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Abstract

Parameterized heuristics offers an elegant and powerful theoretical framework for design and analysis of autonomous adaptive
traffic management agents in communication networks. Routing of messages in such networks presents a real-time instance of a
multi-criterion optimization problem in a dynamic and uncertain environment. This paper describes the analysis of the properties of
heuristic routing agents through a simulation study within a large network with grid topology. A formal analysis of the underlying
principles is presented through the incremental design of a set of autonomous agents that realize heuristic decision functions that can
be used to guide messages along a near-optimal (e.g., minimum delay) path in a large network. This paper carefully derives the
properties of such heuristics under a set of simplifying assumptions about the network topology and load dynamics and identify the
conditions under which they are guaranteed to route messages along an optimal path, so as to avoid hotspots in the load landscape
of the network. The paper concludes with a discussion of the relevance of the theoretical results to the design of intelligent au-
tonomous adaptive communication networks and an outline of some directions of future research. © 2001 Elsevier Science Inc. All

rights reserved.

1. Introduction

With the unprecedented growth in size and com-
plexity of modern communication networks, the de-
velopment of intelligent and adaptive approaches to
system management (including such functions as rout-
ing, congestion control, traffic/load management, etc.)
have assumed considerable theoretical as well as prac-
tical significance. Knowledge representation and heu-
ristic techniques (Pearl, 1984) of artificial intelligence,
decision-theoretic methods, as well as techniques of
adaptive control offer a broad range of powerful tools
for the design of intelligent, adaptive, and autonomous
communication networks. This paper develops and
analyzes heuristic decision functions in support of
adaptive routing in large high-speed communication
networks.

Routing (Bertsekas and Gallager, 1992) in a com-
munication network refers to the task of propagating a
message from its source towards its destination. For
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each message received, the routing algorithm at each
node must select a neighboring node to which the mes-
sage is to be sent. Such a routing algorithm may be re-
quired to meet a diverse set of often conflicting
performance requirements (e.g., average message delay,
network utilization, etc.), thus making it an instance of a
multi-criterion optimization problem.

For a network node to be able to make an optimal
routing decision, as dictated by the relevant perfor-
mance criteria, it requires not only up-to-date and
complete knowledge of the state of the entire network
but also an accurate prediction of the network dynamics
during propagation of the message through the network.
This, however, is impossible unless the routing algo-
rithm is capable of adapting to network state changes in
almost real time.

Consequently, routing decisions in large communi-
cation networks are based on imprecise and uncertain
knowledge of the current network state. This impreci-
sion is a function of the network dynamics, the memory
available for storage of network state information at
each node, the frequency of, and propagation delay as-
sociated with, update of such state information. Thus,
the routing decisions have to be based on knowledge of
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network state over a local neighborhood supplemented
by a summary of the network state as viewed from a
given node. Motivated by these considerations, a class
of adaptive heuristic routing algorithms have been de-
veloped over the past few years (Mikler et al., 1997).
Experiments demonstrate routing by autonomous
routing agents that embody such algorithms displays
several interesting properties including: automatic load
balancing and message delay minimization. The results
presented in this paper constitute a step toward the de-
velopment of a theoretical framework for the design and
the analysis of self-managing communication networks
that are managed by interacting, proactive, and reactive,
autonomous intelligent agents.

The rest of is paper is organized as follows. Section 2
briefly describes the Quo Vadis framework (Mikler
et al., 1997, 1998) for heuristic routing in large com-
munication networks. Section 3 presents some of the
results of simulation experiments which motivated the
theoretical analysis presented in this paper. Section 4
presents the design and analysis of various routing
heuristics with the emphasis on hotspot avoidance.
Section 5 concludes with a discussion of the relevance
and limitations of the main results and some directions
for further research.

2. A framework for heuristic routing

Any intelligent traffic management mechanism capa-
ble of performing in a large communication environ-
ment must include an effective knowledge representation
(KR) mechanism as well as an efficient knowledge ac-
quisition (KA) engine, that minimizes the overhead that
is associated with acquiring and maintaining network
state information. In addition, adaptive decision making
methods are needed which are designed to optimize the
network performance.

The underlying framework for heuristic routing,
consists of two closely coupled modules: the KR module
which is primarily responsible for maintaining and up-
dating the network state information as viewed from
each node; and the decision module which implements
routing and control algorithms. Both these modules
instantiate a family of parameterized heuristics that
follow from the design philosophy of Quo Vadis (Mikler
et al., 1997). The objective of using parameterized heu-
ristics is to adapt the behavior of the routing function to
the dynamics of the network without having to propa-
gate complex network state information. Decision
making based on parameterized heuristics is realized by
relatively simple, autonomous, proactive as well as re-
active agents that are situated at the individual nodes.
The collection of such agents form a multi-agent system
which displays several interesting emergent properties
including load balancing.

2.1. Knowledge representation mechanisms

The KR mechanism in Quo Vadis is designed to
provide to the routing agent at each node, a locally
computed view that includes precise information about
the node itself, supplemented by a spatially and tem-
porally averaged summary of the state of the network as
viewed from that node.

The routing agents in this framework do not maintain
routing tables. Thus, they lack information about net-
work topology which is implicitly encoded in the routing
tables. Since the discussion in this paper is restricted to
networks that have regular topologies (e.g., the grid) an
alternative scheme was used for addressing nodes and
for computing their positions relative to each other.
Each network node is assigned a unique coordinate
which reflects its location in the grid. Thus, each node #;
is addressed by its respective coordinates (x;,y;). Al-
though this paper assumes the network topology to be a
regular grid, it is possible to embed network with other
topologies into a grid.

The routing agent at node »; maintains a view ¥;(¢) of
the network from its vantage point at time ¢. This view is
decomposed into four components, one for each of the
four directions — north, south, east, and west. Thus we
have: V(1) = [VN(¢), VS(1), VE(¢), VYV (£)]. Each element
Vd:(d € {N,S,E,W}) of the view V() is computed
from information received from neighbors n;. This in-
formation consists of the corresponding view compo-
nents V(¢ —t) (where 7 is the interval between view
updates) together with local measurements p,(¢), indi-
cating the load at »y.

The view component V() at node n; at time 7 is given
by

VA =Y axpt)+(1—o) x Vi(t—1); 0<a<l,

np€H;
(1)

where H; represents the set of all neighboring nodes n; of
n;. Here, the parameter o determines the degree to which
the effects of an event (i.e. load change) can impact
routing decisions at other network nodes. a governs the
relative significance attached to the local measurements
as opposed to the (spatially and temporally averaged)
global view of the network as seen from the node in
question. o is a candidate for adaptation to cope with
changes in network dynamics (see Section 3).

2.2. Routing and control mechanisms

Upon receiving (or generating) a message to be
routed, the routing agent node n; makes a routing de-
cision based on the destination of the message and its
current routing information. The task of the routing
agent at n; is to forward the message through one of its
neighbors, such that the resulting path of the message
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optimizes some desired performance criteria (e.g., aver-
age path length, average delay, or other suitable routing
metrics). The routing agent at node n; does this by se-
lecting one of the nodes in its neighborhood H; that
appears to best serve this objective. Choosing the best
neighbor is based on the use of an evaluation function
(in much the same spirit as the heuristic evaluation
functions used in state space search in artificial intelli-
gence problems (Pearl, 1984)). The routing agent at
node n; computes the utility U, of each node n; € H; and
chooses one that has the largest utility. If two or more
nodes in the neighborhood have the same utility, one of
them is selected at random.

The utility of a neighbor node n;, Uy, is a function of
two separate components: the load liability Z; which
estimates the load likely to be encountered by the mes-
sage on its way to its destination n, if it were to be
routed through #;; and the path liability P, that assigns a
value to each neighbor n; so that neighbors that are
closer to the destination of the message being routed
reflect lower values of P;. Note that in practice there
may be many different suitable heuristics that will guide
packets along an optimal path.

In principle, the overall utility U, of the node n; is
given by

Up==(Bx P+ (1-p)xLy); 0<B<I, (2)

where the parameter f determines the emphasis placed
on finding the shortest path to the destination relative to
the desire of avoiding heavily loaded paths.

Given this general framework for computing the
utility of nodes, several different choices exist for the
exact form of the expressions used to compute L; and P,.
We define the load liability Z; of node n; as follows:

Ly =y x pp(t) + (1 =) xve(t); 0<y<1, (3)

where v,(#) is the sum of the projections of the appro-
priate components of the view ¥, of the neighbor node
n; onto the vector connecting n; to the destination node
ng. The tunable parameter y determines the relative
emphasis placed on the load (as measured by p,(¢))
versus the appropriate projections of V;(¢) (as reflected
by v(?)).

The path liability of a node n; with respect to a
message passing through #; on its way to a destination ny
is given by

Dya

B= % pi), 4)

where D;; is the Euclidean distance between n; and n;.
Clearly, choice of a neighbor node that has the smallest
P, biases the decision mechanism to route messages
along paths that cover the largest fraction of the re-

maining distance to the destination (provided other
things being equal).

Other formulations that share the spirit of the ex-
amples shown above for the calculation of load and path
liabilities are certainly possible. In what follows, we
present the effects of each of the parameters, o, f, and y
used in the framework and described above. A detailed
description of Quo Vadis and the corresponding mech-
anisms can be found in Mikler et al. (1997).

3. Properties of parameterized routing heuristics

A prototype implementation was used to conduct a
number of experiments to explore the effects of the
various parameters used in the framework. These ex-
periments were conducted in simple regular m x n grid
networks. We anticipate that more general network to-
pologies might present several additional specific issues
that will have to be investigated. However, our primary
objective in this paper is to analyze the behavior of
routing mechanisms based on parameterized heuristics
within a relatively simple setting.

A detailed description of the simulation environment
can be found in Mikler et al. (1998). Initial experiments
were focused on the study of the effects of the parame-
ters o, 5, and v, as used in Egs. (1)—(3) in an m x n grid
network.

3.1. Routing in the presence of single hotspots

The parameter o determines how the composite load
landscape of the network is captured by the views
maintained by the individual routing agents. Therefore,
both the distance over which a specific load condition
can have impact on routing decisions as well as the ex-
tent of this impact are governed by .

As all parameters in the framework are tightly cou-
pled, a demonstration of the effects of o with respect to
the view computation required the decoupling of the
knowledge representation from the routing mechanism.
For this simulation experiment, a 10 x 10 grid network
was set in a particular state corresponding to a pre-de-
termined load distribution. The underlying motivation
of this approach is to statically model various load
conditions and to determine their impact on the view
Vi(¢) as acquired by node n;. In order to eliminate the
effects of routing decisions on the load distribution in
the network, single hotspots were created at individual
nodes by generating self-traffic at a constant rate. Thus,
messages did not have to be routed among network
nodes but could be delivered to the node itself at a node’s
service rate. As a consequence, the values for parameters
p and y were rendered irrelevant for this experiment. The
network together with its corresponding load distribu-
tion is shown in Fig. 1. While the a single hotspot may
appear to be somewhat restrictive, it models many
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Fig. 3. VE for o = 0.3 and « = 0.1, respectively.

adverse situation, such as node failures, link failures,
local congestion, etc.

Adverse load conditions (hotspots) were simulated by
increasing the message generation rate at a single node
(or a small number of nodes). Since no messages were
sent across the network, the only information commu-
nicated among network nodes was view and load in-
formation. The views in each of the four directions
(East, West, North, and South) as acquired by the in-
dividual routing agents were computed after the the
convergence of view computation. This experiment was
repeated for different values of «. Figs. 2 and 3 show the
east-views, VE, as acquired at every node n; in the net-

work after 7 seconds of simulation for different values
of a. It should be noted that Figs. 2 and 3 do not display
view values for nodes {9,19,29,39,49,59,69,79,89,
99}, as the east-views in these nodes are undefined.
From Eq. (1) it is apparent that for o = 1.0, the
routing agent at node n; computes its east-view V¥ solely
as the weighted average of local load values p; obtained
from neighbor nodes n; € H;. The views, VjE, computed
in neighbors n; do not contribute to V;*. For smaller
values of o (i.e., « = 0.6), Eq. (1) takes the view V]E of
neighbors into account thus computing VF as an average
of view and load measures of nodes in an extended
neighborhood. That is, network nodes n;, ¢ H; affect the
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magnitude of VE. These effects are clearly displayed in
Fig. 2. As o« — 0 a load condition in a single node n;
affects the views maintained by a larger set of routing
agents. However, the magnitude of impact on the view
VE is significantly reduced. Fig. 3 shows the change of
magnitude as a function of distance from ;.

How the individual views V%, can be used to optimize
performance in an anticipatory fashion is further high-
lighted in the study of effects of parameter 7.

3.2. Compromizing between distance and delay

For the study of the effects of f on the selection of
routes, message routing was simulated in a 1024-node
grid network. The destination nodes for messages are
chosen at random during message creation. Each node
in the network has equal probability of being selected as
the destination node for a particular message. Self-
traffic, however, is prohibited. It is further assumed that
links have sufficient bandwidth so that transmission
delays are negligible. Message delays are thus assumed
to be caused solely by queuing delays encountered in
network nodes. A more detailed description of the
simulation setup for the study of the effect of f is pre-
sented in Mikler et al. (1997).

The following simulation results clearly demonstrate
the effects of parameter . The parameterized routing
heuristics used in the framework selects routes so as to
reactively as well as pro-actively avoid highly utilized
network areas. This behavior is governed primarily by
the setting of the parameter f in Eq. (2). To isolate the
effect of  on the performance of the decision mecha-
nism other parameters were maintained constant
(x=7y=0.5).

3.2.1. Shortest path vs. load sensitive routing

From Eq. (2) it is apparent that choosing parameter
p = 1.0 forces the routing mechanism to select routes so
as to optimize with respect to the path liability by
minimizing the remaining distance to the destination
node. This is equivalent to what is generally referred to
as shortest path routing. In a grid topology, the number
of shortest paths between a node »n; and the destination
node n; depends on their relative hop-distance. As one

load
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might expect, not all nodes in the grid network experi-
ence the same amount of traffic. In fact, nodes in the
center of the grid network have to route a larger number
of messages on average as compared to nodes at the
fringes of the grid. This is due to the fact that a larger
number of shortest paths between randomly chosen
source—destination pairs pass through nodes in the
center of the grid. The corresponding load-graph is
shown in Fig. 4.

As the message delay in a network node increases
exponentially with its load, it follows that nodes in the
center of the grid contribute most to the overall message
delay along path traversed by the message. Thus, load at
these nodes impacts the total message delay to a much
higher degree than nodes at the fringes of the grid. This
effect is amplified as the average network load increases.
A heuristic routing function with the appropriate pa-
rameter setting delays the onset as well as reduces the
impact of this effect given an appropriate setting of /5.
While a shortest path routing algorithm makes a ran-
dom decision among neighbors with equal path utility
(Eq. (4)), taking network load into account, biases the
selection towards neighbors with better load utility
(Eq. (3)). The price paid for the ability to circumvent a
highly utilized network area is an increase in mean path
length 7.

Table 1 indicates the existence of an optimal value for
B, B, that minimizes the mean message delay. An in-
crease in the mean delay is observed for f§ < f* as the
routing decisions are dominated by the load liability L.
For <« f* the behavior of the mechanism may ap-
proach that of random routing. For f > f*, the routing
mechanism approaches shortest path routing thereby
causing an increased mean message delay as discussed
above.

The load distribution in the network with different
values of f is shown in Fig. 4.

Clearly, a load sensitive setting of f§ results in a more
balanced distribution of load, thus preventing a single
network area from becoming overutilized. If load vigi-
lance is high (i.e. small f§), routing decisions may result
in extended path length. However, this does not neces-
sarily lead to an increase in total message delay along
the path if the message is routed through a lightly loaded

load

Fig. 4. Load distribution in a 1024 node grid network using shortest path routing, i.e., f = 1.0 and f = 0.4, respectively.
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Table 1
Mean hop count (k) and mean message delay (d) for different values of
P (n > 85700 messages)

B h d

0.3 23.07 2.43
0.4 22.76 241
0.5 22.44 2.36
0.6 22.15 2.34
0.7 21.89 2.33
0.8 21.58 2.35
0.9 21.33 2.51
1.0 21.29 2.79

area. The exponential increase in delay with increasing
load justifies such a tradeoff.

3.2.2. Autonomous load balancing properties

The term hotspot refers to a single node or a small
group of nodes in the network that experience a sudden
increase in utilization. Such hotspots may be caused due
(among other things) to:

e Jocalized increases in arrival rate, or
e Jocalized node or link failures.

One of the desirable properties of a routing mecha-
nism is its ability to react to such load changes. A good
routing algorithm should attempt to route messages
around the hotspot, thereby reducing the message delay,

1.1

1.0

load

0.9

0.8 -

0.7 .

55.0 87.5 120.0
Simulation Time

Fig. 5. Effects of sudden load increase in node n; under shortest path
routing.
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perhaps at the expense of increasing the total length of
the route.

The ability to adapt to such localized load changes
quickly has been deliberately designed into the routing
mechanism. Nodes in the neighborhood of a suddenly
over-utilized node start to divert traffic as soon as the
load increase is made known to them. High load in an
affected node (as in highly loaded network areas) has a
repulsive effect on traffic and routing decisions are au-
tomatically biased towards avoiding that node. Again,
the extent of this bias is determined by f. Such disper-
sion of traffic is accomplished with minimal impact on
nodes that are sufficiently distant from those that are
affected by local increases in load.

While the increase in a node’s load should clearly
repel messages from being routed though it, a sudden
load decrease should be utilized by nodes in the neigh-
borhood in their effort to distribute network load more
uniformly.

Sudden load changes were simulated by increasing
and decreasing a node’s service rate. The effects of such
a change when shortest path routing is in place are
shown in Fig. 5. The effects of adaptive measures taken
when the parameterized heuristics represent a higher
load vigilance are shown in Fig. 6.

Shortest path routing (i.e., f = 1.0) does not attempt
to reduce the influx of traffic into the affected area in
order to normalize the load conditions at the hotspot.
Heuristics tuned towards load sensitive routing, how-
ever, tend to balance load conditions in the network in a
relatively short time. This is accomplished by the dis-
persion of traffic which would otherwise have been
routed through the hotspot area.

3.3. From local information to a global view

In Eq. (3), y defines the significance of load measures
P, versus v, the projections of a node’s view V,(¢) with
respect to a particular destination. The underlying mo-
tivation is to enable network nodes to make routing
decisions in either reactive or anticipatory fashion. For
y =1, only p, determines the load liability of n;, thereby
enabling n; to route messages so as to circumvent the

0.50

0.45
0.40

load

0.35
0.30
0.25

0.20 r

55.0 87.5 120.0
Simulation Time

Fig. 6. Effects of load sensitive routing on sudden load changes in node #;.
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neighbor node n; € H; with the highest utilization, thus
reacting to adverse load conditions in the immediate
neighborhood. On the other hand, for small values of y
(i.e., y — 0) node n; will base its evaluation of neighbors
n; on a load summary as represented by V;(¢z) with re-
spect to the relative location of the destination. Hence,
adverse load conditions on the path towards the desti-
nation can be sensed by #n; so as to adjust the routing
decision.

As for the evaluation for o, the isolation of the effects
of y required the network to remain in a pre-determined
state. The corresponding network and load graph are
shown in Fig. 7.

In addition, nodes 40 and 49 were selected to serve
as source and destination nodes for a single message
which is traced on its journey through the network. The
purpose of the trace is to identify all nodes that are
visited by the message thus revealing the routing deci-
sions made by intermediate nodes. This experiment was
repeated for various values of y. Since f controls the
significance of the load liability, it was chosen so as to
amplify the effects of 7, i.e., f was maintained constant
at 0.2. The value of o was set to 0.3, thus making the
effects of adverse load condition visible at distant
nodes.

The different routes traveled by a test message are
presented in Table 2 for various values of y. Clearly, the
shortest path between source node 40 and destination

0.9
1.0

40,41,42,43,44, 45,46, 47,57, 58,59, 49
40,41,42,43,44, 45,46, 47,57, 58,59, 49

Table 2
Points of deflection for different values of y
y Route
0.0 (40,30,31,32,33,34,35,36,37, 38,48,49)
0.1 (40,41,31,32,33,34,35,36,37,38,39,49)
0.2 (40,41, 31,32,33,34,35,36,37,38,39,49)
03 (40,41,42,32,33,34,35,36,37,38,39,49)
0.4 (40,41,42,43,33,34,35,36,37,38,39,49)
05 (40,41,42,43,33,34,35,36,37,38,39,49)
0.6 (40,41,42,43,44,45,55,56,57,58,59,49)
0.7 (40,41,42, 43,44, 45,46,47, 57,58, 59, 49)
0.8 (40,41,42,43,44,45,46,47,57,58,59,49)
( )
( )

node 49 is given by (40,41,42,43,44,45 46,47,48,49).
However, the high utilization of node 48 forces the route
to deflect. The nodes at which deflection occurs are
shown in bold. Table 2 shows that for large values of y
deflection takes place only when adverse load conditions
are encountered in the immediate neighborhood; (i.e. ny47
deflects as ngg € Hy; experiences a high utilization.)
Small values of y, force Eq. (3) to attach a higher sig-
nificance to the view projection v,(¢), which reflects the
adverse load conditions at node 48. As a consequence,
nodes can take anticipatory action and deflect earlier.

The experimental results summarized here demon-
strate the promise of control and decision mechanisms
based on parameterized heuristics for routing in large
communication networks. This raises the question as to
whether it is possible to come up with a more systematic
characterization of the properties of these heuristics to
shed more light on the experimental results as well as to
guide the design of similar heuristics. In the following
section we will develop theoretical framework based on
utility theory and decision theory for the design and
implementation of intelligent agents for routing and
control.

4. Design and analysis of parameterized heuristics

Routing messages in large communication networks
so as to optimize some desired set of performance cri-
teria presents an instance of resource-bounded, multi-
criteria, real-time, optimization problem. Our proposed
solution to this problem involves the use of utility-
theoretic heuristics (Mikler et al., 1996). Utility is a
measure that quantifies a decision maker’s preference for
one action over another (relative to some criteria to be
maximized) (French, 1986). When the result of an action
is uncertain, it is convenient to use the expected utility of
each action to pick actions which maximize the expected
utility. The heuristic function enables the routing agent
at each node n; in the network to select a best neighbor in
its neighborhood to route a message M (which it has
received or generated) towards its destination.
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The utility Ul.d of node n; (with respect to a destination
ng) is computed by the routing agent at a neighboring
node, n;, as n; attempts to route a message M that it has
received, along a desired (e.g., minimum delay) path, to
M’s destination, n,. A routing agent at node n; prefer-
ence-orders its neighbors n; according to their respective
utilities. We say that the routing agent at n; is indifferent
with respect to the choice between two neighbors n; and
say n; if U = Uf (where n, is the destination of the
message M being routed by n;). We denote the indif-
ference between two nodes by n, ~ n;. We say that a
neighboring node n; is preferred by the routing agent at
n; over another neighbor n; if U¢ > U{!. We denote this
preference by n, > n.

For the purpose of the analysis that follows, it is
assumed that the network is a regular rectangular grid
(with adjacent nodes being at unit distance from each
other). Additional assumptions concerning load and
load dynamics are made as necessary. A suitably defined
reward function provides the directional guidance nec-
essary to route each message towards its destination.

In the regular grid network, let D;, denote the
Manhattan distance between a node n; and n,;. Other
topologies may require the use of other distance mea-
sures. We define the partial reward for node n; as
R? = fr(Dia), where fx is a reward function chosen such
that ViVj D,y < D;y <= fx(D;a) < fr(Dia)-

There are many possible choices for the reward
function fz(-). A particular example of fz(-) is given by
fr(Dig) = (m+n) — D;4/(m + n), where n and m are the
dimensions of the grid network (see Fig. 8). Note that
the results that follow are independent of particular
choices of fr(-) so long as the reward is an inverse
function of the distance to the destination.

We define a cumulative reward R” obtained by a
message M traveling along a path P (from its source
to its destination n,) as R” =3~ _, R{. At each node »
along path P, the delay encountered by a message M is
modeled by a non-negative, bounded cost C;. That is,

Reward

Fig. 8. Reward function fx(D;4) = (m+n) — D;4/(m + n) for desti-
nation n; = (10, 5).

Vi, 0< C; <& Tt is further assumed that the penalty C;
remains constant during the time it takes to make a
routing decision for message M at node n;. If cumulative
delay is to be minimized, a natural interpretation of C; is
the delay (on account of load) at n;. However, since
delays can become unbounded when there is queuing, it
may be necessary to discard some messages in order to
keep the delay bounded at the expense of message loss.
If cumulative load is to be minimized, C; is guaranteed
to be bounded by the maximum utilization p < 1.

The total cost incurred by a message along a path P is
given by C" =37 ,C. We can now define the net
partial payoff Z¢ received by a message M when it
reaches the node n; on its way to its destination n; as
Z¢ = R? — C;. Correspondingly, the total payoff along a
path P is given by Z” = RF — C”. Note, that the payoff
received at a node n; may not be the same for different
destinations. Hence, Z¢ represents the payoff with re-
spect to a particular destination node n,;. Let IT be a
minimum cost path from a source n, to a destination
ng. The cost C along this path is given by CU =
minvp{CP}.

In the discussion that follows, in order to simplify our
analysis, we proceed under the assumption that the
network is uniformly loaded. This assumption is cap-
tured by the following definition.

Definition 1. If Vi, C; =k (0< k< &), we refer to the
network as a uniform cost network.

Lemma 1. In a uniform cost network, a simple utility
Sunction U° = Z¢ is sufficient to route each message along
a minimum cost path to its destination.

Proof of Lemma 1. Since in a uniform cost network,
Vi, C; = k, the partial reward Z¢ can be written as
Z¢ = R4 — k. Thus, Z¢ can be maximized at each inter-
mediate node along path P simply by maximizing RY.
Let Ap be the number of nodes on a path P. As message
M is propagated along a P such that R? is maximized at
every intermediate step, in a regular grid network, the
property of the reward function (ie., ViVj D;;<
D;y <= fr(D;4) < fr(D;4)) guarantees that M is prop-
agated along a shortest path (as measured by the number
of hops) P from the source n; of the message M to its
destination n, and thus we have C* = kAp. Since P is a
minimum hop (shortest) path, it follows that C* = CU.

Here, the uniform cost assumption renders the cost
component in the payoff function irrelevant for making
the routing decisions. This assumption is no longer valid
when the network is not a uniform cost network. In
what follows, we relax the uniform cost assumption by
allowing a single hotspot (a node with a high load rela-
tive to its neighbors) in an otherwise uniform cost net-
work.
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4.1. Routing in presence of a single hotspot

Definition 2. A hotspot, n,, in an otherwise uniform cost
network is a single network node which has a higher
load than its neighbors so that a message M traveling
through it incurs a cost C;, > k (where C; = k Vi # h).

Note that since the costs C; are bounded by ¢, it
follows that C, < ¢. Further note that the above defi-
nition of a hotspot says nothing about the relative
difference in costs C, and C;. A more realistic defini-
tion of a hotspot might require that the cost of routing
a message through a hotspot is significantly larger than
that of routing the same message through a node in
the neighborhood of the hotspot. Also, when a net-
work deviates substantially from the uniform cost as-
sumption, it is more useful to focus on the load
distribution in the vicinity of a node rather than hot-
spots. However, to make the analysis mathematically
tractable, the discussion that follows focuses on rout-
ing in an otherwise uniform cost networks with a
single hotspot.

As the uniform cost assumption is relaxed by allow-
ing a single hotspot n;, with cost C, > C; Vj # h in the
network, it is easy to show that relying on partial payoffs
alone as utilities for routing messages can result in sub-
optimal routes. Consider a grid network with node co-
ordinates increasing as a message M travels east and
south. From the uniform cost assumption, we have
C;=C; =k Vi, j# h. Let x,, y;, x4, and y, be the x and y
coordinates of M’s source and destination, respectively.
Let x; and y, be the x and y coordinates of a hotspot in
one of the following configurations:

Loxs <o SXa A Y SV < s

2. xy 2 X5 ZXa Ny Z V0 Z Va-

Here, the probability that a shortest path from n, to n,
passes through the hotspot n,, is non-zero. That is, unless
n, coincides with either n,, n,;, or both, there exists a
node n; in the neighborhood of hotspot n, that must
decide how to route M so as to minimize the total cost
incurred by M. As we show below, if this decision is
based on a preference ordering induced by the naive
utility function U° =Z7, messages can be routed
through the hotspot thereby incurring a higher cost than
they would have otherwise.

Assumption 1. For the discussion below, we assume that
the reward functions chosen guarantee that for any two
nodes, n;, n;, in the network the difference in reward
with respect to destination n; is greater than ¢ (ie.,
|R? — RY| > &), whenever D,y # Dy 4.

Assumption 1 ensures that the cost C; of a node #;,
(and ny, in particular) does not offset the guidance pro-
vided through R? unless two nodes with equal rewards
are being compared.

S L[]
Case 1 —
H
D
S
» Case2 +—
H: D
inskaaklnannal

Fig. 9. Sample node placement.

In the following we distinguish four canonical cases
(see Fig. 9). We focus in our analysis on configuration 1
above. Similar arguments hold for configuration 2.

Case 0. This case combines four scenarios of placing
nodes n,, ny, and n;, in the grid network, each of which
presents a trivial routing problem. In these scenarios, at
least two of the nodes ny, n,, and n;, are identical. That is,
ng = ng = ny, ng=ng, Ny =n, #ng, and ng # n, = ngy.
Clearly, in the first two scenarios, no routing decisions
are needed as the message source coincides with the
destination. Whenever the message source coincides
with the hotspot as in the third scenario, the routing
algorithm will select a neighbor n; € H; with the highest
utility. Hence, the routing algorithm performs as in the
case of a uniform cost network (without hotspots). For
the fourth scenario, Assumption 1 assures that n, yields
the highest partial reward RY, Vi, despite the fact that
the cost incurred by hotspot conditions reduces its
partial payoff. Hence, routing decisions can be made
without taking cost C; into consideration, as in the case
of a network without hotspots.

Case 1. Let P4;; denote the number of minimum hop
paths from a node n; to node n;. This case encompasses
all placements of nodes ny, n;, and ny, such that

1. PAg;, > 1 /\PA;,_d > 1 or

2. PAsjh =1 /\PAh,d = 1, where PAS,d > 1.

For scenario 1, the hotspot n;, does not share either the x
or y coordinates of n, or n,. That is, (x, < x; < x4) A
(3 < yn < ya). Scenario 2 represents a hotspot place-
ment such that n;, occupies either the same x or y co-
ordinate as n,.In either scenario, the partial minimum
hop paths from #n, to n, may be part of a minimum cost
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path from n, to n, if all nodes n; that neighbor the
hotspot take action to route M so as to circumvent n,.
Thus, the utility function U° = Z¢ is guaranteed to route
M on a minimum cost path to its destination n,.

Lemma 2. In a uniform cost network with a single hotspot
ny located such that (x; <xp <xq) Ay <y <), @
routing algorithm which propagates a message M such
that U° is maximized at every intermediate step will yield
an optimal path 1 with cost C".

Proof of Lemma 2. Clearly, the only nodes at which a
decision has to be made to circumvent n;, are n; or n;
(x, —1,3) and (x;,», — 1), respectively. Since x, <
Xq Ay < Vg, there exist nodes n; and n; with coordinates
(xn — Liyy + 1) and (x;, + 1,y — 1), respectively, that lie
on a minimum hop path from n, to n;. Since
Ci = C;, = k < Gy it follows that Z = Z{ > Z{. Hence, a
routing decision in »; or n; that maximizes the partial
payoff will choose n; or n; to propagate M towards ng.
Since C; = k Vi # h, and M is propagated along a min-
imum hop path, Lemma 1 guarantees that M is routed
along an optimal path IT.

Case 2. Here, n,, n;, and n;, are placed such that
(g < xp <x0) N (Vs < V0 = Va) or  (x; <xp=2x4) A
(s < n < ya), 1.5 (PAsy > 1) A (PAjq = 1).

Assuming the former, there exists a node n; with co-
ordinates (x;,y;) with (x; < x; < x) A (v, =y, = y4) from
which the number of minimum hop routes PA4;; = 1.
Since in a uniform cost network n; ~ n; Vk,l # h the
naive utility function U° can guide a message M through
n;, thereby committing to a path P with cost C* > C™.
Assuming that M is only routed using utilities to choose
among minimum hop routes, the additional cost
(CP — CM) is inflicted on M by n,. If M is permitted to
deflect from a minimum hop route, the additional cost
(CP — CM) is inflicted by n, itself or due to the extended
length of P in circumventing n,. As we will show in
Section 4.2, Case 2requires the most intricate design of
decision functions in order to circumvent the hotspot
and forward the messages on an optimal path.

Case 3. This scenario consists of all placements of n, ngy,
and n, such that (x,=x,=x,) A< <yy) or
(xy <xp <x4) A (b = ¥ = ya)- Since there is only a single
optimal path IT from n, to ny, i.e., PA;; = 1, message M
must either visit n, or deflect from the minimum hop
path in order to circumvent n;,. U°, however is not suf-
ficiently informative to guarantee an optimal routing
decision. Hence, M may be routed along a path P for
which C* > C™.

Assumption 2. In the following we assume that a node #;
upon receiving a message M from a neighbor node
n; € H; will refrain from propagating M back to n;.

This is a natural assumption that is meant to avoid
the so-called bouncing of messages back to a node from
which it was routed.

Lemma 3. In a uniform cost network with a single hot-
spot ny, a routing algorithm based on U° will deflect a
message M at most once in order to circumvent n; pro-
vided bouncing is avoided (via Assumption 2).

Proof of Lemma 3. Consider a node n; with coordinates
(xi,yi))such that x, < x; =x;, — 1 <xg Ay, < V=W =a
(similar analysis holds for the case where x, =
Xi=x, <x4 Ny <yi =y — 1 <yy). Node n; can deflect
M to a node n; with coordinates (x;,y;), such that
X, <X =x—1<x, <xg ANy <y;=wE1 Clearly,
PA;, =2. Since x;, <x,, PA4;; > 2. Hence there must
exist a node n; with n, € H; which lies on a minimum
hop path P from n; to n, such that n, ¢ P. Our partic-
ular choice of the reward function (see above) guaran-
tees that R = R{ > RY. In a grid, An,, [ # i,k such that
n € H; ARY > R¢ (since the reward function ensures
that the rewards vary inversely with the Manhattan
distance). Since C; = Cy = C; = «, Z! = 7} > Z{. This
limits the routing choices for message M at n; to n; and
ni, of which, by Assumption 2, n;, has to be chosen (since
otherwise M will be bounced back to n;, which had
routed the message to n; to begin with, thereby violating
Assumption 2). This ensures that from n;, M is sent
along a minimum hop path P to the destination n,.
Since n;, ¢ P, Lemma 1 guarantees that M is propagated
along P without further deflection.

The analysis of the performance of a routing algo-
rithm based on U° for each of the four cases above
yields the following theorem.

Theorem 1. In a uniform cost network with a single hot-
spot n;, with C, >k (where Yi # h, C; = k), a routing
algorithm which propagates a message M such that U° is
maximized at every intermediate step is guaranteed to
yield a path P with cost C* such that C’ — C"<
max((C, — k), 2k).

Proof of Theorem 1. 1In Case 1, Lemma 2 guarantees
that a routing algorithm based on U° will find a mini-
mum cost path if ny, n,, and n,; are placed such that
(xs < xp <x4) AN (yy <y <y4). Hence, C"=C" and
thus C* — C"" = 0 < max((C, — k), 2k).

Case 2 involves a node »; with coordinates (x;, y;) such
that x, <x;=x, — 1 <X A <y;=¥=y; OF X,=
Xi=x, <x4 Ny <y =y — 1 <y;. Now n; must decide
whether to route message M through n, or to deflect
M from a minimum hop path. Routing through #,
will result in a path cost C” which is sub-optimal by
an amount C,—«k. That is, C* - C'=C,— k<
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max((C;, — k), 2x). If n; chooses to deflect M so as to
circumvent n;,, M is propagated along a path P'. Let Ap
be the length (in number of hops) of the minimum hop
path P from »n; to n, via n, and Ap be the length of path
P'. Deflecting from path P in a grid topology yields a
path P’ with Ap = Ap + 2. Lemma 3 guarantees that M
is deflected at most once, C” = C"+ 2x. Hence
C" — C" = 2k < max((C;, — k), 2k).

In Case 3, the cost C™ for a minimum cost path II
between n, and n, is given by C"" = Apk + min(C), — «,
2k). Hence, C” — C"" < max((C, — k), 2k).

If n;, coincides with either n, or n,, the hotspot cannot
be circumvented and C” = C" (i.e., the minimum cost
path has to necessarily pass through the hotspot in this
case). Clearly, C*=C" and 0 < max((C, — k), 2xk).
Therefore, C¥ — C' < max((C, — k), 2k) VP.

4.2. Eliminating sub-optimality using a modified utility
function

Sub-optimal routing scenarios as discussed above
arise primarily as a result of a lack of knowledge at n;
at the time it is routing a message M to a neighbor #;,
regarding the likely cost of completing the path from
n; to the destination of M, namely, n,. Source-
hotspot—destination configurations corresponding to
scenarios described in Cases 2 and 3 can result in sub-
optimal routes (i.e., C* > C") when routing decisions
are based on the naive utility function U°. In what
follows, we derive more complex utility/decision func-
tions which would eliminate sub-optimal routing in
Cases 2 and 3.

4.2.1. Eliminating sub-optimality in Case 3

In order to eliminate sub-optimal routing in scenarios
corresponding to Case 3, additional constraints must be
added to the utility function U°.

Definition 3. Let U' be a utility function given by:

Ulz{RZ if k< C; <3N Bk (R) =R{) A (n; # na),
Z¢ otherwise.
J

U' exploits the fact that messages are to be routed in
a uniform cost network with a single hotspot. If routing
decisions are based on the preference ordering induced
by U' in an otherwise uniform cost network with a
single hotspot, every message originating in a source #;
and a destination n, that correspond to a source-hot-
spot destination placement described in Case 3 is guar-
anteed to be propagated along an optimal path II
between n, to n,. Using U', n; can decide whether or not
to propagate M through a hotspot n;, in its neighbor-
hood or to circumvent the hotspot by routing M
through a different neighbor n;, # n;,. In other words, the

preference ordering induced by U' ensures that at a
node neighboring a hotspot in a Case 3 scenario we
have:

L] (C;,—Ck):(Ch—K)>2K<:>nk > np,

L] (Ch—ck):(ch—K)<2K<:>nh > Ng.

Thus all routing decisions based on U' in Case 3
scenarios result in optimal (minimum cost) routes.
However, it is easy to see that U' does not eliminate the
possibility of a sub-optimal route in a source~hotspot—
destination configurations corresponding to the scenario
in Case 2.

4.2.2. Eliminating sub-optimality in Case 2

As shown by the preceding analysis, U' can result in a
sub-optimal routing decision in a source-hotspot—des-
tination configuration corresponding to the scenario in
Case 2. In particular, any routing decision in a config-
uration corresponding to Case 2 will result in a sub-
optimal path P if it results in the propagation of a
message M to a node n; € P such that x; <x, <x; A
Vi =Yn = Ya O Xj =X, = Xy /\yk <V <Ya. Routing de-
cisions based on a preference ordering induced by U'
can lead to such a situation since in a neighborhood H;
of n; such that n, € H;, Vn;, n, € H;, ny ~ n; provided
R{ = R{. Note that Case 2 scenarios include all place-
ments of n,, n,, and n,, such that V {m |x; #xs A
Vi # yd} 3 k7 l, such that (nk S H) \Y (I’l] S H)

These observations suggest the possibility of using an
estimate of the cost along paths from #n; to n; as a
component of a modified utility function U? so as to
induce a preference ordering between nodes (where no
such preference ordering is induced by U') so as to
eliminate sub-optimal routing decisions altogether. In
other words, U? should be able to induce a preference
ordering among nodes n; and #, in the neighborhood of
a node n; (the node making the routing decision for a
message M) such that: (n, € IT) A (n; € 1) = ny = ny.
We now proceed to define a cost estimator function E¢
as follows.

Definition 4. A cost estimator function E{(-) estimates
the cost E¢ of a minimal cost path to a destination ny
from a node n;.

It would be nice if the cost estimator function defined
above helps U? to induce the desired preference ordering
necessary to guarantee routing along an optimal path in
the scenario corresponding to Case 2. We capture this
property by defining what are called admissible cost es-
timator functions.

Definition 5. A cost estimator function is said to be
admissible if V nodes n; in the network, for all nodes #y,
n; in the neighborhood H; of n;, it is guaranteed that
(nkEH)/\(n,gl_I):E,‘f<Ej’
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Definition 6. We define a utility function U? as follows:

U2— U'1 if xS:xd\/yS:yd,
- Uj%’ = R;? -C; - E;’ otherwise.

In the discussion that follows, it is assumed that the
cost estimator function EY is admissible.

The estimate returned by £¢(-) must be based, at the
very least, on some knowledge of the current cost dis-
tribution in the network. More precise estimates would
require knowledge of the network dynamics. If costs
associated with each node are allowed to change with
time, as would be the case in a more realistic routing
task, since EY is computed at the time a message M is
being considered for propagation through n;, to a des-
tination n,, E¢ has to reflect changes in network load
over time. We need to represent at each node, the cost
distribution over the network in a form that is inde-
pendent of specific destination nodes (because the des-
tinations become known only after arrival of the
respective messages). Any such representation, in order
to be useful in practice in large networks, must not re-
quire the storage and update at (or broadcast to) each
node, of cost values for all the nodes in the large regions
of the network. Ideally, it must adequately summarize
the load values in large regions of the network as viewed
from a given node.

These considerations (among others) led us to define
a view, Vi, which is maintained in every node in the
network (Mikler et al.,, 1997). In a rectangular grid
network, this view consists of four components, one for
each of the four directions - north, south, east, and west.
Thus, we have: V; = [N, VS, VE VY.

Each component ¥ : (6 € {N,S,E,W}) represents a
weighted average of costs C; along the minimum hop
path from #n; to the border of the grid network in the
direction specified by 0. Consider two nodes, »; and »;,
located such that n, € H; and n; is to the east of n;, i.e.,
x; < xx Ay; =y Then V¥ is given by

C,+ VE
ViE: k—; k> (5)

VN, V5, and ¥}V are computed using analogous formu-

In the discussion that follows, we assume that suffi-
cient time has elapsed for the view computation to sta-
bilize following major load changes in the network
before the view is used in the computation of cost esti-
mates using E¢(-).

In practice, this assumption need not be satisfied ex-
actly so long as the views are adequately precise to en-
sure the admissibility of the cost estimator function
defined below. Assuming that n,; is located such that
Xg < xXg AYs <ya. Let Df = |x; —x4| and D} = |y, — y4|

denote the distance from #»; to n; in x and y direction,
respectively. E¢(-) is given by

_DVE+ DS

(6)
It is easy to verify that this estimator (which is one of
several alternatives that are possible) is admissible.

Lemma 4. For all nodes n; in the network, for each
message M from a source ng to a destination ng that
reaches a node n;, the routing decision at n; based on the
preference ordering induced by U? will route M along a
path P selected only from the set of minimum hop paths
Sfrom n; to ng, unless PA;, = 1 and (ny, € P) A (n, € H;).

Proof of Lemma 4. Consider a routing decision to be
made for message M by a node n;. Since P4;, > 1 and
n;, € P, there must exist at least one node n, € H; such
that n;, # n, and RY < RY (i.e., n; is closer to the desti-
nation (n,) than n;). For Lemma 4 to hold, we have to
show that the router at n;, based on the preference or-
dering induced by U?, will necessarily route M to such a
node n;. That is, U?> must ensure that »n; will not route M
through a node (n; € H;) A (n; # n;) such that D;, >
D; 4 > Dy 4. In other words, in this scenario we have to
show that n, > n; as per the preference ordering in-
duced by U2

Note that by Assumption 1 (R —R{)>¢ and
(R{ —R{) > ¢, and R{ — R} > 2¢ (this follows from the
fact that n; and n; are one hop from each other, n; and n;
are one hop from each other, and n; and n; are two
hops from each other). Since Vi, C; < ¢, Eq. (5) guar-
antees that V°<¢. By Eq. (6), EY(-)<¢, and thus
(Ci+E}) < 2¢ Thus we have (R] — Gy — Ej) — (R —
C; — E{) > 0 which implies U; > U{. This implies that
n; routes M through n;. Since n, € P and n; ¢ P (where
P is a minimum hop path from n; to n,), this proves
Lemma 4.

The preceding discussion sets the stage for Theorem 2
that establishes a major property of the utility function
U?, namely, that it eliminates sub-optimal routes in an
otherwise unformly loaded grid network with a single
hotspot.

Theorem 2. In a uniform cost network with a single hot-
spot n;, with an associated cost C, > k (where Vi # h,
C; = k), a routing algorithm which makes routing deci-
sions at each node based on a preference ordering induced
by U? is guaranteed to propagate each message M along a
minimum cost path TI1.

Proof of Theorem 2. Consider the placement of n, and
ng, such that (x; <x4) A (3 <y4) (analogous arguments
hold for other source-destination configurations).
For nodes n;, n;, and n, for which (x;,x;,x <xy),
i Yis e <), (nj,ne € H;) and RY < R;.’ =R{, as per
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preference ordering induced by U? for a message to be
propagated from n;, n; ~ n;. Hence, a message will be
propagated through the network along a minimum cost
partial path until a routing decision has to be made
which involves a node n; with coordinates x; = x;, Ay, <
Vi or x; < x; Ay = 3. At this point, the utility of #; is
below that of some n; with coordinates x; < x; Ay; <y
on account of the relative values of the cost estimates E;’
and E¢. This causes the message M to be propagated to
a node n; with coordinates x; = x, — 1 Ay, =y, — 1. We
can now show that M will always circumvent n; and is
propagated along IT. We will consider each of the four
cases in turn.

Since routing in Case 0 scenarios is equivalent to
routing in the absence of hotspots, we have U?=
U' = U°. Hence, a message M will travel along a min-
imum delay path IT.

As an example for Case 1 scenarios, we have
xn < x4 ANyp < ys. Consider the two possible routing
decisions n; and n; with coordinates x; = x;, — L Ay; =,
and x; = x;, Ay, =y, — 1, respectively. Since both n; and
n; offer a minimum cost path to ny, either decision will
cause the message M to be routed along an optimal path
II. Since C,>C, =« for n, € H, or n € H; and
X < Xxg ANy <ys, M will circumvent n, while ap-
proaching n,. Lemma 4 assures us that U? will propa-
gate messages only along a minimum hop path and since
given the same number of hops, a path that circumvents
a hotspot is necessarily of a lower cost than a path that
goes through a hotspot, we can say that for all source—
hotspot—destination configurations that correspond to
the Case 1 scenario, U? guarantees that M is propagated
along an optimal path IT.

In a Case 2 scenario, the routing algorithm has to
choose at a node #,;, a neighbor from among nodes #;
and n; with coordinates x; =x, — 1 Ay; =y, =y, and
xy =x, Ay =y, — 1. Clearly, a routing decision that
would yield n; will result in a sub-optimal path P since
x;=x; —1 < x4 ANy; =y, = ys. We can now prove that a
routing decision based on the preference ordering in-
duced by U? will necessarily select n; over n; thereby
circumventing n,. Clearly, C; = C, = « Vi, k # h. Since
all nodes to the east of n, have cost k, Eq. (5) yields
VE = k. It follows therefore that the east view computed
at n; is V;* = (C, 4 x)/2. Correspondingly, the south
view computed in n is V3 = (C, + )/2. As n;, does not
impact the south view of n; or the east view of ny, we
have V? = VF = k. Since n; and n; have the same dis-
tance from n,, we have R?’ = RY. Therefore the prefer-
ence ordering between n; and n; for routing decisions in
n; is determined by the relative values of £¢(-) and Ej (-).
In other words, n; is preferred over n; if E{(-) — E{/(-) > 0.
E{(-) and Ej(-) are given by:

_ Dix+Di((k+G,)/2)
B D; + Dy ’

E{()

Di((k + G,)/2) + Djx
DD,
(Df + D((x + G)/2) + (D} = D)k
D+ D) |

El() -

E{(-) — E{(-) is then given by
(Di + V(e +Ch)/2) + (D = D
D+,

- (D;;K H;E((f; C1)/2) >

Since (D} + Dj) = (Dj + Dy) it suffices to consider the
difference

K+Ch

(D,‘C—&—l)( )—F(D/:—I)K

(e 2i(757))

which simplifies to

r= (C’1;K>(m—nz+1).

Now, r > 0 = E{(-) > E{(-) and n; should be preferred
over n;. This is the case when (D] — D; + 1) > 0.

Since x; < x4, Dy = 1. As y, =y, and 3, =y, — 1, we
must have D} = 1. Therefore, (D —D; +1) >0 and a
routing decision based on U? will route the message M
to n; on its way to the destination n,.

For Case 3 scenarios, U? uses U' which will yield an
optimal path IT (as shown in Section 4.2.1). This proves
Theorem 2.

5. Summary and discussion

Routing and control mechanisms which are based on
parameterized heuristics can significantly reduce the
resource requirement for storage, acquisition, and use of
network state information while achieving the desired
performance (as defined by the criteria such as average
message delay). Conventional routing and control
mechanisms rely on relatively up-to-date information
about the state of the entire network. Hence, in large
communication networks with thousands of nodes dis-
tributed over a wide area, they entail tremendous re-
source overhead in terms of memory needed at
individual nodes, computation time for making deci-
sions, and network bandwidth needed to keep the in-
formation up-to-date. The overall effect of this
phenomenon include: reduced utilization of the network
(in terms of network bandwidth used to actually trans-
mit messages as opposed to information needed for
network management), deterioration in the quality of
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routing and control decisions as measured by some
performance metric, or both.

Against this background, we have presented in this
paper, a framework for adaptive heuristic routing by a
collection of autonomous, reactive, and proactive rout-
ing agents. The size of the knowledge base S;(¢) main-
tained by the routing agent at each node n; depends
solely on the number of neighbors in its neighborhood
H; and is independent of the size of the network. Thus if
M is the total number of nodes in the network and % the
average connectivity (i.e., the average cardinality of H;),
then the storage required at each node is O(%4). This
constitutes a significant reduction in storage and pro-
cessing overhead (especially in very large networks
where M > h) over conventional routing mechanisms
(e.g., those that use global routing tables) which require
O(M) storage at each node.

As the routing agents at neighboring nodes »; and »;
communicate only local measurements p;(¢) and the
view vector V;(¢) the bandwidth requirement is small
compared to conventional routing mechanisms. The
routing mechanism realized by the collection of inter-
acting routing agents does not attempt to construct a
precise picture of the network state as imprecision in-
creases with distance and uncertainty of routing deci-
sions is inevitable. Instead, it utilizes local information,
supplemented by a weighted summary of the global
network state. Directional orientation is provided
through a global coordinate system. Thus, costly va-
lidity check of information as required by routing
methods that use the link state protocol become un-
necessary.

The experimental results summarized in this paper
demonstrate that utility-theoretic routing heuristics are
largely successful in meeting its primary design objec-
tives, at least when it is used within the relatively simple
regular grid network. Particularly noteworthy is the
ability to pro-actively as well as reactively avoid con-
gestion in the network while simultaneously minimizing
message delay. More systematic parametric study of
routing heuristics in a dynamic environment with em-
phasis on parameters such as, o, f§, y,and update interval
7 (and the interrelationships among them as well as f) is
a topic of ongoing research.

Extensive research by other researchers on both link
state and distance vector routing algorithms have un-
covered many issues that need to be considered in the
design of new routing mechanisms. Examples of such
design issues are bandwidth and storage overhead, per-
formance in the presence of failure (Merlin and Segall,
1979; Jaffe and Moss, 1982; Wong and Kang, 1990),
message looping and bouncing. The approach presented
in this paper is aimed at reducing resource overhead.
Issues such as message looping, message bouncing, as
well as mechanisms to deal with node and link failures
are currently under study.

A long-term objective of this research is the design of
multi-agent systems consisting of autonomous, intelli-
gent agents for self-managing, low-overhead, robust and
adaptive traffic management in very large high speed
communication networks of the future. Towards this
objective, mechanisms that dynamically adapt the tun-
able parameters in response to changes in network dy-
namics are of interest. This, however, requires an
understanding of the complex interactions that exist
between different measures of network performance and
resource requirements and the development of a coher-
ent framework that facilitates a graceful tradeoff of
some of the performance measures and resource re-
quirements against others on demand. Variations of
techniques drawn from adaptive control and machine
learning — especially reinforcement learning (Kaelbling
et al., 1996; Barto et al., 1995; Bertsekas and Tsitsiklis,
1996) are currently under investigation. For examples of
preliminary work by other investigators on this topic,
the reader is referred to Littman and Boyan (1993) and
Lehmann et al. (1993).

Decision theory and artificial intelligence provide a
range of tools that can be useful in the design of intel-
ligent, adaptive, self-managing communication net-
works. Decision and control tasks that arise in such
networks (e.g., routing decisions made at each node,
actions taken to balance the load across the entire net-
work, etc.) have to attempt to satisfy as closely as pos-
sible, multiple, and often conflicting, performance
criteria. Examples of such performance criteria include:
network throughput, maximum tolerable delay, maxi-
mum tolerable message loss, average delay, degree of
load balancing, etc.

In this paper, we have formulated some simple util-
ity-theoretic heuristic decision functions for guiding
messages along a near-minimum-delay path in a large
network. We have analyzed some of the interesting
properties of such heuristics under a set of simplifying
assumptions regarding network topology and load dy-
namics. For a regular grid network with uniform load
(with the exception of a single hotspot), we have iden-
tified the precise conditions under which a simple and
computationally efficient utility-theoretic heuristic de-
cision function is guaranteed to route a message along a
minimum delay path when it is assumed that the change
in network load is negligible during the time it takes to
make a routing decision. We have derived an upper
bound on the sub-optimality of a path and have es-
tablished an upper bound on the probability that a path
between a randomly chosen source—destination pair is
sub-optimal by considering configurations of uniformly
loaded grid networks with single hotspots under the
assumption that each source—destination pair is equally
likely. We have modified the underlying heuristic
function such that it is guaranteed to yield optimal
routes under the same set of assumptions about net-
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work topology, load, and load dynamics. The study of
utility-theoretic heuristics which is described in this
paper, was, at least in part, motivated by a desire to
formulate the heuristic routing functions and to un-
derstand the experimental results in more precise
mathematical terms.

Some natural questions to ask at this point include:
How realistic or practical are the various assumptions
that were made in our development and analysis of
utility-theoretic heuristics for routing? How can the re-
sults be applied (if at all) to more realistic communica-
tion network environments in which assumptions
regarding network topology, load, and load dynamics
do not hold? How can the analysis be extended to such
scenarios? How can computationally efficient utility-
theoretic heuristics be designed for different sets of
performance criteria for such complex and dynamic
networks so that they become essentially autonomous
and self-managing? Although this paper does not pro-
vide complete and satisfactory answers to all these
questions, we believe that it constitutes a useful (albeit
perhaps tentative) first step in that direction. In this
context, a few comments are in order.

The simulation results of experiments using heuristics
that are very similar in spirit to U? display the property
of automatic load balancing. This suggests that the
simplifying of uniform network load (except at a hot
spot) is useful at least as a crude first approximation of a
more realistic scenario. A hotspot is typically caused in
such a network due to extensive influx of traffic to a
particular network node (or group of nodes) or a node
or link failure (which is generally assumed to be rare in
modern communication networks). However, the be-
havior of the routing functions compensates for this
change by redistributing traffic away from the hotspot.
Also, given this behavior, it is reasonable to assume that
the probability of several hotspots occurring simulta-
neously within close proximity of each other in such a
network is generally quite small. A possible exception to
this scenario would be a hotspot region (caused for ex-
ample, by a failure of an entire sub-network as could
occur in the event of a major natural disaster). When the
hotspots are not in close proximity of each other, the
single hotspot assumption holds at least locally in a
large network. Similarly, the uniform load assumption is
also likely to hold (given the load-balancing tendency of
the heuristic routing functions), at least locally (except
for the discontinuity introduced by a hotspot), in a large
network. These observations suggest that our analytical
results are likely to be useful (at least in qualitative
terms) to guide the design of utility-theoretic heuristics
for a more complex network. Of course, this does not
mean that it is not worthwhile to extend our analysis to
a range of increasingly complex scenarios by removing
some of the simplifying assumptions. Some obvious
cases to consider include: allowing irregular grids; al-

lowing non-uniform (but relatively smooth) load dis-
tribution — except at a hotspot, allowing multiple
hotspots or contiguous hotspot regions (of various
shapes), etc.

It is perhaps worth emphasizing that the utility
function U? developed in this paper yields minimum
delay paths if certain assumptions regarding network
topology, load, and load dynamics hold — by making use
of the measured uniform load in the network (and hence
the delay per link). Thus, the performance of such util-
ity-theoretic heuristics critically depends on the existence
of an adequately precise estimator of delay (or some
other performance measure) that would result from a
particular routing choice. A wide range of such esti-
mators are possible, depending (among other things) on
what can be assumed regarding the network topology,
load, and network dynamics. It might be useful to
analyze a range of such estimators and the resulting
heuristics based on different sets of such assumptions —
especially since a useful strategy for designing good
heuristics for complex problems is based on solution of
simplified or relaxed versions of the original problem
(Pearl, 1984). Other interesting research directions in-
clude: investigation of methods for adaptation that en-
able the tuning of heuristics — perhaps parameterized in
some manner — using appropriate measurements of
network performance as feedback in real-time — drawing
upon the rich literature on adaptive control and tech-
niques for learning (Honavar et al., 1998; Mitchell,
1998) for constructing new heuristics or modify existing
heuristics as a function of measured network behavior
or as a function of information gathered through di-
rected experiments initiated by the network during
otherwise idle periods.

The task of making decisions based on incomplete
and uncertain information is by no means limited to
communication networks. Load distribution and task
scheduling in distributed computing environments are
other examples of decision mechanisms that are at-
tempting to maximize certain performance criteria
without having access to global information upon which
their decisions can be based. The tradeoff between the
quality of decisions and the resource overhead associ-
ated with knowledge acquisition and maintenance is
critically important to understand in any complex
dynamic environment. Examples of such complex dy-
namic systems include power systems, transportation
systems, distributed computing systems, sensor net-
works, and manufacturing systems. Development of
distributed intelligent information networks consisting
of large numbers of intelligent, autonomous, adaptive,
communicating, and cooperating agents for monitoring
and control of complex dynamic systems and related
applications is a topic of ongoing research (Honavar
et al., 1998; Silvescu and Honavar, 2000; Sharma et al.,
2000).
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