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Abstract

Attribute Value Taxonomies (AVT) have been shown to
be useful in constructing compact, robust, and comprehen-
sible classifiers. However, in many application domains,
human-designed AVTs are unavailable. We introduce AVT-
Learner, an algorithm for automated construction of at-
tribute value taxonomies from data. AVT-Learner uses Hi-
erarchical Agglomerative Clustering (HAC) to cluster at-
tribute values based on the distribution of classes that co-
occur with the values. We describe experiments on UCI
data sets that compare the performance of AVI-NBL (an
AVT-guided Naive Bayes Learner) with that of the stan-
dard Naive Bayes Learner (NBL) applied to the original
data set. QOur results show that the AVTs generated by
AVT-Learner are competitive with human-generated AVTs
(in cases where such AVTs are available). AVT-NBL us-
ing AVTs generated by AVT-Learner achieves classification
accuracies that are comparable to or higher than those ob-
tained by NBL; and the resulting classifiers are significantly
more compact than those generated by NBL.

1. Introduction

An important goal of inductive learning is to generate
accurate and compact classifiers from data. In a typical
inductive learning scenario, instances to be classified are
represented as ordered tuples of attribute values. How-
ever, attribute values can be grouped together to reflect
assumed or actual similarities among the values in a do-
main of interest or in the context of a specific application.
Such a hierarchical grouping of attribute values yields an at-
tribute value taxonomy (AVT). For example, Figure 1 shows
a human-made taxonomy associated with the nominal at-
tribute ‘Odor’ of the UC Irvine AGARICUS-LEPIOTA
mushroom data set [5].
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Odor attribute

Figure 1. Human-made AVT from ‘odor’ attribute of
UCI AGARICUS-LEPIOTA mushroom data set.

Hierarchical groupings of attribute values (AVT) are
quite common in biological sciences. For example, the
Gene Ontology Consortium is developing hierarchical tax-
onomies for describing many aspects of macromolecular se-
quence, structure, and function [1]. Undercoffer et al. [24]
have developed a hierarchical taxonomy which captures the
features that are observable or measurable by the target of
an attack or by a system of sensors acting on behalf of the
target. Several ontologies being developed as part of the
Semantic Web related efforts [4] also capture hierarchical
groupings of attribute values. Kohavi and Provost [15] have
noted the need to be able to incorporate background knowl-
edge in the form of hierarchies over data attributes in elec-
tronic commerce applications of data mining.

There are several reasons for exploiting AVT in learn-
ing classifiers from data, perhaps the most important being
a preference for comprehensible and simple, yet accurate
and robust classifiers [18] in many practical applications of
data mining. The availability of AVT presents the opportu-
nity to learn classification rules that are expressed in terms
of abstract attribute values leading to simpler, easier-to-
comprehend rules that are expressed in terms of hierarchi-
cally related values. Thus, the rule (odor = pleasant) —
(class = edible) is likely to be preferred over ((odor =
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a) A(color = brown))V ((odor = 1) A(color = brown))V
((odor = s) A (color = brown)) — (class = edible) by
a user who is familiar with the odor taxonomy shown in
Figure 1.

Another reason for exploiting AVTs in learning classi-
fiers from data arises from the necessity, in many applica-
tion domains, for learning from small data sets where there
is a greater chance of generating classifiers that over-fit the
training data. A common approach used by statisticians
when estimating from small samples involves shrinkage [7]
or grouping attribute values (or more commonly class la-
bels) into bins, when there are too few instances that match
any specific attribute value or class label, to estimate the
relevant statistics with adequate confidence. Learning algo-
rithms that exploit AVT can potentially perform shrinkage
automatically thereby yielding robust classifiers. In other
words, exploiting information provided by an AVT can be
an effective approach to performing regularization to mini-
mize over-fitting [28].

Consequently, several algorithms for learning classifiers
from AVTs and data have been proposed in the literature.
This work has shown that AVTs can be exploited to im-
prove the accuracy of classification and in many instances,
to reduce the complexity and increase the comprehensibil-
ity of the resulting classifiers [6, 11, 14,23, 28, 30]. Most of
these algorithms exploit AVTs to represent the information
needed for classification at different levels of abstraction.

However, in many domains, AVTs specified by human
experts are unavailable. Even when a human-supplied AVT
is available, it is interesting to explore whether alternative
groupings of attribute values into an AVT might yield more
accurate or more compact classifiers. Against this back-
ground, we explore the problem of automated construction
of AVTs from data. In particular, we are interested in AVTs
that are useful for generating accurate and compact classi-
fiers.

2. Learning attribute value taxonomies from
data

2.1. Learning AVT from data

We describe AVT-Learner, an algorithm for automated
construction of AVT from a data set of instances wherein
each instance is described by an ordered tuple of N nominal
attribute values and a class label.

Let A = {A4;,As,...,A4,} be a set of nominal at-
tributes. Let V; = {'uil,v?, .. ,’Ulm} be a finite domain
of mutually exclusive values associated with attribute A;
where v is the j th attribute value of A; and m; is the num-
ber possible number of values of A;, that is, |V;|. We say
that V; is the set of primitive values of attribute A;. Let
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C = {C1,Cs,...,Ck} be a set of mutually disjoint class
labels. Adatasetis D C Vi x Vo x ... xV, xC.

Let T = {T1,Ts,...,T,,} denote a set of AVT such
that 7; is an AVT associated with the attribute A;, and
Leaves(T;) denote a set of all leaf nodes in 7;. We de-
fine a cut ¢; of an AVT T} to be a subset of nodes in T;
satisfying the following two properties: (1) For any leaf
l € Leaves(T;), either [ € 6; or [ is a descendant of a
node n € §;; and (2) for any two nodes f,g € ¢;, f is nei-
ther a descendant nor an ancestor of g [12]. For example,
{Bad, a,l,s,n} is a cut through the AVT for odor shown
in Figure 1. Note that a cut through 7} corresponds to a par-
tition of the values in V;. Let A = {41, 02,...0,} be a set
of cuts associated with AVTs in T = {T1, Ta,...T, }.

The problem of learning AVTs from data can be stated
as follows: givenadataset D C Vi x Vo x ... x V,, x C
and a measure of dissimilarity (or equivalently similarity)
between any pair of values of an attribute, output a set of
AVTs T = {T1,T5,...,T,} such that each T; (AVT asso-
ciated with the attribute A; ) corresponds to a hierarchical
grouping of values in V; based on the specified similarity
measure.

We use hierarchical agglomerative clustering (HAC) of
the attribute values according to the distribution of classes
that co-occur with them. Let DM (P (x) || P (y)) denote
a measure of pairwise divergence between two probability
distributions P (x) and P (y) where the random variables
x and y take values from the same domain. We use the
pairwise divergence between the distributions of class la-
bels associated with the corresponding attribute values as
a measure of the dissimilarity between the attribute values.
The lower the divergence between the class distributions as-
sociated with two attributes, the greater is their their simi-
larity. The choice of this measure of dissimilarity between
attribute values is motivated by the intended use of the AVT,
namely, the construction of accurate, compact, and robust
classifiers. If two values of an attribute are indistinguishable
from each other with respect to their class distributions, they
provide statistically similar information for classification of
instances.

The algorithm for learning AVT for a nominal attribute
is shown in Figure 2. The basic idea behind AVT-Learner is
to construct an AVT T; for each attribute A; by starting with
the primitive values in V; as the leaves of T}; and recursively
add nodes to 7; one at a time by merging two existing nodes.
To aid this process, the algorithm maintains a cut §; through
the AVT T;, updating the cut §; as new nodes are added
to T;. At each step, the two attribute values to be grouped
together to obtain an abstract attribute value to be added to
T, are selected from §; based on the divergence between the
class distributions associated with the corresponding values.
That is, a pair of attribute values in §; are merged if they
have more similar class distributions than any other pair of
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AVT-Learner:

begin

1. Input : data set D

2. For each attribute A;: '

3. For each attribute value v] :

4. For each class label ci: estimate the probability

(o)

5. LetP(C|vf) = {p (a\vf),...,p(Cklvg)} be

the class distribution associated with value .
6. Set §; <+ V;; Initialize T; with nodes in d;.
7. Iterate until |§;| = 1:

8. In 4, find  (2,y) =
argmin {DM (P (Clo?)||P (Clo!))}
9. Merge v and v (z # y) to create a new value v;¥.

10. Calculate probability distribution P (Clv").
11. Ai — 0 U{vf I\ {vF, v
12. Update T; by adding nodes v
and v!.

14. Output : 7' = {11, T>, ..
end.

Y as a parent of v¥

ST}

Figure 2. Pseudo-code of AVT-Learner

attribute values in §;. This process terminates when the cut
d; contains a single value which corresponds to the root of
T;. If |V;| = m,, the resulting T; will have (2m; — 1) nodes
when the algorithm terminates.

In the case of continuous-valued attributes, we define
intervals based on observed values for the attribute in the
data set. We then generate a hierarchical grouping of ad-
jacent intervals, selecting at each step two adjacent inter-
vals to merge using the pairwise divergence measure. A cut
through the resulting AVT corresponds to a discretization of
the continuous-valued attribute. A similar approach can be
used to generate AVT from ordinal attribute values.

2.2. Pairwise divergence measures

There are several ways to measure similarity between
two probability distributions. We have tested thirteen di-
vergence measures for probability distributions P and Q.
In this paper, we limit the discussion to Jensen-Shannon di-
vergence measure.

Jensen-Shannon divergence [21] is weighted informa-
tion gain, also called Jensen difference divergence, infor-
mation radius, Jensen difference divergence, and Sibson-
Burbea-Rao Jensen Shannon divergence. It is given by:

| (25) S

I(P|IQ) =
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Figure 3. AVT of ‘odor’ attribute of UCI AGARICUS-
LEPIOTA mushroom data set generated by AVT-
Learner using Jensen-Shannon divergence (bi-
nary clustering)

Jensen-Shannon divergence is reflexive, symmetric and
bounded. Figure 3 shows an AVT of ‘odor’ attribute gen-
erated by AVT-Learner (with binary clustering).

3. Evaluation of AVT-Learner

The intuition behind our approach to evaluating the AVT
generated by AVT-Learner is the following: an AVT that
captures relevant relationships among attribute values can
result in the generation of simple and accurate classifiers
from data, just as an appropriate choice of axioms in a math-
ematical domain can simplify proofs of theorems. Thus, the
simplicity and predictive accuracy of the learned classifiers
based on alternative choices of AVT can be used to evaluate
the utility of the corresponding AVT in specific contexts.

3.1. AVT guided variants of standard learning al-
gorithms

It is possible to extend standard learning algorithms in
principled ways so as to exploit the information provided
by AVT. AVI-DTL [26, 30, 28] and the AVT-NBL [29]
which extend the decision tree learning algorithm [20] and
the Naive Bayes learning algorithm [16] respectively are ex-
amples such algorithms.

The basic idea behind AVT-NBL is to start with the
Naive Bayes Classifier that is based on the most abstract at-
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Hypothesis

2/3 for AVT
Evaluation

1/3 for AVT Construction

| Data |

Figure 4. Evaluation of AVT using AVT-NBL

tribute values in AVTs and successively refine the classifier
by a scoring function - a Conditional Minimum Description
Length (CMDL) score suggested by Friedman et al. [8] to
capture trade-off between the accuracy of classification and
the complexity of the resulting Naive Bayes classifier.

The experiments reported by Zhang and Honavar [29]
using several benchmark data sets show that AVT-NBL is
able to learn, using human generated AVT, substantially
more accurate classifiers than those produced by Naive
Bayes Learner (NBL) applied directly to the data sets as
well as NBL applied to data sets represented using a set
of binary features that correspond to the nodes of the AVT
(PROP-NBL). The classifiers generated by AVI-NBL are
substantially more compact than those generated by NBL
and PROP-NBL. These results hold across a wide range
of missing attribute values in the data sets. Hence, the
performance of Naive Bayes classifiers generated by AVT-
NBL when supplied with AVT generated by the AVT-
Learner provide useful measures of the effectiveness of
AVT-Learner in discovering hierarchical groupings of at-
tribute values that are useful in constructing compact and
accurate classifiers from data.

4. Experiments
4.1. Experimental setup

Figure 4 shows the experimental setup. The AVT gen-
erated by the AVT-Learner are evaluated by comparing the
performance of the Naive Bayes Classifiers produced by ap-

plying
e NBL to the original data set

e AVT-NBL to the original data set (See Figure 4).

For the benchmark data sets, we chose 37 data sets from
UCI data repository [5].

Among the data sets we have chosen, AGARICUS-
LEPIOTA data set and NURSERY data set have AVT sup-
plied by human experts. AVT for AGARICUS-LEPIOTA
data was prepared by a botanist, and AVT for NURSERY
data was based on our understanding of the domain. We are
not aware of any expert-generated AVTs for other data sets.
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In each experiment, we randomly divided each data set
into 3 equal parts and used 1/3 of the data for AVT con-
struction using AVT-Learner. The remaining 2/3 of the data
were used for generating and evaluating the classifier. Each
set of AVTs generated by the AVT-Learner was evaluated
in terms of the error rate and the size of the resulting clas-
sifiers (as measured by the number of entries in conditional
probability tables). The error rate and size estimates were
obtained using 10-fold cross-validation on the part of the
data set (2/3) that was set aside for evaluating the classifier.
The results reported correspond to averages of the 10-fold
cross-validation estimates obtained from the three choices
of the AVT-construction and AVT-evaluation. This process
ensures that there is no information leakage between the
data used for AVT construction, and the data used for clas-
sifier construction and evaluation.

10-fold cross-validation experiments were performed to
evaluate human expert-supplied AVT on the AVT evalua-
tion data sets used in the experiments described above for
the AGARICUS-LEPIOTA data set and the NURSERY data
set.

We also evaluated the robustness of the AVT generated
by the AVT-Learner by using them to construct classifiers
from data sets with varying percentages of missing attribute
values. The data sets with different percentages of miss-
ing values were generated by uniformly sampling from in-
stances and attributes to introduce the desired percentage of
missing values.

4.2. Results

AVT generated by AVT-Learner are competitive with
human-generated AVT when used by AVI-NBL.

The results of our experiments shown in Figure 5 indi-
cate that AVT-Learner is effective in constructing AVTs that
are competitive with human expert-supplied AVTs for use
in classification tasks with respect to the error rates and the
size of the resulting classifiers.

AVT-Learner can generate useful AVT when no human-
generated AVT are available.

For most of the data sets, there are no human-supplied
AVT’s available. Figure 6 shows the error rate estimates
for Naive Bayes classifiers generated by AVIT-NBL using
AVT generated by the AVT-Learner and the classifiers gen-
erated by NBL applied to the DERMATOLOGY data set.
The results shown suggest that AVT-Learner, using Jensen-
Shannon divergence, is able to generate AVTs that when
used by AVT-NBL, result in classifiers that are more accu-
rate than those generated by NBL.

Additional experiments with other data sets produced
similar results. Table 1 shows the classifier’s accuracy on
original UCI data sets for NBL and AVI-NBL that uses
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Figure 5. The estimated error rates of classifiers
generated by NBL and AVT-NBL on AGARICUS-
LEPIOTA data with different percentages of miss-
ing values. HT stands for human-supplied AVT.
JS denotes AVT constructed by AVT-Learner us-
ing Jensen-Shannon divergence.
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Figure 6. The error rate estimates of the Standard
Naive Bayes Learner (NBL) compared with that of
AVT-NBL on DERMATOLOGY data. JS denotes
AVT constructed by AVT-Learner using Jensen-
Shannon divergence.
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Figure 7. The size (as measured by the num-
ber of parameters) of the Standard Naive Bayes
Learner (NBL) compared with that of AVT-NBL on
AGARICUS-LEPIOTA data. HT stands for human-
supplied AVT. JS denotes AVT constructed by AVT-
Learner using Jensen-Shannon divergence.

AVTs generated by AVT-Learner. 10-fold cross-validation
is used for evaluation, and Jensen-Shannon divergence is
used for AVT generation. The user-specified number for
discretization is 10.

Thus, AVT-Learner is able to generate AVTs that are use-
ful for constructing compact and accurate classifiers from
data.

AVT generated by AVT-Learner, when used by AVT-
NBL, yield substantially more compact Naive Bayes
Classifiers than those produced by NBL

Naive Bayes classifiers constructed by AVT-NBL gen-
erally have smaller number of parameters than those from
NBL (See Figures 7 for representative results). Table 2
shows the classifier size measured by the number of param-
eters on selected UCI data sets for NBL and AVT-NBL that
uses AVTs generated by AVT-Learner.

These results suggest that AVT-Learner is able to group
attribute values into AVT in such a way that the resulting
AVT, when used by AVT-NBL, result in compact yet accu-
rate classifiers.

5. Summary and discussion
5.1. Summary

In many applications of data mining, there is a strong
preference for classifiers that are both accurate and com-
pact [15, 18]. Previous work has shown that attribute value
taxonomies can be exploited to generate such classifiers
from data [28, 29]. However, human-generated AVTs are
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Table 2. Parameter size of NBL and AVT-NBL on
selected UCI data sets

\ Data | NBL | AVT-NBL |
Audiology 3720 3600
Table 1. Accuracy of NBL and AVT-NBL on UCI data Breast-cancer | 104 62
sets Car 88 80
Dermatology 906 540
| Data | NBL [ AVT-NBL | Kr-vskp 150 146
Anneal 86.3029 | 98.9978 Mushroom 252 124
Audiology 734513 | 76.9912 Nursery 140 125
Autos 56.0976 | 86.8293 Primary-tumor | 836 814
Balance-scale 90.4 91.36 Soybean 1919 1653
Breast-cancer | 71.6783 | 72.3776 Splice 864 723
Breast-w 95.9943 | 97.2818 Vote 66 66
Car 85.5324 86.169 Zoo 259 238
Colic 77.9891 | 83.4239
Credit-a 77.6812 | 86.5217
Credit-g 75.4 75.4 unavailable in many application domains. Manual construc-
Dermatology 078142 | 98.0874 tion of AVTs requires a great deal of domain expertise, and
Diabetes 763021 | 77.9948 in case of large data sets with many attributes and many
Glass 485981 30,8411 values for each attribute, manual generation of AVTs is ex-
Heart-c 834983 | 87.1287 tremely tedious and hence not feasible in practice. Against
Heart-h 83.6735 | 863946 this background, we have described in this paper, AVT-

Learner, a simple algorithm for automated construction of
AVT from data. AVT-Learner recursively groups values of
attributes based on a suitable measure of divergence be-
tween the class distributions associated with the attribute
values to construct an AVT. AVT-Learner is able to gener-

Heart-statlog 83.7037 | 86.6667
Hepatitis 84.5161 | 92.9032
Hypothyroid 95.281 95.7847
Ionosphere 82.6211 | 94.5869

Iris 96 94.6667 . . . . .
ate hierarchical taxonomies of nominal, ordinal, and con-
Kr-vs-kp 87.8911 | 879224 tinuous valued attributes. The experiments reported in this
Labor 89.4737 | 89.4737 paper show that:
Letter 64.115 70.535
Lymph 83.1081 | 84.4595 o AVT-Learner is effective in generating AVTs that when
Mushroom 95.8272 | 99.5938 used by AVT-NBL, a principled extension of the stan-
Nursery 90.3241 | 90.3241 dard algorithm for learning Naive Bayes classifiers,
Primary-tumor | 50.1475 | 47.7876 result in classifiers that are substantially more com-
Segment 80.2165 90 pact (and often more accurate) than those obtained by
Sick 92.6829 97.8261 the standard Naive Bayes Learner (that does not use
Sonar 67.7885 | 99.5192 AVTs).
Soyl:?ean 929722 | 94.5827 e The AVTs generated by AVT-Learner are competitive
Spl.lce 95.3605 95.768 with human supplied AVTs (in the case of benchmark
Vehicle 44.7991 | 67.8487 data sets where human-generated AVTs were avail-
Vote 90.1149 90.1149 able) in terms of both the error rate and size of the
Vowel 63.7374 | 42.4242 resulting classifiers.
Waveform-5000 80 65.08
Zoo 93.0693 | 96.0396

5.2. Discussion

The AVTs generated by AVT-Learner are binary trees.
Hence, one might wonder if k-ary AVTs yield better re-
sults when used with AVI-NBL. Figure 8 shows an AVT of
‘odor’ attribute generated by AVT-Learner (with quaternary
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Odor attribute

Figure 8. AVT of ‘odor’ attribute of UCI AGARICUS-
LEPIOTA mushroom data set generated by AVT-
Learner using Jensen-Shannon divergence (with
quaternary clustering)

Table 3. Accuracy of NBL and AVT-NBL for k-ary
AVT-Learner

Data | 2-ary | 3-ary | 4-ary
Nursery 90.3241 | 90.3241 | 90.3241
Audiology | 76.9912 | 76.5487 | 76.9912
Car 86.169 | 86.169 | 86.169
Dermatology | 98.0874 | 97.541 97.541
Mushroom | 99.5938 | 99.7292 | 99.7538
Soybean 94.5827 | 94.4363 | 94.4363

clustering). Table 3 shows the accuracy of AVI-NBL when
k-ary clustering is used by AVT-Learner. It can be seen
that AVT-NBL generally works best when binary AVTs are
used. It is because reducing internal nodes in AVT-Learner
will eventually reduce the search space for possible cuts in
AVT-NBL, which leads to generating a less compact classi-
fier.

5.3. Related work

Gibson and Kleinberg [10] introduced STIRR, an iter-
ative algorithm based on non-linear dynamic systems for
clustering categorical attributes. Ganti et. al. [9] designed
CACTUS, an algorithm that uses intra-attribute summaries
to cluster attribute values. However, both of them did not
make taxonomies and use the generated for improving clas-
sification tasks. Pereira et. al. [19] described distributional
clustering for grouping words based on class distributions
associated with the words in text classification. Yamazaki
et al., [26] described an algorithm for extracting hierar-
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chical groupings from rules learned by FOCL (an induc-
tive learning algorithm) [17] and reported improved perfor-
mance on learning translation rules from examples in a nat-
ural language processing task. Slonim and Tishby [21, 22]
described a technique (called the agglomerative informa-
tion bottleneck method) which extended the distributional
clustering approach described by Pereira et al. [19], us-
ing Jensen-Shannon divergence for measuring distance be-
tween document class distributions associated with words
and applied it to a text classification task. Baker and Mc-
Callum [3] reported improved performance on text classi-
fication using a technique similar to distributional cluster-
ing and a distance measure, which upon closer examina-
tion, can be shown to be equivalent to Jensen-Shannon di-
vergence [21].

To the best of our knowledge, there has been little work
on the evaluation of techniques for generating hierarchical
groupings of attribute values (AVTs) on classification tasks
using a broad range of benchmark data sets using algorithms
such as AVT-DTL or AVT-NBL that are capable of exploit-
ing AVTs in learning classifiers from data.

5.4. Future work

Some directions for future work include:

e Extending AVT-Learner described in this paper to
learn AVTs that correspond to tangled hierarchies
(which can be represented by directed acyclic graphs
(DAG) instead of trees).

e Learning AVT from data for a broad range of real
world applications such as census data analysis, text
classification, intrusion detection from system log
data [13], learning classifiers from relational data [2],
and protein function classification [25] and identifica-
tion of protein-protein interfaces [27].

e Developing algorithms for learning hierarchical on-
tologies based on part-whole and other relations as op-
posed to ISA relations captured by an AVT.

e Developing algorithms for learning hierarchical group-
ings of values associated with more than one attribute.
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