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Abstract—Many applications call for methods to enable
automatic extraction of structured information from unstruc-
tured natural language text. Due to inherent challenges of
natural language processing, most of the existing methods for
information extraction from text tend to be domain specific.
We explore a modular ontology-based approach to information
extraction that decouples domain-specific knowledge from the
rules used for information extraction. We describe a framework
for extraction of a subset of complex nested relationships (e.g.,
Joe reports that Jim is a reliable employee). The extracted
relationships are output in the form of sets of RDF (resource
description framework) triples, which can be queried using
query languages for RDF and mined for knowledge acquisition.

I. INTRODUCTION

Many text-based applications call for automatic extraction
of structured information from unstructured natural language
text. There are two main approaches to information extrac-
tion [13]: (i) knowledge-based methods that rely on hand-
crafted rules provided by experts and (ii) machine learning
methods that use rules discovered from an annotated corpus.
While machine learning methods have been effective on
tasks like entity extraction [11], they have had limited suc-
cess in extracting complex relationships, in large part, due to
the lack of annotated training corpus. Most of the existing
knowledge based methods for information extraction [2]–
[6], [8]–[10] rely on extraction rules that encode domain-
specific knowledge. Against this background, we present
a knowledge-based approach to information extraction that
decouples domain-specific knowledge (encoded in a domain
ontology) from domain-independent rules that capture lin-
guistic structures. We focus on extracting complex nested
relationships (e.g., “Wall Street Journal reported that Apple
shares are bound to take a hit as a result of increasing
competition from other smart phone manufacturers.”) from
text. The rest of this paper is organized as follows. Section II
covers the preliminaries. Section III describes our approach
to domain-independent extraction of complex nested rela-
tionships. Section IV describes the results of our evaluation
of the proposed approach. Section V concludes with a
summary.

II. PRELIMINARIES

Definition 1: (Domain Ontology) A domain ontology is
encoded by a 5-tuple DOI = (R, C, Y, h, r) where: Y is
a set of instances in the domain, C is a set of concepts
defined over Y, and R is a set of relations defined over
Y×Y, h is a function that takes as input, an instance y ∈ Y
and returns a set of concepts in C that contain the instance
y; and r is a function that takes as input, an ordered pair
of instances (x, y) and returns the set of relations in R that
contain (x, y).
Definition 2: (Dependency Graph) Given an English lan-
guage sentence T comprising of a word-set W representing
the words in the sentence, a dependency graph, G of the
sentence T is defined as a directed graph with node-set W
and a labeled edge-set connecting the nodes in W s.t. for
any two connected nodes, the label on the edge represents
the dependency relationship between the words represented
by the nodes. In this paper, we use the dependency relations
found in the Stanford typed dependencies manual1.
Definition 3: Let Z be text fragment consisting of sen-
tences {Ti} that contain the corresponding word-sets {Wi};
DOI = (R, C, Y, h, r) a domain ontology. Structured infor-
mation extraction on Z using DOI involves:

1) Determining a set TCTR of candidate subject, predi-
cate and object information constructs (constituting a
triple) using an extraction algorithm.

2) Validating TCTR to find a set {K = {si, pi, oi}} of
triples with respect to DOI.

3) Representing the triples in K using a suitable repre-
sentation mechanism.

III. APPROACH

We use a domain ontology to encode domain-specific
concepts and relationships. We use dependency graphs in
our approach to extraction of complex, nested and implicit
relationships. We also make use of parse trees, i.e., ordered
and rooted trees that represents the syntactic structure of
a sentence using the Penn Treebank notation2. The main
algorithm (EXTRACTINFORMATION) parses the document
into sentences and utilizes Stanford Parser [12] to get the

1http://nlp.stanford.edu/software/dependencies manual.pdf
2ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/notation.tex
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dependency graph and parse tree representations of candi-
date sentences. These structures are then consumed by the
extraction (Fig. 6) and representation (Fig. 7) algorithms,
which apply a set of rules to the dependency graph and
parse tree structures to produce a set of RDF triples. We use
the RDF reification mechanism to capture assertions about
assertions.

A. Composite Rule Framework

We use a set of information extraction rules of the
following form:

Definition 4: (Extraction Rule) For a dependency graph G,
is of the form ri : {pi} −→ {ci}, which is interpreted as -
if premises pi of rule ri hold, perform the consequences ci

of ri.
1) Identifying and Defining the Relationship Types:

Given an English language sentence, T , we define the
complexity of the relationship(s) by the type and number
of dependencies that exist within the words of T .

1) Simple Relationships
Formally, we say that a sentence T contains a simple
relationship if all of the following conditions hold for
the dependency graph G of T :
• T contains no more than one subject and object

each. This further implies that it has at most one
dependency of type nsubj and one from the set
{dobj, pobj}.

• T does not contain any clause-level dependencies,
conjunctions, or a clausal subject. Further, it can
only contain noun-compound, or adjectival modi-
fiers3

2) Complex Relationships
For purposes of this paper, we limit the scope of
complex relations to the following specific cases.

Figure 1. Example for a Relationship with Internal Clauses

a) The relationship has internal clauses
This relationship type has a main subject that
refers to an internal clause through a verb. The

3In terms of Stanford dependencies, this implies that T does not contain
any dependencies from the set ccomp, xcomp, acomp, compl, conj, csubj,
csubjpass. Also, T can only have amod, quantmod, nn as modifiers

internal clause is often interpreted as the object
of the dependent verb. Such relationships asso-
ciate entities with facts, instead of two simple
entities. This is illustrated in Fig. 1.

b) Modifiers implicitly qualify the meaning of the
relationship
In these relationships, there is a main clause
whose meaning is qualified by a prepositional
modifier. These relationships contain qualified
information with respect to the source (the source
can in turn be captured using the extraction rules
for the clausal relationship), which may or may
not be true on its own at the time of extraction.

Figure 2. Example for a relationship with qualifying modifier

This idea is concisely illustrated in Fig. 2, which
contains both cases 1 and 2.

c) Multiple relations are formed by coordinating
conjunctions
This type of relationship represents all the sen-
tences with at least one conjunction and, but, or,
yet, for, nor, so. For reducing the complexity of
the representation step, we only handle the case
with the and-conjunction.

Figure 3. Example with a Simple Placement of Conjunction

Figure 4. Example with a Complex Placement of Conjunction
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The simplest case occurs when the conjunction
separates two simple or complex clauses. In
this case, the extraction task simply requires the
separation of the sentence about the conjunc-
tion, followed by usual processes required for
individual simple/complex clauses (refer Fig. 3).
However, in many other cases, the second clause
is dependent on the subject or predicate of the
first clause. This is illustrated in Fig. 4. The latter
case requires special handing with respect to the
information extraction task since it contains one
or more of the other relationship types described
above.

2) Formulating Rules for Relationship and Entity Ex-
traction: Since complex relationships are characterized by
implicit and explicit dependencies between parts of the sen-
tence, we formulate extraction rules that reflect the structure
of the dependency graphs as follows:

1) From the set of Stanford dependency labels, choose
the ones that fit the structure for each relationship type.

2) Form conditions and actions by deciding which nodes
to extract as constructs when a dependency label (or
a sequence of labels) is found along a set of edges in
the dependency graph.

3) Express premises and consequents to form the extrac-
tion rule.

The application of these steps is illustrated below in the
case of relationships with internal clauses (2a above).

1) Rule formulation for relations with internal
clauses: For this case, we base our rule on two main
clausal dependencies from the set of Stanford depen-
dencies - Clausal complement (ccomp) and Parataxis
(parataxis). While formulating the consequent for the
rule, we do not consider the constructs within the inner
clause since it either comprises a simple relationship,
which is dealt with a separate set of rules, or a complex
relation, which can be recursively reduced to a simple
relationship. This notion is utilized in algorithm EX-
TRACTINFORMATION. Formally, the general rule-set
for this case is as follows.
Extraction Rule 1: (Relationships with Internal
Clauses) Given a dependency graph G(V,E) with a
label function l for an English-language sentence T ,
the extraction rule-set for relationship with internal
clauses is given as,
• rRIC1 : {∃u, v, w ∈ V,∃e1(u, v), e2(v, w) ∈

E | l(e1) = “nsubj′′ ∩ (l(e2) =
“ccomp′′ ∪ l(e2) = “parataxis′′)} −→
{pred1 = {v}, sub1 = {u}}

• rRIC2 : {∃u, v, w, t ∈
V,∃e1(u, v), e2(v, w), e3(u, t) ∈ E | l(e1) =
“nsubj′′ ∩ (l(e2) = “ccomp′′ ∪

Figure 5. Extraction Rule Application for a Relationship with Internal
Clauses

l(e2) = “parataxis′′) ∩ l(e3) ∈
{“nn′′, “quantmod′′}} −→ {sub1 = sub1∪{t}}

Result of application of this rule to the sentence in
Fig. 1 is shown in Fig. 5.

2) Rule formulation for relations with qualifying mod-
ifiers: For this case, we base our rule on two modifier
dependencies - Prepositional modifier (prep) and Ad-
jectival modifier (amod). Prepositional and Adjectival
modifiers capture the modifying qualifier and value of
qualification respectively (details omitted due to space
constraints).

3) Rule formulation for relations with conjunctions
Conjunctions connect parts of a sentence, which do
not have an implicit or explicit dependency on any
but their immediate successor and predecessor in the
sentence. Thus, we handle this as an auxiliary case in
our extraction algorithm by analyzing the structure of
the parse tree representation: if the parse tree for the
right part contains a simple declarative clause (S), treat
it as a distinct sentence and utilize the pre-existing
rule-framework for extracting information; If the parse
tree contains a verb phrase (VP) and noun phrase (NP),
append the extracted subject of the left part to the
right part and treat it as a distinct sentence: If the
parse tree contains only a noun phrase (NP), append
the extracted subject and the predicate of the left part
to the right part and treat it as a distinct sentence.

4) Rule formulation for simple relations:. These rules
reflect simple dependencies in the dependency graph
G. We omit the details due to space constraints.

For sake of simplicity in validation and representation
framework, we perform a negation check by looking for the
presence of neg dependency, and if found, we skip the sen-
tence from further processing. The rule framework described
in this section is used by algorithm EXTRACTCONSTRUCTS
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1: procedure EXTRACTCONSTRUCTS(p, G,R, l)
2: rawC = CALL EXECUTERULES(G, R)
3: if flagclausal is true then
4: Split p about pred1 into pl(V1), pr(V2)
5: GS(V2, E2) = Subgraph of G induced by V2

6: innerC = EXTRACTCONSTRUCTS(pr, GS , R, l)
7: for all ele in innerC do
8: Form an outerC using (sub1, pred1, ele)
9: Add outerC to the List of outerCL

10: end for
11: Cache first element from outerCL
12: return outerCL
13: else if flagconj is true then
14: Split p about conjand into pf (V1), ps(V2)
15: GS1(V1, E2) = Subgraph of G induced by V1

16: GS2(V2, E2) = Subgraph of G induced by V2

17: outerCL1 = EXTRACTCONSTRUCTS(pf , GS1, R, l)
18: Cache first element from outerCL1

19: if ps contains ‘S’ then
20: outerCL2 = EXTRACTCON-

STRUCTS(ps, GS2, R, l)
21: else if ps contains ‘VP’ and ‘NP’ then
22: Append sub from the Cache to ps

23: outerC2 = EXTRACTCONSTRUCTS(ps, GS2, R, l)
24: else if ps contains ‘NP’ then
25: Append sub and pred from the Cache to ps

26: outerC2 = EXTRACTCONSTRUCTS(ps, GS2, R, l)
27: end if
28: Add outerCL1, outerCL2 and outerC2 to outerCL
29: return outerCL
30: else if flagenrich is true then
31: Get outerCL from Enrichment module
32: return outerCL
33: else
34: Create construct from (sub1, pred1, obj1)
35: Add the construct to outerCL
36: return outerCL
37: end if

Figure 6. Extracting Candidate Information Constructs

when it calls EXECUTERULES.

B. Semantic Validation Framework

We now describe the validation of the extracted informa-
tion constructs against the domain

1) Performing Validation against the Domain: Our basic
approach for validating candidate information constructs
(subject, predicate, object) against a domain description is
as follows:

1) Find an instance match for the subject and the object.
For determining these matches, we perform simple
syntactic comparisons sequentially on the entire set

of subject (similarly object) candidates starting with
the extracted head sub1 or obj1.

2) If a match for subject and object is found, find a
matching relationship for the predicate in the domain.
For this, we perform syntactic comparisons on the
relationships and the predicate.

3) If we are able to find these matches, we check if the
class concepts to which the instances for subject and
predicate are asserted lie respectively in domain and
range of the relationship matched.

If all these conditions hold, we add the construct (instance
for subject, property, instance for object) to the set of vali-
dated constructs (details omitted due to space constraints).

2) Dealing with incomplete domain models: We (op-
tionally) create new definitions in the domain model to
account for qualifying relationships. In this case, extraction
algorithm EXTRACTCONSTRUCTS invokes the enrichment
module which extends the domain model before the vali-
dation is performed on the constructs and returns a list of
validated and enriched constructs. Recall that the rule for this
relationship type extracted the following constructs {sub,
pred, obj, {quali, vali}}. We utilize the basic validation
rule (outlined above) to validate {sub, pred, obj}. Further,
we find a match for val within the set of instances. If a
match for the val is found, we proceed to the next step
of enrichment. If no match is found, we skip enrichment.
To capture a qualifications, we create a new concept, Qual-
Rel and three new relationships hasQualSub, hasQualPred,
hasQualObj, each with domain QualRel and range as the
most general concept in the concept hierarchy. Each time the
enrichment module creates a new instance (e.g, QualRel 1)
of type QualRel, it creates a new property (qualifier) with
domain QualRel and range as the concept of which the
instance (that we found for value) is asserted. This process
is repeated for each {qual, val} pair. Finally, it returns the
resulting constructs in {subject, predicate, object} form.

C. Representation Framework

We now proceed to describe the representation of the
extracted and validated constructs, {K = {si, pi, oi}} into
an RDF graph GRDF using a set of transformations.

We represent simple relationships using the following
transformation.
Primitive Transformation: For a set {K = {si, pi, oi}}
of 3-tuples si, pi, oi (validated information constructs), a
primitive transformation is defined on the elements of
Ksimple = {{si, pi, oi}|{si, pi, oi} ∈ K ∩ |oi| = 1} as
follows:
Tprim({si, pi, oi}) −→ GRDF , which creates a graph
GRDF consisting of node-set {si, oi} and edge-set {pi} such
that the only edge connects the two nodes. An example of
this is shown in Fig. 8 using RDF triple notation.

Generating RDF representations of structurally complex
relationships is more involved. We illustrate this process in
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1: procedure RECURSIVEVALIDATEANDREPRE-
SENT(c, l)

2: if obj from c is a list then
3: valC = RECURSIVEVALIDATEANDREPRE-

SENT(obj, l)
4: if valC is not null then
5: Reify valC as a RDF Statement str
6: Create RDF triple using sub, pred and str
7: end if
8: else
9: Get valC by Validating c.

10: if valC is not null then
11: Create an RDF triple using valC
12: return triple
13: end if
14: end if

Figure 7. Representing Validated/Enriched Information Constructs

Figure 8. RDF representation of Simple Information

the case of relationships with internal clauses.

Figure 9. RDF representation of Reified Internal Clauses

Here, we need to represent a subject associated with
another fact (extracted from the inner clause), which, in turn,
may be associated with some other fact and so on. For this,
we use a composite transformation as follows.
Composite Transformation: For a set {K = {si, pi, oi}}
of 3-tuples si, pi, oi (validated information constructs), a
composite transformation is defined on the elements of
Kcomplex = {{si, pi, oi}|{si, pi, oi} ∈ K ∩ |oi| > 1} as
follows:
Tcomp({si, pi, oi}) −→ Tprim({si, pi, t})
∩Tprim({t, obj, ooi

}) ∩ Tprim({t, pred, poi
})

∩Tprim({t, sub, soi
}) ∩ Tprim({t, stmt, id}), where t is a

special node, called blank node, stmt is a special edge,
called Statement, sub, obj and pred are special edges, poi ,
soi

and ooi
are internal elements of oi. This composite

transformation triggers five primitive transformations creat-
ing subgraphs for each. Fig. 9 shows the RDF representation

1: procedure EXTRACTINFORMATION(D, l)
2: Tokenize D about delimiters to get a Set, Sent
3: for all T in Sent do
4: (p, G) = Get Parse Tree, Dependency Graph from T
5: outerCL = EXTRACTCONSTRUCTS(p, G,R, l)
6: for all c in outerC do
7: RECURSIVEVALIDATEANDREPRESENT(c, l)
8: end for
9: end for

Figure 10. Information Extraction from a Text Source

of the information extracted from the sentence in Fig. 5. We
model this using reified statements in RDF, where we reify
the internal fact as a statement in RDF and then create a
triple using the subject, predicate and this statement as the
object. The same overall approach is used for transforming
the other extracted relationships into RDF (details omitted
due to space constraints).

Finally, EXTRACTINFORMATION (Fig. 10) controls the
overall information extraction task by invoking the extrac-
tion, validation and representation procedures.

IV. IMPLEMENTATION AND EVALUATION

The above described framework and algorithms are im-
plemented as Semantixs [1], a Java-based open-source web
application. We used the implementation to perform some
preliminary evaluation of our information extraction frame-
work.

A. Text and Domain Ontology

Traditional benchmarks for information extraction sys-
tems e.g., the MUC benchmarks [7], are not suited for
complex nested relationship extraction tasks. Hence, we used
online news articles in our experiments. We queried CBS
News.com with the keyword “Dow Jones”, which resulted
in about 5228 articles, videos and other related material.
We randomly selected 4 text articles from the results of the
query for use in our experiments. Because the documents
contained relatively simple relationships, we augmented the
text with a few complex relationship types. Table I shows
the counts of relationships that we manually identified in the
text4.

Table I
COUNTS OF POSITIVE AND NEGATIVE INSTANCES IN TEXT

Text Simple Clausal Qualified Conjunction Reference
1 7/6 7/1 1/2 2/1 4/2
2 13/0 6/0 3/0 3/0 2/2
3 23/5 12/2 2/0 2/1 6/2
4 18/14 5/0 1/0 2/0 1/2

Tot 61/25 30/3 7/2 9/2 13/8

4The data set is available from the authors upon request
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We utilized the latest DBpedia ontology5 and a subset of
instances6.

Table II
COUNTS OF CORRECT POSITIVE AND NEGATIVE INSTANCES

EXTRACTED

Text Simple Clausal Qualified Conjunction Reference
1 7/3 5/1 0/2 2/1 3/0
2 13/0 5/0 2/0 3/0 2/0
3 22/3 10/1 1/0 2/1 5/1
4 16/10 4/0 1/0 2/0 1/1

Tot 58/16 24/2 4/2 9/2 11/2

B. Results

The results of information extraction are presented in
Table II. This table shows the counts for correctly classified
information (extracted, validated and represented correctly,
or rejected). In coming up with Table II, we used the follow-
ing (necessarily imperfect) correctness criteria: For clausal
and qualified relations, the correctness was judged based on
whether (i) correct structural representation was extracted
for complex relationship (ii) correct semantic representation
was extracted for the simple relationship(s) included in a
complex relationship. Correct and complete extraction of all
the relationships present in a sentence contributed to each
individual count for the relationship types. Partially-correct
extraction of relations present in a sentence still contributed
to the corresponding counts for those relationship(s) that
were correctly extracted.

Table III
RESULTS: PRECISION, RECALL AND F-MEASURE

Simple Clausal Qualified Conjunction Refs
Precision 0.86 0.96 1.0 1.0 0.65

Recall 0.95 0.80 0.57 1.0 0.85
F-measure 0.90 0.87 0.73 1.0 0.74

The precision, recall and f-measure for individual rela-
tionship types are reported in Table III. In the case simple
relations, errors can be traced to shallow syntactic compar-
isons used to determine matches between the candidate in-
formation constructs and the domain concepts, relationships
or instances. False negatives in extracted clausal relations
can be traced to multi-level dependency structures and
cross-sentential references. The false negatives in qualified
relations could be traced to shallow syntactic comparisons to
determine a match. Other sources of error could be traced to
poor co-reference resolution, gaps in the methods used for
pronoun resolution, etc.

5http://wiki.dbpedia.org/Downloads34#dbpediaontology
6http://wiki.dbpedia.org/Downloads34#ontologytypes

V. CONCLUSION

We have designed and implemented an ontology-based
system for extraction of a subset of complex nested rela-
tionships from text. A novel feature of the system is its
modular design, which separates the domain ontology from
the extraction rules, making it easy to port to new domains
simply by selecting an appropriate domain ontology. The
system outputs the extracted relationships in the form of
RDF triples, suitable for querying and data mining.
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