 ± 0.0014 5.8165 ± 0.1018 0.9458 ± 0.0009 1.8429 ± 0.0027 1603.8 ± 12.8
0.10 0.4625 ± 0.0005 6.1397 ± 0.0080 0.9261 ± 0.0007 1.8399 ± 0.0017 1612.4 ± 22.2
0.00 0.6037 ± 0.0000 6.3369 ± 0.0000 0.9268 ± 0.0000 2.1759 ± 0.0000 12520.0 ± 0.0
0.01 0.6076 ± 0.0005 6.3303 ± 0.0065 0.9253 ± 0.0004 2.1562 ± 0.0013 12570.8 ± 29.2

PUBMED 0.02 0.6130 ± 0.0006 6.3184 ± 0.0046 0.9213 ± 0.0004 2.1417 ± 0.0009 13783.4 ± 101.8
0.05 0.6037 ± 0.0000 6.3371 ± 0.0007 0.9268 ± 0.0000 2.1759 ± 0.0001 14206.6 ± 152.8
0.10 0.6035 ± 0.0003 6.2417 ± 0.1911 0.9263 ± 0.0010 2.1686 ± 0.0141 14912.0 ± 306.8

more and more effective in attacking the graph. This is because as
the graph becomes sparser, each node in the clean graph has fewer
neighbors, which makes the it easier for fake nodes to impact the
labels of unlabeled nodes.

0.0 0.2 0.4 0.6 0.8

Sparsity

0.55

0.60

0.65

0.70

0.75

0.80

A
cc
u
ra
cy

(a) CITESEER

r = 0.01

r = 0.02

clean

0.0 0.2 0.4 0.6 0.8

Sparsity

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
(b) CORA-ML

r = 0.01

r = 0.02

clean

Figure 4: Node classification performance on (a) CITESEER
and (b) CORA-ML with varying graph sparsity

6 SUMMARY AND DISCUSSION
We introduce a novel family of non-target-specific node injection
poisoning attack on graphs. We propose NIPA, a deep hierarchi-
cal reinforcement learning based method to execute such attacks.
We model the key steps of a node injection attack, e.g., establish-
ing links between the injected adversarial nodes and other nodes,
choosing the label of an injected node, etc. by a Markov Decision
Process. NIPA injects fake nodes into the graph, and sequentially
adds adversarial edges and adversarially chooses labels for the in-
jected fake nodes. NIPA uses a novel hierarchy deep Q learning
networks to efficiently reduce the state-action combinations to be
explored. It uses graph neural networks to learn compact graph
embeddings to encode states. We report the results of poisoning
the graph data used to train graph convolutional network for node
classification which show the effectiveness of NIPA in poisoning

the graph in a non-target-specific manner. Our results show that
the graph poisoned by NIPA statistically very similar to the original
clean graph, making it easy for the attack to evade detection. Our
experiments further show, as expected, that the larger the attack
budget, the more effective the attack; and sparser the graph being
attacked, the more effective is the attack.

There are several interesting directions that need further inves-
tigation. In this paper, we have used the mean of node features
corrupted by Gaussian noise to set the features of fake nodes. It
would be interesting to explore variants of NIPA that optimize the
features of fake nodes to maximize the effectiveness of NIPA. In this
paper, we have used a 2-layer graph neural networks to encode the
states of the hierarchical deep Q learner. It would be interesting to
explore more complex deep neural networks for this task. It would
be interesting to explore extensions of NIPA for carrying out node
poisoning attacks on more complex graphs, e.g., heterogeneous
graphs, multi-modal graphs, and dynamic graphs. Last, but not
the least, it would be interesting to explore variants of NIPA that
use more sophisticated optimization methods for reinforcement
learning.

ACKNOWLEDGEMENTS
Thisworkwas funded in part by theNIHNCATS grant UL1 TR002014
and by NSF grants 1518732, 1640834, and 1636795, the Edward Fry-
moyer Endowed Professorship at Pennsylvania State University
and the Sudha Murty Distinguished Visiting Chair in Neurocom-
puting and Data Science funded by the Pratiksha Trust at the Indian
Institute of Science (both held by Vasant Honavar) and by Samsung
GRO Award #225003 to Suhang Wang and Vasant Honavar. The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the sponsors.

WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Charu C Aggarwal. 2011. An introduction to social network data analytics. In

Social network data analytics. Springer, 1–15.
[2] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science 286, 5439 (1999), 509–512.
[3] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against

support vector machines. In 29th Int’l Conf. on Machine Learning (ICML).
[4] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of

adversarial machine learning. Pattern Recognition 84 (2018), 317–331.
[5] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Em-

bedding of Graphs: Unsupervised Inductive Learning via Ranking. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
r1ZdKJ-0W

[6] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Gün-
nemann. 2018. Netgan: Generating graphs via random walks. arXiv preprint
arXiv:1803.00816 (2018).

[7] Han Cai, Kan Ren, Weinan Zhang, Kleanthis Malialis, Jun Wang, Yong Yu, and
Defeng Guo. 2017. Real-time bidding by reinforcement learning in display adver-
tising. In Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining. ACM, 661–670.

[8] Nicholas Carlini and David Wagner. 2018. Audio adversarial examples: Targeted
attacks on speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW).
IEEE, 1–7.

[9] Christopher J Carpenter. 2012. Narcissism on Facebook: Self-promotional and
anti-social behavior. Personality and individual differences 52, 4 (2012), 482–486.

[10] Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and
Qi Xuan. 2018. Fast gradient attack on network embedding. arXiv preprint
arXiv:1809.02797 (2018).

[11] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative embeddings of latent vari-
able models for structured data. In International conference on machine learning.
2702–2711.

[12] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.
Adversarial attack on graph structured data. arXiv preprint arXiv:1806.02371
(2018).

[13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. InAdvances
in neural information processing systems. 3844–3852.

[14] Kien Do, Truyen Tran, and Svetha Venkatesh. 2019. Graph transformation policy
network for chemical reaction prediction. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 750–760.

[15] Paul Erdős and Alfréd Rényi. 1960. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17–60.

[16] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation. In The World Wide
Web Conference. ACM, 417–426.

[17] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. 1998. CiteSeer: An Automatic
Citation Indexing System.. In ACM DL. 89–98.

[18] Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine, and Stuart
Russell. 2019. Adversarial Policies: Attacking Deep Reinforcement Learning.
arXiv preprint arXiv:1905.10615 (2019).

[19] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In International Conference on Learning
Representations.

[20] Qingyu Guo, Zhao Li, Bo An, Pengrui Hui, Jiaming Huang, Long Zhang, and
Mengchen Zhao. 2019. Securing the Deep Fraud Detector in Large-Scale E-
Commerce Platform via Adversarial Machine Learning Approach. In The World
Wide Web Conference. ACM, 616–626.

[21] Kun He, Yiwei Sun, David Bindel, John Hopcroft, and Yixuan Li. 2015. Detecting
overlapping communities from local spectral subspaces. In 2015 IEEE International
Conference on Data Mining. IEEE, 769–774.

[22] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. 2018. Adversarial attacks
on stochastic bandits. In Advances in Neural Information Processing Systems.
3640–3649.

[23] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[24] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poison-
ing attacks on factorization-based collaborative filtering. In Advances in neural
information processing systems. 1885–1893.

[25] Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song.
2018. Heterogeneous graph neural networks for malicious account detection.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. ACM, 2077–2085.

[26] Yuzhe Ma, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu. 2018. Data poisoning
attacks in contextual bandits. In International Conference on Decision and Game
Theory for Security. Springer, 186–204.

[27] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.

Information Retrieval 3, 2 (2000), 127–163.
[28] Shike Mei and Xiaojin Zhu. 2015. Using Machine Teaching to Identify Optimal

Training-Set Attacks on Machine Learners. In The 29th AAAI Conference on
Artificial Intelligence.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[30] Michele Nitti, Luigi Atzori, and Irena Pletikosa Cvijikj. 2014. Friendship selection
in the social internet of things: challenges and possible strategies. IEEE Internet
of things journal 2, 3 (2014), 240–247.

[31] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri-
party deep network representation. Network 11, 9 (2016), 12.

[32] Thomas Puschmann. 2017. Fintech. Business & Information Systems Engineering
59, 1 (2017), 69–76.

[33] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International conference on machine
learning. 1889–1897.

[34] Yiwei Sun, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, and Vasant Honavar.
2019. Megan: A generative adversarial network for multi-view network embed-
ding. arXiv preprint arXiv:1909.01084 (2019).

[35] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction.

[36] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[37] Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang
Wang. 2019. Robust graph neural network against poisoning attacks via transfer
learning. arXiv preprint arXiv:1908.07558 (2019).

[38] Binghui Wang and Neil Zhenqiang Gong. 2019. Attacking Graph-based Classifi-
cation via Manipulating the Graph Structure. ACM Conference on Computer and
Communications Security (CCS) (2019).

[39] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1225–1234.

[40] Jianyu Wang, Rui Wen, Chunming Wu, Yu Huang, and Jian Xion. 2019. FdGars:
Fraudster Detection via Graph Convolutional Networks in Online App Review
System. In Companion Proceedings of The 2019 World Wide Web Conference. ACM,
310–316.

[41] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. 2018. Nervenet: Learning
structured policy with graph neural networks. (2018).

[42] Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Reinforce-
ment learning to rank with Markov decision process. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 945–948.

[43] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, kai Lu, and Liming
Zhu. 2019. Adversarial Examples on Graph Data: Deep Insights into Attack and
Defense. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence.

[44] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli. 2015. Is feature selection secure against training data poisoning?. In
International Conference on Machine Learning. 1689–1698.

[45] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. 2019. CoaCor: Code
Annotation for Code Retrieval with Reinforcement Learning. In The World Wide
Web Conference. ACM, 2203–2214.

[46] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 974–983.

[47] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. 2018. Graph
convolutional policy network for goal-directed molecular graph generation. In
Advances in Neural Information Processing Systems. 6410–6421.

[48] Yanwei Yu, Huaxiu Yao, Hongjian Wang, Xianfeng Tang, and Zhenhui Li. 2018.
Representation learning for large-scale dynamic networks. In International Con-
ference on Database Systems for Advanced Applications. Springer, 526–541.

[49] Yiming Zhang, Yujie Fan, Wei Song, Shifu Hou, Yanfang Ye, Xin Li, Liang Zhao,
Chuan Shi, Jiabin Wang, and Qi Xiong. 2019. Your Style Your Identity: Leveraging
Writing and Photography Styles for Drug Trafficker Identification in Darknet
Markets over Attributed Heterogeneous Information Network. In TheWorld Wide
Web Conference. ACM, 3448–3454.

[50] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
Attacks on Neural Networks for Graph Data. In SIGKDD. 2847–2856.

[51] Daniel Zügner and Stephan Günnemann. 2019. Adversarial Attacks on Graph
Neural Networks via Meta Learning. In International Conference on Learning
Representations (ICLR).

