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Goal and aims: Commonly used actigraphy algorithms are designed to operate within a known in-bed in
terval. However, in free-living scenarios this interval is often unknown. We trained and evaluated a sleep/ 
wake classifier that operates on actigraphy over ∼24-hour intervals, without knowledge of in-bed timing.
Focus technology: Actigraphy counts from ActiWatch Spectrum devices.
Reference technology: Sleep staging derived from polysomnography, supplemented by observation of wa
kefulness outside of the staged interval. Classifications from the Oakley actigraphy algorithm were ad
ditionally used as performance reference.
Sample: Adults, sleeping in either a home or laboratory environment.
Design: Machine learning was used to train and evaluate a sleep/wake classifier in a supervised learning 
paradigm. The classifier is a temporal convolutional network, a form of deep neural network.
Core analytics: Performance was evaluated across ∼24 hours, and additionally restricted to only in-bed 
intervals, both in terms of epoch-by-epoch performance, and the discrepancy of summary statistics within 
the intervals.
Additional analytics and exploratory analyses: Performance of the trained model applied to the Multi-Ethnic 
Study of Atherosclerosis dataset.
Core outcomes: Over ∼24 hours, the temporal convolutional network classifier produced the same or better 
performance as the Oakley classifier on all measures tested. When restricting analysis to the in-bed interval, 
the temporal convolutional network remained favorable on several metrics.
Important supplemental outcomes: Performance decreased on the Multi-Ethnic Study of Atherosclerosis 
dataset, especially when restricting analysis to the in-bed interval.
Core conclusion: A classifier using data labeled over ∼24-hour intervals allows for the continuous classifi
cation of sleep/wake without knowledge of in-bed intervals. Further development should focus on im
proving generalization performance.

© 2023 The Author(s). Published by Elsevier Inc. on behalf of National Sleep Foundation. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Rationale

Clinical polysomnography (PSG) remains the gold (or “re
ference”) standard for quantifying sleep. However, use of PSG is 
constrained by equipment cost, sleep technologist labor, and intru
siveness. Particularly for long-term ambulatory monitoring, it can be 
impractical for participants to be equipped with PSG. When 
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dissociating intervals of sleep from intervals of wake is of primary 
interest, wrist-worn actigraphy devices are commonly used instead 
of PSG.1

Common actigraphy algorithms classify an epoch of time as ei
ther sleep or wake based on the magnitude of the activity count in 
the current and nearby epochs, with the Coke-Kripke,2 Oakley,3

Sadeh,4 and Scripps Clinic5 algorithms being among the most pro
minent. These algorithms have been developed with a focus on 
operating within a known or assumed rest or “in-bed” interval, and 
performance analyses of actigraphy classifications are also most 
often restricted to in-bed intervals. Within in-bed intervals these 
algorithms exhibit high sensitivity (classification accuracy on sleep 
epochs), but relatively low specificity (classification accuracy on 
wake epochs).6,7 As sleep tends to predominate within the in-bed 
interval, this classification imbalance can generate high epoch-by- 
epoch accuracy, but also often leads to underestimation of wake 
time, especially for individuals with low sleep efficiency (SE).8

For many paradigms, the true in-bed interval is known, such as 
sleep laboratory studies. However, for many other situations, the 
true in-bed interval is not known a priori, such as when studying 
participants in their home. In these cases, it is common for re
searchers to first identify the candidate in-bed interval via some 
combination of sleep diary, participant-initiated event markers, vi
sual inspection of actigraphy counts, or a rest-interval algorithm 
derived from activity counts. However, there are limitations to each 
of these methods.

Significance

To avoid the dependence on the identification of in-bed intervals 
and the associated bias toward the classification of sleep, we have 
trained and evaluated a sleep/wake classifier on data labeled over 
approximately 24-hour intervals.

Background

Most existing sleep/wake classifiers operate best within pre
defined in-bed intervals, often identified via participant self-report 
through sleep diary or event marker button press. Sleep diaries such 
as the Consensus Sleep Diary9 have been reported to perform well at 
capturing the timing of the rest interval relative to single-channel 
EEG, with average bias of 6 minutes and 95% limits of agreement of 
1.4 hours.10 However, requiring a sleep diary or participant-initiated 
event marker for actigraphy analysis can lead to missing data if these 
measures are not consistently completed. Lauderdale et al11 report 
that when participants were asked to track their sleep over the 
course of three nights, 40% of bedtimes or waketimes were not re
corded by participants with the actigraphy event marker and needed 
to be imputed based on participant sleep diaries.

A further complication regarding the use of in-bed intervals de
fined by sleep diary is that many sleep diaries do not include enough 
detail to capture the timing of nonprimary rest intervals (ie, nap
ping). For example, the Consensus Sleep Diary asks respondents two 
questions about napping, "How many times did you nap or doze?" 
and "In total, how long did you nap or doze?." However, as these 
questions do not ask respondents to indicate when they napped, they 
cannot be used to determine the timing of the nap required to apply 
an “in-bed” actigraphy algorithm. Participant-initiated event mar
kers can likewise have issues capturing the onset of unintentional 
naps, which would need to be logged by participants retroactively 
and may not be recalled correctly. Correctly capturing unintentional 
naps is especially important for studying individuals with excessive 
daytime sleepiness12 or populations of older adults, for whom naps 
are more common.13

Another consideration is maintaining independence between a 
subjective sleep diary and objective actigraphy data, as the 

discrepancy between subjective and objective sleep is clinically 
useful. For individuals with sleep disorders, some measures captured 
by actigraphy are unique from the same measures captured via sleep 
diary,14 with individuals with insomnia tending to underestimate 
their sleep quality.15-18 Subjective-objective sleep discrepancy is 
additionally greater and more variable night-to-night for older 
adults receiving cognitive behavioral therapy for insomnia relative to 
controls pretreatment, with the change in sleep discrepancy post- 
treatment correlated with treatment efficacy as assessed with In
somnia Severity Index.19 Classifying sleep/wake at a ∼24-hour in
terval without using in-bed timing derived from sleep diary 
maintains the independence of the two measures.

When self-report measures are not available, an alternative is to 
estimate the in-bed interval from the timeseries of activity counts, either 
through visual inspection or an algorithm designed to determine the 
time limits of the interval. Visual inspection is problematic due to lim
itations on the reproducibility of subjective assessments. Algorithms 
often contain assumptions about the length or number of in-bed inter
vals within in a day. For example, Kanady and colleagues report20 the 
performance of an automatic minor rest interval algorithm (AMRI) for 
detecting the presence of daytime naps, across a combination of settings 
related to motion sensitivity and interval length threshold. Daytime naps 
could be detected via the automatic minor rest interval algorithm, with 
higher sensitivity settings producing the best correspondence with PSG. 
However, these high-sensitivity settings also tended to misclassify naps 
in recordings that contained no naps. The interval setting could be ad
justed based on likelihood that an individual napped, but this is often 
unknown a priori.

Aims

An epoch-by-epoch sleep/wake classifier was trained and evaluated 
on data from multiple studies with ∼24-hour PSG staging or direct 
participant observation of wakefulness, alongside a common wrist ac
tigraphy device. Here ∼24-hour refers to collecting data across the ma
jority of a day, rather than surrounding a known in-bed period, although 
1 of 4 studies recorded approximately 42 hours of data across 2 days, 
and the remaining studies don’t include precisely 24 hour of data due to 
periods in which the actigraphy device is off-wrist. The classifier, a 
temporal convolutional network (TCN) deep-learning approach, uses the 
time series of actigraphy activity counts across the day as input. The 
performance of the resulting classifier is evaluated using standard cri
teria21,22 at the level of the 30-second sleep epoch, and at the level of the 
interval (eg, total sleep time [TST] across the interval). For comparison, 
the same metrics were compared against the Oakley classification al
gorithm native to the actigraphy device.

Although the primary goal was to develop a classifier for ∼24- 
hour data without knowledge of in-bed intervals, the performance of 
the ∼24-hour classifier was additionally evaluated within the limits 
of the known primary in-bed intervals. This was done to establish 
how the classifier, which is trained on data composed primarily of 
wake, would perform against alternatives in an interval composed 
primarily of sleep, such as when the in-bed interval is identified via 
alternate methods. For example, if the ∼24-hour classifier also per
forms adequately within a known in-bed interval, a single classifi
cation approach could be used in both contexts. Additionally, the 
model was evaluated on the Multi-Ethnic Study of Atherosclerosis 
(MESA) dataset, to estimate performance on a different paradigm 
than used to train the model.

Methods

Sample

Data from four studies where sleep/wake was staged or verified 
as wake over an approximately 24-hour interval were incorporated 
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into the training, tuning (or “validation”), and testing of the model, 
some of which have been included in previous reports. The term 
“validation” refers to the portion of data held out during model 
training to monitor out of training sample performance and tune 
hyperparameters, not to suggest that the approach is “valid” per se.22

The fifth study, MESA, contributed data primarily from a known in- 
bed interval and was used to supplement the evaluation of model 
performance outside of the ∼24-hour context. MESA data were not 
used for model training or tuning, but only supplemental model 
testing. See Table 1 for descriptions of each study.

The protocols for the four studies used for model training, tuning, 
and testing were individually approved by the Pennsylvania State 
University Institutional Review Board, and all participants provided 
written informed consent. For the MESA dataset, “Institutional 
Review Board approval was obtained at each study site and written 
informed consent was obtained from all participants.”23 The present 
work was completed using deidentified data from these five da
tasets.

Focus technology: wrist actigraphy

Participants wore an ActiWatch Spectrum actigraphy device 
(Philips-Respironics, Murrysville, PA) on their nondominant wrist. 
Two Spectrum models were used across the studies, Classic and Plus, 
which differ in their underlying accelerometer technology. The 
Classic model uses a piezoelectric accelerometer, and the Plus model 
uses a microelectromechanical systems accelerometer. However, 
Philips-Respironics reports that Plus models are designed to output 
actigraphy counts that are backwards compatible with Classic 
models, with an average discrepancy of 1.6 minutes of sleep across a 
night for devices worn concurrently.24 The Spectrum device model 
used within each study is listed in Table 1. Actigraphy data were 
collected and exported from ActiWare software (version for each 
study in Table 1; Philips-Respironics, Murrysville, PA) with an epoch 
length of 30 seconds and a wake threshold of “Medium,” corre
sponding to a weighted moving average activity count of 40. Acti
Ware uses the Oakley algorithm3 to classify a given epoch as sleep or 
wake. These Oakley classifications served as a comparison point for 
TCN classification performance. Activity counts were used as clas
sifier input, and “Off-Wrist Status” was used to identify epochs 
during which the device was not being worn. To supplement the 
Spectrum’s off-wrist indicator, which may fail to capture some off- 
wrist epochs, any contiguous sequence of actigraphy epochs with 
activity count of 0 that were at-least 2 hours in length were ad
ditionally marked as off-wrist. Additional fields (eg, interval classi
fication, event markers, light levels) were not used.

Reference technology: PSG staging supplemented with observation of 
wakefulness

For all datasets, participants were equipped with an EEG mon
tage compliant with AASM standards25 during either an in-bed in
terval or continuously throughout the day. Clinically registered 

polysomnography technicians (RPSGT) retrospectively staged PSG 
data in 30-second epochs.

For three of the datasets (Sound Sleeping, Deep Sleeping, and 
Sleep Restriction), participants were monitored during scheduled 
waking intervals to confirm wakefulness outside of the PSG staged 
interval – these observed periods were correspondingly labeled as 
stage “Wake.” For these datasets, the RPSGT indicated the “lights-off” 
portion of the PSG staging, which was used to label the intervals of 
data considered “in-bed” and attempting to sleep.

Within the EcoSleep dataset, participants were equipped with 
continuous portable PSG and slept in their home environment over a 
period of approximately 42 hours on average. As the EcoSleep da
taset was collected in a home environment without RPSGT ob
servation of “lights-off,” the primary in-bed interval was inferred 
from the PSG staging by identifying the longest continuous interval 
of sleep epochs after disregarding periods of awakening less than 
1.5 hours.

For the MESA dataset, only data staged with PSG was used, as 
wakefulness outside of the PSG interval could not be verified; “in- 
bed” was labeled according to RPSGT “lights-off” indicators.

Design, study setting, and procedures

Temporal alignment of activity counts and PSG staging
Sleep/wake labels and actigraphy counts were temporally aligned 

prior to analysis, using a procedure adapted from Marino and col
leagues.6 Details of the alignment procedure are included within the 
Supplementary Material. Statistics on the percent of records per 
dataset that could not have the lag procedure applied, along with 
averaged lag and percent of records with an identified lag of 0, are 
included in Table 3.

Missing data and rejection of recordings
An epoch of data was considered “incomplete” if the staging used 

to determine sleep/wake state is missing (eg, a gap between PSG 
recordings), the PSG epoch is not scorable by the RPSGT, or if the 
actigraphy device is off-wrist or missing data.

Following temporal alignment between actigraphy and staging, 
records were removed from model development or evaluation based 
on their percentage of missing data. Records with 25% or more 
epochs missing staging, or with 25% or more epochs missing acti
graphy counts within the staged interval, were excluded from fur
ther analysis. The number of records rejected are indicated within 
Table 2. The percentage of epochs missing staging and percentage of 
epochs missing actigraphy for the remaining retained datasets are 
indicated in Table 3.

Each day or night of data was treated as a time series. To preserve 
the temporal order within each time series, epochs that were 
missing staging or actigraphy information were retained during 
training but masked before computing the loss function (ie, they did 
not contribute to adapting the weights of the network). Because the 
predictions for a given epoch also depend on the activity count from 
leading or following epochs, epochs with missing activity counts also 
had their activity count set to 0.

Table 2 
The number of participants and the number of recordings within each data set 

Data set Participants prior to 
rejection

Days prior to 
rejection

Days rejected due 
to missing staging

Days rejected due to 
missing actigraphy

Days rejected, due to 
staging or actigraphy

Participants 
following rejection

Days following 
rejection

Deep Sleeping 12 36 0 0 0 12 36
EcoSleep 19 37 10 0 10 17 27
MESA 1698 1698 0 8 8 1690 1690
Sleep Restriction 15 143 16 2 17 15 126
Sound Sleeping 8 32 1 1 1 8 31

MESA, Multi-Ethnic Study of Atherosclerosis
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Classifying each epoch of data depends not only on the activity 
count of that epoch, but also epochs in the past and future, with the 
exact number depending on the hyperparameters of the TCN model 
(kernel size, and sequence of dilations). Convolution inputs are ty
pically zero-padded to return an output of equal length. To reduce 
noise that may be introduced by zero padding, any activity counts +- 
4 hours outside of the staged region that were available were re
tained, although lacking these values did not lead to a record being 
removed from analysis. Table 3 indicates the percentage of activity 
counts in the 4 hours preceding and following the staged interval 
that were missing.

Machine learning approach
Data partitions. The sleep/wake classifier was trained, tuned, and 
tested using k-fold cross-validation with 5-folds (Fig. 1). Data 
partitions were constructed via stratified randomization, with data 
set as strata. The participants were randomly assigned to partitions. 
This ensures that data from any participant is not included in both 
the training/tuning and testing partitions within any given fold. 
Partition assignment was additionally shuffled to prevent the final 
fold from systematically containing fewer data sets.

Model structure. The sleep/wake classifier was developed within the 
TensorFlow (v. 2.6.0) deep learning framework with Keras interface. 
A TCN,26 an architecture composed of several stacked temporal 
convolution layers, was used. This choice was influenced by the 
favorable performance of TCN on sequence labeling tasks, relative to 
other deep learning architectures such as recurrent neural 
networks.26 In addition, temporal convolution is conceptually 
similar to the weighted moving sum algorithm used in common 
actigraphy classifiers, such as the Cole-Kripke,2 Oakley,3 and Scripps 
Clinic.5

The model was constructed using a symmetric convolution 
kernel, in which the predictions for a given epoch depend on the 
value of activity counts at both past and future epochs. The model 
was alternatively constructed using convolutions that are causal, 
only operating on data from current and past epochs, included 
within the Supplementary Material.

The basic structure of the model is shown in Fig. 2. The inputs to 
the model consist of a time series of activity counts, and a time series 
of mask values. Mask values are used to indicate missing timepoints, 
to allow them to be masked from the loss function. Within each fold, 
activity counts were scaled to the range of 0-1 by diving by the 
maximum activity count in that training fold.

Hyperparameter tuning and model training. Hyperparameters related 
to the model structure or training process were optimized 
independently for each of the 5 cross-validation folds, using the 
Keras Tuner27 hyperparameter optimization package (ver. 1.1.0) with 
Bayesian Optimization tuner. The hyperparameters to be optimized 
and their possible values are shown in Table 4.

Within each cross-validation fold, 100 models were trained with 
different combinations of hyperparameters. Each model was trained 
with a batch size of 32, for up to 300 epochs to minimize binary 
cross-entropy loss with Adam optimizer.28 Training for a given 
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Fig. 1. Structure of train, tune (or “validate”), and test partitions 
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model was terminated when either 300 epochs had elapsed, or 
when the loss on the tuning set had not improved for 50 epochs. The 
weights at the epoch with the lowest tuning set loss were selected 
for that model. Following a search over 100 combinations of hy
perparameter choices, the model with the lowest tuning set loss was 
selected as the “trained” model for the given fold. The trained model 
was then applied to the remaining, held-out test data for that fold. 
The hyperparameter values identified as optimal within each fold of 
the 5-fold cross-validation procedure are shown in Table 5. The re
ceptive field of the TCN model, the amount of data incorporated into 
a classification, depends on the kernel size and sequence of dilations. 
In all folds, the resulting model had a receptive field of 757 epochs, 
or 3 hours and 9 minutes of data on either side of the epoch being 
classified.

Classifier evaluation. The primary objective was to determine how 
well a sleep/wake classifier trained on ∼24-hour data could 
distinguish sleep from wake over a ∼24-hour interval. However, to 
assess how well the ∼24-hour model would theoretically perform on 
known in-bed interval data, results were additionally evaluated on 
only those epochs that were part of the in-bed interval. Additionally, 
while the MESA dataset was not used to train the classifier, the 
trained classifier was tested on the MESA data, both for all-available 
staged data (which includes, on average, approximately 1 hour of 
extra data in addition to the in-bed interval), and for the data 
restricted to the in-bed interval.

For performance reference, the ActiWare software’s Oakley sleep/ 
wake algorithm was compared to ground truth for the same data. 
The Oakley algorithm was selected as reference as we believe it is 
the algorithm most commonly used to classify sleep/wake from 
ActiWatch Spectrum actigraphy devices. To ensure comparable 
evaluation, TCN classifier and Oakley algorithm were compared only 
on the epochs with both valid TCN and Oakley classification. 
Classifiers were evaluated in terms of both epoch-by-epoch perfor
mance, and in terms of discrepancy in reproducing interval level 
sleep statistics such as TST, separately for the ∼24-hour and in-bed 
intervals.

At the level of the epoch, the TCN classifier outputs class prob
abilities, which are used to compute the area under the receiver 
operating characteristic curve (AUC). Probabilities were mapped to 
classifications using a threshold of 0.5. Classifications are used to 
compute accuracy, sensitivity, specificity, balanced accuracy, positive 
predictive value (PPV), negative predictive value (NPV), F1-score, 
Matthews correlation coefficient (MCC), and prevalence-adjusted 
and bias-adjusted kappa29 (PABAK). As PABAK is a linear transfor
mation of accuracy, all statistical comparisons are identical to ac
curacy, however, this statistic was included as it has been suggested 
to be present within sleep technology performance evaluations.22

The Oakley classifier outputs discrete sleep/wake classifications ra
ther than probabilities, so AUC was not computed. For metrics with 
classification counts in the denominator that can be 0, the value was 
set to 0 as division by 0 is undefined. This may occur for example, if 
calculating NPV in an instance where the classifier didn’t classify any 

Fig. 2. Model structure. TCN, temporal convolutional network 

Table 4 
Hyperparameters to tune, with the range of values to search for each 

Hyperparameter Potential values

Number of filters in TCN 1, 2, 4, 8, 16, 32, 64
TCN kernel size 1, 3, 5, 7
Set of TCN dilations [ 1, 2], [ 1, 2, 4], [ 1, 2, 4, 8], [ 1, 2, 4, 8, 16],  

[ 1, 2, 4, 8, 16, 32]
Dropout rate inside TCN 0.0, 0.1, 0.2, 0.3, 0.4, 0.5
Normalization layer normalization, batch 

normalization, none
Dropout rate prior to dense 

layer
0.0, 0.1, 0.2, 0.3, 0.4, 0.5

Learning rate 0.0001-0.01 with log sampling

TCN, temporal convolutional network.

Table 5 
Optimal hyperparameters identified within each fold of the model 

Hyperparameter Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Number of filters in TCN 64 64 64 64 64
TCN kernel size 7 7 7 7 7
Set of TCN dilations [1, 2, 4, 8, 16, 32] [1, 2, 4, 8, 16, 32] [1, 2, 4, 8, 16, 32] [1, 2, 4, 8, 16, 32] [1, 2, 4, 8, 16, 32]
Dropout inside TCN 0 0 0 0.5 0
Normalization Layer normalization Layer normalization Layer normalization Layer normalization Layer normalization
Dropout prior to dense layer 0.3 0 0 0 0.3
Learning rate 1.00E-04 3.86E-04 1.05E-04 1.00E-02 6.40E-04

TCN, temporal convolutional network
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epochs as wake. Additional description of these metrics is included 
in the Supplementary Material (1b).

At the level of the interval, epoch-by-epoch classifications were 
used to obtain TST within the ∼24-hour interval, and sleep onset 
latency (SOL), TST, SE, and wake after sleep onset (WASO) within the 
in-bed interval. Definitions are included within the Supplementary 
Material (1c). The discrepancy of each metric to ground truth values 
were evaluated in terms of bias, mean absolute error (MAE), and 
concordance correlation coefficient30 (CCC). Additional description 
of these measures is included within the Supplementary Material
(1d). The EcoSleep dataset was excluded from comparisons of SOL or 
SE, as the method labeling in-bed for the EcoSleep data cannot 
identify presleep wakefulness within the in-bed interval.

Scatterplots and Bland-Altman plots are additionally included to 
visually compare each classifier to ground-truth reference values. 
Note that the x-axis plots the reference values, rather than the 
mean of reference and predicted values.31 Bland-Altman plots were 
generated using a mixed-effects approach, using the loa_lme 
function from the SimplyAgree32 package (ver. 0.1.2) for R. Pro
portional bias was evaluated for each plot by fitting a linear-mixed 
effects model predicting the classifier – reference differences with 
fixed effects of model intercept and reference value, and random 
effects of intercept nested within participants. If the fixed-effect of 
reference value was significant at a .05 level, indicating that the 
difference depends on the value of the reference, proportional bias 
was plotted. Otherwise, only a fixed mean bias was plotted. In ei
ther case, 95% confidence intervals were plotted around bias and 
limits of agreement, constructed from parametric bootstrap with 
10,000 replicates.

The ∼24-hour datasets included data collected over multiple 
days for each participant. To account for clustering of data within 
participants, epoch-by-epoch, bias, and MAE results were compared 
between Oakley and TCN classifiers using linear mixed-effects 
models. Each evaluation metric was evaluated separately using the 
lme433 package (ver. 1.1.31) for R (ver. 4.2.0), with degrees of 
freedom estimated via Satterthwaite’s method using the package 
lmerTest34 (ver. 3.1.3). Models included fixed-effects of intercept and 
classifier type. Each model was initially evaluated with random ef
fects of intercept and classifier type, grouped within participants. If 
this model produced a singular fit, it was refit with the same fixed 
effects but only a random effect of intercept, grouped within parti
cipants. Descriptive statistics such as mean and standard deviation 
are reported both as grand means (computed across days regardless 
of clustering) and as values derived from mixed-effects models. The 
latter are obtained by fitting a model separately to each condition 
with a fixed-effect of intercept, and a random-effect of intercept 
grouped within participants. Such models have both cluster (parti
cipant) and residual standard deviation; the population estimates of 
each are included. The difference displayed is the condition differ
ence estimated from the mixed-effects model used to compute in
ferential statistics. This value is similar but not necessarily the same 
as the difference between the mixed-effect condition means, which 
are estimated independently.

As each participant contributes multiple days of data, mixed-ef
fect sizes (d) were estimated for each outcome metric by dividing 
the difference between classifiers by the square root of the sum of 
random variance components.35

CCC was calculated across all days regardless of clustering using 
via the epiR36 (ver. 2.0.57) package for R, as well as using the var
iance components approach to compute a longitudinal repeated 
measures variation of CCC37 (CCCLON) using the cccrm38 (ver. 2.1.0) 
packages for R. In both cases, differences in CCC/CCCLON between 
classifiers were computed via nonparametric bootstrap of the dif
ference with 10,000 bootstrap replicates. CCC/CCCLON differences 
were considered statistically significant if the resulting 95% con
fidence interval of the difference excluded zero.

Results

Core analytics and main outcome variables

Epoch-by-epoch performance
Epoch-by-epoch performance is indicated within Table 6. At the 

∼24-hour interval, the TCN model produces favorable epoch-by- 
epoch performance to the Oakley classifications on nearly all the 
metrics evaluated, excepting sensitivity which does not statistically 
differ. When restricting the performance evaluation to only the 
known in-bed interval, the TCN shows favorable epoch-by-epoch 
performance on accuracy, NPV, F1-score, Matthews correlation 
coefficient, and PABAK, while the remaining measures do not sta
tistically differ between the two classifiers.

Fig. 3 displays ROC curves for the TCN classifier, separately for 
∼24-hour and in-bed evaluation. The ROC curve depicts the trade-off 
between the true positive rate (sensitivity) and the false positive rate 
(1 – specificity) as the probability threshold for classification is al
tered. The model performs more favorably across the ∼24-hour in
terval than the in-bed interval, also reflected numerically by the AUC 
values in Table 6.

Table 7 displays confusion matrices for the performance of the 
Oakley and TCN classifiers, at both evaluation intervals. The confu
sion matrices reiterate the increased specificity for the TCN model at 
∼24-hour evaluation that had been demonstrated statistically in 
Table 6. In addition, by summing within columns, the base rates of 
sleep and wake within each interval can be obtained.

Sleep metric discrepancy performance at ∼24-hour and in-bed intervals
Discrepancy of classifiers within the ∼24-hour and in-bed inter

vals are indicated in Table 8 for bias and MAE, and Table 9 for CCC/ 
CCCLON. Across the ∼24-hour interval, relative to the Oakley clas
sifications, the amount of TST predicted by the TCN model more 
closely matches ground truth in terms of bias, MAE, and both var
iants of CCC. Scatterplots and Bland-Altman plots visualizing the 
relationship between true and predicted TST across the ∼24-hour 
interval are shown in Fig. 4. Within the in-bed interval, the classifiers 
have fewer differences in terms of reproducing ground truth. The 
Oakley classifier performs significantly better in terms of bias in SE 
or WASO, while the TCN classifier performs significantly better in 
terms of bias and both variations of CCC in SOL. Scatterplots and 
Bland-Altman plots visualizing the relationship between true and 
predicted values for these metrics across the in-bed interval are 
shown in Fig. 5.

Additional analytics and exploratory analyses

Several additional analyses are included within the 
Supplementary Material: performance of the trained TCN classifier 
as applied to the MESA dataset, comparison of the TCN classifier to 
the Sadeh4 and Scripps Clinic5 classifiers, and a variation of the TCN 
classifier trained with causal convolutions (operating only on the 
current and prior epochs) that is appropriate for “real-time” use.

Discussion

Main results and implications

A TCN model was developed to classify sleep/wake across a ∼24- 
hour interval without knowledge of in-bed timing, using activity 
counts as input. Performance within the known in-bed interval was 
additionally evaluated to determine if the same classifier could be 
used for sleep/wake classification when the in-bed period is known. 
At the ∼24-hour interval, the TCN classifier showed improved epoch- 
by-epoch performance relative to the Oakley algorithm with respect 
to multiple criteria. Additionally, TST across the ∼24-hour interval 
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was better captured by the TCN model. When restricting analysis to 
the known in-bed interval, epoch-by-epoch performance of the TCN 
classifier was as good or better than the Oakley classifier. 
Reproduction of in-bed summary values such as TST, WASO, SOL, SE, 
was more variable, with the favorable classifier depending on the 
metric.

Improved classification of sleep/wake from actigraphy counts 
without knowledge of in-bed timing is relevant for both research 
and clinical purposes. In both cases, participants may be asked to 
wear wrist actigraphy devices for several days in their home en
vironment where knowledge of the timing of in-bed intervals may 
be unknown.

Other works have taken similar approaches, with some key dif
ferences. Haghayegh et al39 also developed a sleep/wake classifier 
using deep learning techniques, however, this work covered only a 
known in-bed interval. Palotti et al40 report sleep/wake classification 
performance using a range of machine learning approaches, also 
using the MESA dataset, and report performance both within the in- 
bed interval and over 24 hours. However, within the MESA dataset, 
PSG was used in a limited time window primarily restricted to the 
in-bed interval, with the majority of sleep/wake labeling across the 
24-hour interval inferred from researcher annotations (using acti
graphy, sleep diaries, and event markers). As these annotations are 
less precise than PSG at capturing sleep/wake at an epoch-by-epoch 
level, only data from the MESA dataset with PSG staging was ana
lyzed within our report. Our report also differs by analyzing per
formance of the ∼24-hour classifier at both the ∼24-hour and in-bed 
intervals, to evaluate how performance may change when a model 
trained across ∼24 hours is also used within a known in-bed interval. 
Jean-Louis et al41 adapted a classifier developed for in-bed record
ings for use in a 24-hour context, evaluating it in both in-bed and 24- 
hour intervals. This work takes a different approach in that 24-hour 
use was supported primarily by the addition of rescoring rules fol
lowing the epoch-by-epoch classifier output.

A separate set of techniques have approached 24-hour classifi
cation by first identifying candidate rest intervals that are coarser 
than the 30-second epoch. Within the Munich Actimetry Sleep 

Detection Algorithm (MASDA),42,43 approach, the temporal resolu
tion of epochs under analysis are reduced from the traditional 
30 seconds to a coarser 10 minutes. These 10-minute intervals are 
then compared to a 24-hour moving average and subsequently 
temporally filtered, to identify consolidated periods of sleep and 
wake. The MASDA approach is reported to perform particularly well 
at identifying the timing of sleep intervals, although at the detriment 
of capturing finer-grained information such as the short periods of 
awakening within the night that can contribute to WASO.42 Regalia 
et al44 report the evaluation of a two-stage algorithm operating on 
actigraphy counts termed “ACT-S1,″ which first identifies the time 
limits of rest intervals, then classifies sleep/wake within the rest 
intervals. Tudor-Locke and colleagues have also developed a similar 
approach for waist-worn actigraphy devices that include an in
clinometer, reporting good performance at reproducing human- 
identified sleep intervals in children45 as well as reproducing sleep 
logs in adults.46

Additional work has approached sleep/wake classification over 
24-hour intervals, but using tri-axial accelerometer data (rather than 
actigraphy counts). The Heuristic algorithm looking at Distribution 
of Change in Z-Angle (HDCZA)47 uses arm angle derived from a tri- 
axial accelerometer to identify the time limits of the rest interval in 
order to reduce reliance on sleep diary. After the time-window of the 
rest interval is established, other actigraphy algorithms developed to 
operate within a rest interval can be used to determine epoch-by- 
epoch sleep/wake if needed. In another approach, Katori et al48 re
port applying a sleep/wake classifier trained on in-bed tri-axial ac
tigraphy data to a large multiday dataset. The sleep/wake output 
from the classifier was used with rescoring rules to derive a set of 
sleep quantity and timing indices to cluster participants into sleep 
phenotypes.

Additional results and implications

Application of the ∼24-hour model to the MESA dataset is pre
sented within the Supplementary Material. The ∼24-hour TCN 
model produced more favorable performance on several metrics 
when analyzing all available data, though several metrics also fa
vored the Oakley classifier. Results were similarly mixed when 
analysis was restricted to the in-bed interval, though the majority of 
metrics favored the Oakley classifier. Of note is that the MESA data 
does not contain staging across 24 hours, but instead includes a 
limited amount of staging outside of the in-bed interval, meaning 
the added benefit of a 24-hour algorithm when analyzing all of the 
available data is more limited. Relatedly, the 24-hour algorithm had 
less activity count history (valid epochs preceding the staged in
terval) which may affect the classifier performance for epochs early 
in the interval. Differences in performance in the in-bed interval 
between the ∼24-hour and MESA datasets may also be attributable 
to the different average age range, or context in which the datasets 
were collected. Expanding the data in the training set may generate 
a model that is more generalizable.

Limitations and future directions

Within each fold of the cross-validation procedure, the set of 
hyper-parameter values to use were identified from a range of 
possible values. Values identified were similar across the 5 cross- 
validation folds, however, several values were at the limit of the 
searched range; extending the range to search could improve a fu
ture model.

The classifier incorporates the activity count in neighboring 
epochs when making a classification, including 3 hours and 9 min
utes on either side of the epoch being classified. To support the 
classification of epochs on the edges of the staged interval, any valid 
activity counts that were present outside of the staged interval were 

Fig. 3. Receiver operating characteristic (ROC) for classifier performance, collected 
across the 5 cross-validation folds. Performance is separately displayed for evaluation 
across the ∼24-hour interval (solid line) or only within the in-bed interval (dashed 
line). Each line is the mean of ROC curves from individual days, combined via 
threshold averaging.59 These curves do not account for clustering of days within 
participants, however mean area under the ROC curve values derived from mixed- 
effects models accounting for clustering are displayed in Table 6
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retained, however, a variable amount of extra activity counts were 
present. While zero-padding is common for deep learning para
digms, the presence of zero-padding at the edges of the staged area 
may add noise to the classification. Collection of longer data inter
vals or exploration of alternative padding techniques may improve 
performance.

The sleep/wake classifier described here uses activity counts as 
generated by Spectrum actigraphy devices. As there are multiple 
methods of computing activity counts from the accelerometer time 
series,49 and the method used is often proprietary to a given device 

manufacturer, actigraphy counts have limitations in generalizability, 
consistency, and transparency. For example, it is not clear how the 
model presented in this work would perform if applied to actigraphy 
counts from a non-Spectrum device. These limitations have motivated 
a shift toward collecting minimally-processed tri-axial accelerometer 
data rather than activity counts for sleep and clinical research.50,51

Heart rate, especially as collected by wrist-worn photoplethysmogram 
devices common on smart watches have also been increasingly used 
for sleep classification, often in combination with accelerometer 
data.52,53 Future work may use these standardized data types.

Table 9 
Discrepancy (CCC and CCCLON) of interval level statistics for ∼24-hour and in-bed intervals 

∼24-h interval evaluation (CCC and CCCLON)

Metric Measure Oakley TCN Difference Difference excludes 0 Incomplete bootstrap samples

TST CCC 0.18 [0.14, 0.22] 0.84 [0.80, 0.87] −0.66 [− 0.70, − 0.61] *
TST CCCLON 0.06 [0.01, 0.11] 0.64 [0.50, 0.75] −0.58 [− 0.69, − 0.44] * 20

In-bed interval evaluation (CCC and CCCLON)

Metric Measure Oakley TCN Difference Difference excludes 0 Incomplete bootstrap samples

SE CCC 0.35 [0.24, 0.45] 0.42 [0.31, 0.53] −0.07 [− 0.16, 0.02]
SOL CCC 0.06 [0.02, 0.09] 0.72 [0.64, 0.78] −0.66 [− 0.82, − 0.45] *
WASO CCC 0.34 [0.23, 0.45] 0.38 [0.29, 0.47] −0.04 [− 0.18, 0.09]
TST CCC 0.91 [0.88, 0.93] 0.91 [0.88, 0.93] 0.00 [− 0.01, 0.02]
SE CCCLON 0.29 [0.07, 0.48] 0.32 [0.12, 0.49] −0.03 [− 0.13, 0.08] 1507
SOL CCCLON 0.07 [− 0.08, 0.22] 0.65 [0.52, 0.75] −0.58 [− 0.77, − 0.22] * 896
WASO CCCLON 0.25 [0.06, 0.42] 0.21 [0.10, 0.33] 0.03 [− 0.15, 0.29] 2827
TST CCCLON 0.77 [0.67, 0.85] 0.76 [0.64, 0.84] 0.02 [− 0.02, 0.08] 1

CCC, concordance correlation coefficient, calculated across days without respect to clustering within participants; CCCLON, concordance correlation coefficient with longitudinal 
repeated measures, calculated across days while accounting for clustering of days within participants; SE, sleep efficiency; SOL, sleep onset latency; TCN, temporal convolutional 
network; TST, total sleep time; WASO, wake after sleep onset
Asterisks wihin the column “Difference excludes 0” indicate that the 95% confidence interval of the difference excludes 0. In these cases, bolded values indicate the more favorable 
outcomes
The CCCLON internally fits a mixed-effects model to the data to obtain variance components. Some permutations of the bootstrap can produce data sets that can’t be appropriately 
fit with a mixed-effects model (eg, non-negative approximate variance-covariance). The column Incomplete Bootstrap Samples records the number of instances in which this 
occurred (out of 10,000)
The EcoSleep dataset was excluded from comparisons of SOL or SE, as the method of imputing in-bed labels for the EcoSleep data cannot identify presleep wakefulness within the 
in-bed interval

Fig. 4. Polysomnography (PSG)-derived total sleep time (TST) over the ∼24-hour interval, compared to the Oakley or temporal convolutional network classifiers. Left column 
shows PSG vs. classification for each classification type, and for visual reference includes a linear regression of predicted TST on true TST across days (without accounting for 
clustering within participants; black line). Right column shows Bland-Altman PSG vs. classification error (classification TST - PSG TST), computed using a mixed-effects approach 
accounting for clustering of days within participants. Proportional bias was evaluated but did not reach statistical significance for either classifier on ∼24-hour TST. Indicated are 
bias (black line) and the upper and lower limits of the 95% limits of agreement (dashed black lines) with 95% confidence intervals for each shaded in gray
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The TCN classifier produced favorable performance to the Oakley 
classifier when classifying data over ∼24 hours. However, the Oakley 
classifier performed better on some metrics when restricting the 
analysis to the in-bed interval, for example, bias in SE and WASO. 
The benefit of using the 24-hour classifier may decrease when the 
timing of the in-bed interval is known.

Performance may be further improved by providing additional 
context to the model regarding time of day, circadian phase, or sleep 
homeostat. As the probability of sleep or sleep stage varies within a 
rest interval, several sleep/wake or sleep staging classifiers have 
incorporated time elapsed within the rest interval as a classification 
feature.52,54,55 Walch et al53 expanded this concept by representing 
temporal context as either a cosine wave rising and falling within a 
rest interval, or as circadian phase estimated from daytime activity 
levels. An estimate of an individual’s circadian phase or sleep 
homeostat may particularly benefit 24-hour sleep/wake classifi
cation.

Core conclusion

A sleep/wake TCN classifier was trained and evaluated on data 
labeled over ∼24-hour intervals, to eliminate the dependence on 
knowledge of an in-bed interval. Relative to the commonly used 
Oakley classifier, the TCN classifier performed statistically equivalent 
or better on all measures when viewing the data over ∼24 hours. 
When restricting analysis to the in-bed interval, the TCN was still 
favorable on several metrics. Application of the classifier to the 
MESA dataset showed decreased performance, especially when re
stricting analysis to the in-bed interval. Future work should focus on 
improving generalization performance.

Data and code availability

Preprocessing code, model development code, and trained model 
files are available at https://github.com/DanielGartenberg/ 
24Hour_Actigraphy_SleepWake.
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