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Abstract
Matching is one of the simplest approaches for estimating causal effects from observational data.
Matching techniques compare the observed outcomes across pairs of individuals with similar co-
variate values but different treatment statuses in order to estimate causal effects. However, tradi-
tional matching techniques are unreliable given high-dimensional covariates due to the infamous
curse of dimensionality. To overcome this challenge, we propose a simple, fast, yet highly effective
approach to matching using Random Hyperplane Tessellations (RHPT). First, we prove that the
RHPT representation is an approximate balancing score – thus maintaining the strong ignorability
assumption – and provide empirical evidence for this claim. Second, we report results of extensive
experiments showing that matching using RHPT outperforms traditional matching techniques and
is competitive with state-of-the-art deep learning methods for causal effect estimation. In addition,
RHPT avoids the need for computationally expensive training of deep neural networks.
Keywords: Matching, Randomized algorithms, High-Dimensional data

1. Introduction

Randomized experiments, whenever feasible, provide the most reliable estimates of causal effects.
In a randomized experiment, each individual is randomly assigned to either the treatment or control
group, thereby ensuring covariate balance: the two groups will be only randomly different from each
other with respect to all covariates, both observed and unobserved. In this case, it is straightforward
to show that the average treatment effect ATE = E[Y |T = 1] − E[Y |T = 0], where Y is the
observed outcome and T is the treatment status. In other words, the ATE is simply the difference
in average observed outcomes across the treatment and control groups. In the case of a randomized
experiment, association is causation.

However, randomized experiments are not always feasible due to their high costs, ethical con-
cerns, or other fundamental limitations. As such, there is high interest in methods capable of reliably
estimating causal effects from observational data. The following assumptions suffice for estimating
causal effects from observational data: Ignorability, Positivity, Non-interference and Consistency
(Rosenbaum and Rubin, 1983; Cox, 1958; Rubin, 1980). Under these conditions, it can be shown
that:

ATE = EX[E[Y |T = 1,X = x]− E[Y |T = 0,X = x]]

In observational data the treatment assignment is not randomized, it is possible that some of the
covariates influence both the treatment assignment and the outcome; thus, introducing confounding
bias while estimating the causal effect. In the presence of confounding, causation is not association.
One way to eliminate confounding bias under the standard assumptions is to simulate a randomized
experiment such that the treatment and control groups have similar covariate distributions.
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This can be accomplished through matching individuals with similar covariates across the treated
and control groups, thereby reducing bias in treatment assignment (Hernan and Robins, 2023; Stu-
art, 2010). Note that matching on the observed covariates also matches on the unobserved covari-
ates, in so much as they are correlated with those that are observed1.

Comparing the observed outcome for an individual with covariates xi with treatment status
Ti = 1 against the individual they are matched with, m(xi) with treatment status Tm(xi) = 0 yields
an estimate for the individual treatment effect ITE(xi). Matching techniques have been extensively
studied in the literature on causal inference – see Stuart (2010) for a review.

Because perfect matches can seldom be found, matching in practice entails nearest neighbor
search. However, matching techniques typically perform poorly when the number of covariates
is large, since all points tend to appear dissimilar in high-dimensional spaces. This phenomenon
is known as the curse of dimensionality (Beyer et al., 1999). Empirical results from Beyer et al.
(1999); Aggarwal et al. (2001) suggest that distance metrics become unreliable given as few as
10-20 dimensions.

A simple, popular workaround is to match individuals based on their propensity scores – an
individual’s probability of being treated – and to rely on the theoretical result that once conditioned
on the propensity scores, treatment becomes independent of the covariates, thereby satisfying the
identifiability conditions. In practice, matching on propensity scores seldom achieves its intended
objective (King and Nielsen, 2019). Recently there has been increased interest in deep neural net-
works that learn low-dimensional, “treatment-agnostic” representations of high-dimensional data
using non-linear mappings (Johansson et al., 2016; Shalit et al., 2017; Louizos et al., 2017). While
deep learning approaches offer strong performance, they require large amounts of training data, in-
cur substantial computational overhead for training, and require expensive hyper-parameter tuning.

In this work, we explore Random Hyperplane Tessellations (RHPT) an alternative approach
which overcomes the limitations of both existing matching techniques as well as deep neural net-
works for causal effect estimation. RHPT involves mapping covariates to a high-dimensional, binary
space based on the relationship between covariate values and randomly chosen hyperplanes (Plan
and Vershynin, 2014; Dirksen et al., 2022). The RHPT representation is attractive for causal effect
estimation because it offers a compromise between information-poor (and potentially inaccurate)
predicted propensity scores and information-rich (but potentially noisy) matching on covariates.
RHPT can be viewed as a denoising, information-reduction step performed prior to matching.

The key contributions of this paper are as follows:

• We present a novel application of Random Hyperplane Tessellations for estimating causal
effects from observational data and explain via theory why it works.

• We show that our method preserves strong ignorability of treatment assignments as our RHPT
representations are approximate balancing scores.

• We present experiments comparing treatment effect estimates obtained using our proposed
method to estimates obtained using traditional matching approaches as well as state-of-the-
art deep learning techniques. The results of these experiments on several standard benchmark
data sets show that our proposed method outperforms traditional matching approaches and is

1. Bias introduced by unobserved covariates that are uncorrelated with the observed covariates is assessed using sensi-
tivity analyses (Hernan and Robins, 2023).
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competitive with the state-of-the-art deep neural networks in terms of accuracy while avoiding
the substantial computational cost of training deep neural networks.

2. Preliminaries

2.1. Problem Definition

We are given data on n individuals each represented as a tuple (xi, Ti, Yi). xi denotes the (pre-
treatment) covariates, Ti denotes treatment status (Ti = 1 indicating treatment and Ti = 0 indicating
control), and Yi denotes the observed outcome. Formally, xi ∈ X with X ⊆ Rd, where d is the
dimensionality of the covariates, Ti ∈ {0, 1}, and Yi ∈ Y with Y ⊆ R. Our goal is to estimate
the ATE across all individuals and the ITEi for each individuals i under the strong ignorability,
consistency, and non-interference assumptions.

2.2. Locality Sensitive hashing

Locality-Sensitive Hashing (LSH) (Indyk and Motwani, 1998) was one of the first works related to
hyperplane tessellations and is a widely used approach for approximately finding nearest neighbors
in high-dimensional spaces. A locality sensitive hashing scheme is a distribution on a family H
of hash functions2 h operating on a collection of objects, such that for two objects xi and xj ,
Prh∈H[h(xi) = h(xj)] = sim(xi,xj) ∈ [0, 1], where sim(xi,xj) is a similarity function. Such
a scheme leads to a compact representation of objects such that the similarity of objects can be
estimated from their compact sketches.

Given covariates xi ∈ Rd, SimHash (Charikar, 2002) generates a random hyperplane a⊥ ∈ Rd

using a standard Gaussian random vector a ∼ N (0, Id). Using random vector a and function
sign(·) : R → {0, 1}, we generate a hash value for xi:

ha(xi) = sign(a · xi)

with Pr[hr(xi) = hr(xj)] = 1 − θij
π where θij is the angle between xi and xj . A binary sketch

can be obtained by performing hashing β times. Let A : Rd → Rβ be a matrix with each row
aT1 , · · ·aTβ drawn from N (0, Id). For conciseness, denote A ∼ N β(0, Id) and apply the sign func-
tion elementwise, i.e. sign(·) : Rβ → {0, 1}β . The binary sketch obtained using SimHash is
hA(xi) = sign(Axi).

2.3. Random Hyper-Plane Tessellations (RHPT)

Plan and Vershynin (2014) showed that Simhash results in a representation where angular distances
are preserved with error ≤ δ; given that the points are subset of a unit Euclidean sphere Sd−1.
Formally, we are given X ⊆ Sd−1, positive constants c1 and c2, ℓ∗(X ) = E sup

x∈X
|⟨a,x⟩|, and δ > 0.

If the following holds:

β ≥ c1
ℓ2∗(X )

δ6

2. A hash function maps input samples to fixed-sized output hash codes. We consider Locality-sensitive hashing (LSH);
a fuzzy hashing technique that hashes similar input items into the same to similar hash codes.
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Figure 1: An example of a Random Hyperplane Tessellation (RHPT) for a set of points in a two-
dimensional space from Poli (2021). Three hyperplanes – indicated by dashed lines – are
used to construct a three-dimensional binary hash code for each point. The color of each
point represents its binary hash code: red represents 101, black represents 100, etc.

then with a probability of at least 1− 2 exp(−c2βδ2), for every xi,xj ∈ X :

| 1
β
dH [sign(Axi), sign(Axj)]− dSd−1 [xi,xj ]| ≤ δ (1)

where dH is the Hamming distance and dSd−1 [xi,xj ]| = 1
π arccos

⟨xi,xj⟩
||xi||2||xj ||2 is the angular dis-

tance. This is consistent with the findings in Charikar (2002); Pratap et al. (2020) which state that:

cos(θij) ≈ cos(
π

β
dH [sign(Axi), sign(Axj)])

To summarize, δ → 0 with probability → 1 when β → ∞. In other words, distances are approxi-
mately preserved as the dimensionality of the embedding is increased.

Dirksen et al. (2022) extend the results from Plan and Vershynin (2014) beyond the unit Eu-
clidean sphere Sd−1 to an arbitrary set Rd by introducing shifts on the hyperplane represented by
γ. Let A ∼ N β(0, Id) and γ be uniformly distributed on [−λ, λ]. For conciseness, we represent
β samples of γ as Γ ∼ [−λ, λ]β . Using A and Γ, a binary sketch hA,Γ(xi) is obtained where
hA,Γ(xi) = sign(Axi + Γ). Given sufficiently large values of λ and β, the following holds proba-
bilistically:

sup
xi,xj∈X

∣∣∣∣∣
√
2πλ

β
dH [hA,Γ(xi), hA,Γ(xj)]− ||xi − xj ||2

∣∣∣∣∣ ≤ δ (2)

See Theorem 1.7 of Dirksen et al. (2022) for details. Similar to inequality 1, distances are preserved
as the dimensionality of the embedding increases, assuming an appropriate choice of hyperplane
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shift. Note that Plan and Vershynin (2014) showed only an existence of such hyperplane over
arbitrary sets in Rd but Dirksen et al. (2022) showed an estimate with a bound.

2.4. Controlling for Confounding Covariates

As noted earlier, matching offers a way to reduce the bias introduced by confounding when estimat-
ing causal effects from observational data (Rubin, 1980). By comparing the outcomes of pairs of
treated and untreated individuals that are nearly identical (i.e. matched), we can eliminate any bias
arising from confounding due to any observed covariates (as well as any unobserved covariates that
are sufficiently correlated with the observed covariates). The estimated individual treatment effect
ÎTE(xi) for individual i is given by:

ÎTE(xi) =

{
Yi − YMatch0(xi) if Ti = 1

YMatch1(xi) − Yi if Ti = 0

where Match0(xi) and Match1(xi) denote the indices of untreated and treated individuals that
match xi. The estimated unobserved outcome is denoted by YMatchT (xi). If the covariates are per-
fectly matched, then the ignorability condition clearly holds i.e. (Y T=0

i , Y T=1
i ) ⊥⊥ Ti|xi (Rosen-

baum and Rubin, 1983).
In practice, matches are seldom perfect and we must settle for nearest neighbor matching. In

the context of this paper, matching is done on the β-dimensional hashed sketches of the covariate
vectors, i.e., their RHPT representations.

3. Causal Effect Estimation Using Random Hyperplane Tessellations

We project the original d-dimensional covariates xi into the Hamming space to get our β-dimensional
hashed sketch. In our experiments, we use the Dirksen et al. (2022) and Plan and Vershynin
(2014) methods in order to approximately preserve both the angle and the Euclidean distance be-
tween vectors. We concatenate the results from both methods: hA,Γ(xi) = sign(Axi + Γ) and
hA(xi) = sign(Axi). For brevity, from this point onward the concatenated embedding is repre-
sented by hβ(xi). To summarize, we first use RHPT to obtain a binary representation of the co-
variates, and then use nearest-neighboring matching in the binary space in order to estimate causal
effects. Specifically, we use 1-Nearest Neighbor (1-NN) matching with replacement and use Ham-
ming distance to calculate nearest neighbors.

Matching is a form of covariate adjustment, and covariate adjustment eliminates confounding
under the standard assumptions stated in Section 2. To justify matching using RHPT representations
of covariate vectors, it suffices to show that the RHPT embeddings achieve covariate balance. We
discuss this property of the RHPT embedding in the following section.

3.1. Approximate Balancing Scores using RHPT

A function b(xi) is a balancing score if there exists a mapping from b(xi) to the propensity score
e(xi) = E[Ti|xi]; ∀xi ∈ X . Let this mapping be g(·), where g(b(xi)) = e(xi). Matching can be
performed on the balancing scores rather than the raw covariates as implied by Theorems 2 and 3
from Rosenbaum and Rubin (1983), i.e. xi ⊥⊥ Ti|b(xi) and Yi(1), Yi(0) ⊥⊥ Ti|b(xi), assuming the
Ignorability, Positivity, Non-interference and Consistency assumptions hold on the original data.
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If the embedding b(xi) is a one-to-one mapping from X , and there is a mapping from the
original covariates to the propensity scores, then there must exist a mapping from the embedding
to the propensity scores g(b(xi)) = e(xi). Because the function b(·) is one-to-one mapping, an
inverse function exists, therefore, we can express the function g(b(xi)) as e(b−1(b(xi))).

Unfortunately, for our method which uses RHPT embeddings of covariate vectors, we cannot
guarantee one-to-one mapping using hβ(·) : X → {0, 1}β . Let xi ∈ X and xj ∈ X , be two
covariate vector that are mapped to the same binary representation using RHPT. In this case, the
Hamming distance dH [hβ(xi), hβ(xj)] = 0. Substituting this term into inequalities 1 and 2, we
get:

dSd−1 [xi,xj ] ≤ δ and ||xi − xj ||2 ≤ δ

Therefore, two covariate vectors that are within distance δ (angular and L2) from each other may
be mapped to the same Hamming code. Because hβ(·) is not a one-to-one mapping, we can-
not exactly recover these covariate vectors by “inverting” their representations. Particularly, if
dH [hβ(xi), hβ(xj)] = 0, then the “reconstruction” h−1(hβ(xi)) could be xi or xj . For simplicity
we say that the reconstruction maps to only one of the arbitrarily chosen points with the same binary
code (i.e. either xi or xj).

The results in section 2 state that as β increases, δ → 0 with high probability. This means that if
the Hamming codes are high-dimensional, and the Hamming codes of two points are the same, then
the original points will be similar with high probability. In such a scenario, the propensity scores
predicted using the reconstruction will be approximately equal if the propensity score function is
assumed to be smooth. Formally, e(h−1(hβ(xi))) = e(h−1(hβ(xj)) ≈ e(xi) ≈ e(xj) if e(·)
is a smooth function i.e. e(xi) ≈ e(xi ± ϵ), where ϵ is a small perturbation close to 0. It is
reasonable to assume that the propensity score function of real-world data is smooth – this means
that the probability of treatment does not change sharply across individuals with slightly different
covariates vectors.

Therefore, RHPT embeddings are approximate balancing scores, given that β is sufficiently
large and e(·) is a smooth function. Note that there is no way of knowing the value of β such that
hβ(xi) is an approximate balancing score, since calculating the value of such a β involves dealing
with unknown constants mentioned in section 2.

3.2. Empirical evidence that RHPT yields approximate balancing scores

An empirical approach used to verify if a representation is as an approximate balancing score in-
volves fitting a function to predict propensity score given the representation, then comparing this
predicted score to the true propensity score. In real-world data sets, we do not have access to true
propensity scores. To address this limitation, we generate a semi-synthetic data set using the method
proposed by Jesson et al. (2021) for the MNIST data set. For the purpose of evaluating the proposed
method, we obtain the true propensity scores by simulating the data-generation process.

To assess if our RHPT embeddings are balancing scores, we predict propensity scores using
logistic regression learned on our embeddings and compare our predictions to the true propen-
sity scores. Specifically, we calculate the mean absolute difference between the the true propen-
sity scores and our predicted propensity scores, given by ψ = 1

n

∑n
i=1 |e(xi) − ê(hβ(xi))| where

ê(hβ(xi)) is the logistic regression model trained on hβ(xi). Low values of ψ indicate that our
embeddings hβ(xi) are an approximate balancing scores.
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Figure 2: Error of propensity score predictions ψ across various RHPT embedding dimensionali-
ties. Means and confidence intervals are computed over 100 instantiations of RHPT on a
single draw of the synthetic data. Lower ψ favors ignorability.

Figure 2 illustrates our empirical results across varying embedding dimensions β. We see that as
β increases, the mean absolute difference between predicted and true propensity scores decreases.
This evaluation was performed in order to complement our theoretical arguments and provide empir-
ical evidence that RHPT embeddings are (approximate) balancing scores. As discussed in Section
3.1, causal effects can be estimated by matching on balancing scores rather than by matching on
the raw covariates. The prediction error in Figure 2 is relatively low, and decreases as the RHPT
dimensionality increases. These results suggest that RHPT embeddings are approximate balancing
scores and that matching using RHPT is a valid method of estimating causal effects.

3.3. Uncertainty in causal estimates using RHPT matching

Our proposed method makes use of a randomized algorithm to map covariates to our RHPT repre-
sentation. As such, conducting experiments with different random seeds will yield different results.
Specifically, different random mappings will result in different nearest-neighbor matches, thus af-
fecting ATE and ITE predictions. Given the theoretical results from section 2, we would expect
more variation in our results for lower-dimensional RHPT embeddings. This is because distances δ
are approximately preserved when the embedding dimensionality β increases.

To address this, we perform experiments over 100 randomized runs of RHPT with various choice
of β, with results and variability illustrated in Figure 3. We observe that as we increase the value of
β, the variability of the ATE decreases until it eventually levels off when β reaches 10000.

4. Experiments

We conduct experiments to compare the performance of RHPT with both classic matchnig tech-
niques as well as the state-of-the-art deep learning techniques. Baseline 1-Nearest Neighbor (1-
NN) matching techniques include matching on the raw covariates X and matching on the PCA-
transformed covariates Z. For matching on PCA-transformed covariates we use 5 principal compo-
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(a) News Dataset (b) HCMNIST Dataset

Figure 3: Estimated ATE using RHPT on one instantiation of the synthetic dataset with various
hash dimensions, each over 100 randomized runs. Higher dimensionality embeddings
result in more reliable estimates.

nents following the experiments of Beyer et al. (1999), which showed that nearest neighbor queries
become unreliable when the number of principal components used exceeds 10. We also benchmark
against a propensity scores which are calculated using logistic regression over the raw covariate
space X and PCA features Z, which we refer to as ê(X) and ê(Z), respectively. In addition, we
consider matching uniformly at random (random matching) as a simple baseline. Finally, we com-
pare our results with those obtained using the state-of-the-art deep learning techniques: CFRNet
with Maximum Mean Discrepancy (MMD) (Johansson et al., 2016) and DragonNet with Targeted
Regularization (Shi et al., 2019).

4.1. Evaluation Metrics

We compare RHPT with other methods using two different classes of performance metrics: (1)
Error of estimated causal effects (relative to their true value); and (2) Computational cost of causal
effect estimation (training as well as inference).

We evaluate the error of causal effect estimates in two different settings: (1) within-sample,
where the task is to estimate the causal effect where the factual outcome is observed, and (2) out-of
sample, where the goal is to estimate the causal effect where the factual outcome is unobserved. For
within-sample evaluation we estimate the true ITE(xi) by direct modelling. Given an individual
with observation (xi, Ti, Yi), the transductive ITE Johansson et al. (2016) is given by:

ÎTEin(xi) =

{
Yi − g(xi, 0) if Ti = 1
g(xi, 1)− Yi if Ti = 0

(3)

where the function g(xi, 1) and g(xi, 0) are the estimate of the counterfactual for individual i. For
CFRnet and DragonNet, g(xi, 1) and g(xi, 0) are neural networks, while for matching techniques
they are ŶNN1(xi) and ŶNN0(xi), respectively.

We introduce two within-sample metrics for evaluation. The first is within-sample ϵATE, which
is the mean absolute difference between the true and the predicted ATE:

ϵATE = |( 1
n

n−1∑
i=0

ÎTEin(xi))− (
1

n

n−1∑
i=0

ITE(xi))|
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Note that the true effect i.e. ITE(xi) considers noiseless outcomes, while the factual outcomes Yi
seen in the data-set contain noise in them. We also use the RMSE error for ITE for within-sample
evaluation:

ϵITE =

√√√√ 1

n

n−1∑
i=0

(ÎTEin(xi)− ITE(xi))2

For Out-of-sample metrics, we use we use inductive ITE: ÎTEout(xi) = g(xi, 1) − g(xi, 0),
where both outcomes are predicted. For matching techniques, g(xi, 1) and g(xi, 0) are 1-NN
matches from the within-sample individuals. For deep learning techniques, CFRNet and DragonNet,
g(xi, 1) and g(xi, 0) are predicted using neural networks. In this setting we also use out-of-sample
ϵATE – the absolute error in the ATE estimation. The final metric we use is Precision in Estimation
of Heterogeneous Effect (PEHE) from Hill (2011), given by:

ϵPEHE =

√√√√ 1

n

n−1∑
i=0

(ÎTEout(xi)− ITE(xi))2

Within-sample metrics Out-of-sample metrics Wall-Time
ϵATE ϵITE ϵATE ϵPEHE GPU CPU

Random 0.87 ± 0.08 4.08 ± 0.20 0.84 ± 0.09 5.72 ± 0.30 - 0.63
X 0.42 ± 0.06 3.04 ± 0.11 0.75 ± 0.11 4.22 ± 0.18 - 1.82
Z 0.34 ± 0.03 2.77 ± 0.07 0.36 ± 0.04 3.86 ± 0.15 - 1.67

ê(X) 0.48 ± 0.09 2.88 ± 0.13 0.66 ± 0.13 5.00 ± 0.24 - 1.59
ê(Z) 0.44 ± 0.03 3.19 ± 0.09 0.47 ± 0.05 4.49 ± 0.18 - 1.66

RHPT100 0.45 ± 0.04 3.11 ± 0.12 0.50 ± 0.06 4.23 ± 0.19 - 1.37
RHPT500 0.22 ± 0.02 2.51 ± 0.06 0.27 ± 0.03 3.37 ± 0.12 - 1.93
RHPT1k 0.19 ± 0.02 2.39 ± 0.06 0.25 ± 0.03 3.18 ± 0.12 - 2.14

RHPT2.5k 0.18 ± 0.02 2.36 ± 0.06 0.25 ± 0.03 3.18 ± 0.12 - 5.16
RHPT5k 0.17 ± 0.02 2.35 ± 0.05 0.25 ± 0.04 3.15 ± 0.13 - 11.09
RHPT10k 0.16 ± 0.02 2.34 ± 0.05 0.25 ± 0.04 3.14 ± 0.13 - 16.00

CFRNetMMD 0.16 ± 0.01 2.03 ± 0.03 0.22 ± 0.02 2.63 ± 0.07 38.84 ≥ 2000
DragonNetT-reg 0.13 ± 0.01 1.92 ± 0.04 0.16 ± 0.02 2.25 ± 0.07 39.26 ≥ 2000

Table 1: Mean errors (and standard errors) with Wall-times (minutes) across 50 simulations of
News Dataset. Rows indicate different causal effect estimation methods (randomly match-
ing, matching on covariates X, matching on PCA-transformed covariates Z, etc).

We compare the computational cost of different methods using run-time (training and infer-
ence) for each method. The deep learning methods are run on two types of machines: (1) using an
NVIDIA A-40 GPU and (2) using the free version of Google Colab in CPU mode (with no GPU).
Matching techniques are not evaluated using a GPU since matching does not require computation-
ally intensive training. Note that for the free version of Google Colab in CPU mode, there is a limit
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Within-Sample Metrics Out-of-Sample Metrics Wall-Time
ϵATE ϵITE ϵATE ϵPEHE GPU CPU

Random 0.26 ± 0.01 4.04 ± 0.01 0.32 ± 0.02 4.94 ± 0.02 - 1.86
X 0.26 ± 0.01 3.59 ± 0.01 0.32 ± 0.02 3.71 ± 0.02 - 1.98
Z 0.24 ± 0.01 3.70 ± 0.01 0.30 ± 0.02 4.06 ± 0.02 - 1.92

ê(X) 0.25 ± 0.02 4.03 ± 0.01 0.39 ± 0.03 4.97 ± 0.02 - 8.38
ê(Z) 0.23 ± 0.01 3.98 ± 0.01 0.31 ± 0.02 4.64 ± 0.02 - 1.97

RHPT100 0.23 ± 0.01 3.68 ± 0.01 0.29 ± 0.02 3.95 ± 0.02 - 1.96
RHPT500 0.21 ± 0.01 3.63 ± 0.01 0.24 ± 0.02 3.80 ± 0.02 - 2.55
RHPT1k 0.20 ± 0.01 3.61 ± 0.01 0.24 ± 0.02 3.77 ± 0.02 - 3.08

RHPT2.5k 0.20 ± 0.01 3.61 ± 0.01 0.23 ± 0.02 3.75 ± 0.02 - 3.59
RHPT5k 0.20 ± 0.01 3.60 ± 0.01 0.23 ± 0.02 3.75 ± 0.02 - 6.18
RHPT10k 0.19 ± 0.01 3.58 ± 0.01 0.23 ± 0.02 3.73 ± 0.02 - 8.30

CFRNetMMD 0.21 ± 0.01 3.31 ± 0.01 0.25 ± 0.02 3.09 ± 0.02 56.34 181.43
DragonNetT-reg 0.23 ± 0.01 2.84 ± 0.00 0.24 ± 0.02 2.16 ± 0.01 21.01 59.41

Table 2: Mean errors (and standard errors) with wall-times in minutes across 100 simulations of
HCMNIST Dataset. Rows indicate different causal effect estimation methods (randomly
matching, matching on covariates X, matching on PCA-transformed covariates Z, etc).

on the of execution time. If that limit is exceeded during execution, we report a run-time ≥ 2000
minutes.

4.2. Data sets

Data sets used for evaluation are semi-synthetic, meaning that the covariates come from real-world
data while the treatments and outcomes were generated through a user-specified data generating
process. For each data set, we report the average and standard error of the within-sample and
out-of-sample errors over different instantiations of the data generating process. The wall-time is
reported as the total time required to run each method on of all samples from the data generating
process. For all data sets, 10% of the samples are used for out-of-sample evaluation. For deep
learning models, 20% of in-sample data points are used as validation set to avoid over-fitting.

4.2.1. NEWS

Johansson et al. (2016) used a simulated data set to replicate how opinions and perceptions toward
news articles could differ based on whether they accessed the content on a desktop (T=0) or a
mobile device (T=1). In each draw of the data generating process, 5000 news articles are randomly
sampled from the NY Times corpus (Newman, 2008). The covariates xi of each news article is
a Bag of Words with dimensionality 3477. Using the covariates, treatment assignments (desktop
(T=0) or mobile device (T=1)) and outcomes (opinions) for each news articles are generated. We
use 50 draws of the Data Generating Process provided by Johansson et al. (2016).
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4.2.2. HC-MNIST

Jesson et al. (2021) introduced a semi-synthetic data set that based on the MNIST dataset LeCun
(1998). The covariates are the 28 × 28 pixel values of the images with total dimensionality of 784.
The representation of the images are used to generate binary treatment and continuous outcomes.
The data generating process contains Γ ≥ 1 factor which controls the degree of hidden confounding
with Γ = 1 representing no unobserved confounding. For each instance/draw out of the 100 draws
of the simulation, the treatment and outcomes are generated according to Jesson et al. (2021) method
and then 3000 images are randomly selected. Only 3000 samples/images are selected out of the
complete data set (42000 images) to introduce sparsity in the data space so that we can emulate the
curse of dimensionality. We set Γ = 1.1 to mimic a real world scenario. (Full unconfoundedness is
not plausible in the real world).

In addition to News and HC-MNIST dataset, we also perform experiment on 100 draws of
Infant Health and Development Program (IHDP) dataset by Hill (2011) which includes covariates
from a randomized controlled trial devised to assess how cognitive test scores in premature infants
are impacted by visits from specialized doctors. IHDP data set is a low dimensional dataset with 25
covariates of which 16 are binary and 9 are continuous. While this dataset falls outside the primary
scope of our algorithm due to its low dimensionality, we have included its results in the appendix to
demonstrate that our method remains functional even for low-dimensional data.

4.3. Hyperparameters for Deep learning models

The hyperparameters for deep learning models are presented in Table 3. The hyperparameters are
found using the method described in Shalit et al. (2017). The loss functions of these deep learning
models consist of multiple terms. All these terms are weighted equally i.e. weights/imbalance pa-
rameter are 1. In all the models, the initial two layers don’t have L2 regularization; every other layer
has L2 regularization weighted by 0.01. One significant observation is that the hyper-parameters for
early stopping and learning rate were more important as compared to the neural network architecture
for achieving strong performance. For training CFRNet, we use Adam optimizer Kingma and Ba
(2014) and for DragonNet we use Nesterov accelerated gradient descent (NAG) with momentum.

Early Starting LR
Dataset Model Layers Stopping Learning Reduction

Patience Rate (LR) Patience

News
CFRNET [400,400,[200,200]] 40 2.5e-3 10
Dragonnet [200,200,[100,100]] 40 1e-7 5

HCMNIST
CFRNET [512,256,[256,128]] 30 2.5e-3 10
Dragonnet [512,256,128,[64,32]] 20 1e-7 5

Table 3: Hyperparameters for the deep learning models

4.4. Results

For the News dataset, we observe that RHPT matching significantly outperforms traditional match-
ing techniques on all metrics. Additionally, it is noteworthy that the Within-sample ϵATE error for
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both RHPT matching and deep learning models is almost the same, while the ϵITE error and the
Out-of-sample ϵATE error is slightly worse for RHPT, but still within the same ballpark as the deep
learning models. There is a significant difference between RHPT and the deep learning models for
the ϵPEHE error. RHPT matching outperforms CFRNet and DragonNet in terms of the wall-time
needed for estimating the causal effect. Due to high dimensionality a large sample size of the News
dataset, it takes a significant amount of time to execute on a CPU when using deep learning models.
Even when a GPU is used, the wall time for RHPT matching is less than half of the GPU wall time
of the deep learning models.

As seen from Table 2, HCMNIST dataset appears to be more challenging for causal effect es-
timation than the News dataset, as the improvement from traditional matching techniques to RHPT
and deep learning models is not as pronounced as it is for the News dataset. The In-sample ϵATE
error for all methods is nearly the same, with RHPT performing the best. The out-of-sample ϵATE
error is significantly better for RHPT matching when compared to traditional matching techniques
and on par with the deep learning models. The ϵPEHE error is significantly better for RHPT match-
ing than traditional matching techniques, but deep learning methods outperform any of the matching
techniques.

RHPT outperforms traditional matching techniques in terms of both in-sample and out-of-
sample metrics when the dimensionality of the RHPT representation is sufficiently large (≥ 10k)
with only modest increase in computational cost. We see that our matching technique significantly
and consistently outperforms all traditional matching techniques when it comes to the ϵATE, ϵITE and
ϵPEHE and is competitive with CFRNet and DragonNet. Deep learning methods slightly outperform
RHPT in terms of out-of-sample ϵPEHE error; and RHPT is competitive with deep learning methods
in terms of within-sample error. In both cases, RHPT matching incurs computational cost that is an
order or two magnitude lower than deep learning methods.

5. Conclusion and Discussion

We have introduced a simple, fast, yet effective approach to estimating causal effects from high-
dimensional observational data. The proposed method makes use of Random Hyperplane Tessella-
tions (RHPT) to map covariates into a high-dimensional, binary space based on the relationship be-
tween covariate values and randomly chosen hyperplanes. We show that RHPT ensures approximate
covariate balance, a theoretical requirement for accurate causal effect estimation from observational
data. We report results of extensive experiments showing that matching using RHPT outperforms
traditional matching techniques and is competitive with state-of-the-art deep learning methods for
causal effect estimation. Matching using RHPT also provides several important benefits not offered
by deep learning methods. Namely, RHPT avoids the need for computationally expensive training,
does not require large amounts of data, and requires little hyperparameter tuning.

A promising direction for future research include extensions of the proposed method to causal
effect estimation in settings where the observations are not independent and identically distributed,
e.g., when individuals are linked by social or other ties. Another interesting direction is deeper
theoretical analyses of the conditions under which RHPT or similar methods can be expected to
yield accurate causal effect estimates. Finally, causal inference in the online learning and continual
learning settings remains relatively unexplored. Matching-based approaches such as RHPT are
well-suited for this setting, as they do not require iterative training and can be easily updated as new
data becomes available.
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Appendix A. Additional experimental results

Results for the IHDP dataset are provided in Table 4. RHPT matching provides similar performance
to matching on the raw covariates. Since the IHDP dataset is relatively low-dimensional with only
25 features, the curse-of-dimensionality does not hinder matching performance, therefore RHPT
matching does not provide much added benefit.

Appendix B. Implementation Details

The code is implemented in Python 3 using TensorFlow 2. The codebase for the experiments can
be found at https.//ANONYMOUS.com.
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Within-Sample Metrics Out-of-Sample Metrics Wall-Time
ϵATE ϵITE ϵATE ϵPEHE GPU CPU

Random 0.30 ± 0.04 4.23 ± 0.50 0.94 ± 0.18 8.47 ± 1.16 - 0.07
X 0.14 ± 0.02 2.64 ± 0.25 0.67 ± 0.13 4.85 ± 0.63 - 0.12
Z 0.17 ± 0.02 3.0 ± 0.30 0.70 ± 0.16 5.63 ± 0.74 - 0.12

e(X) 0.22 ± 0.02 4.16 ± 0.5 0.79 ± 0.14 8.23 ± 1.12 - 0.13
e(Z) 0.20 ± 0.02 4.02 ± 0.47 0.8 ± 0.12 7.93 ± 1.08 - 0.20

RHPT100 0.14 ± 0.02 2.98 ± 0.31 0.57 ± 0.10 5.75 ± 0.77 - 0.19
RHPT500 0.14 ± 0.02 2.84 ± 0.28 0.55 ± 0.08 5.20 ± 0.71 - 0.19
RHPT1k 0.15 ± 0.02 2.79 ± 0.25 0.53 ± 0.07 5.11 ± 0.69 - 0.19

RHPT2.5k 0.14 ± 0.01 2.76 ± 0.27 0.53 ± 0.07 4.98 ± 0.63 - 0.32
RHPT5k 0.14 ± 0.01 2.76 ± 0.28 0.49 ± 0.07 4.91 ± 0.60 - 0.45
RHPT10k 0.14 ± 0.02 2.75 ± 0.27 0.48 ± 0.10 4.92 ± 0.65 - 0.72

CFRNetMMD 0.10 ± 0.01 1.21 ± 0.04 0.19 ± 0.03 1.15 ± 0.17 19.58 117.76
DragonNetT-reg 0.11 ± 0.00 1.17 ± 0.02 0.16 ± 0.02 0.96 ± 0.12 47.25 513.32

Table 4: Mean errors (and standard errors) with Wall-times in minutes across 100 simulations of
IHDP Dataset. Rows indicate different causal effect estimation methods (randomly match-
ing, matching on covariates X, matching on PCA-transformed covariates Z, etc).

15


	Introduction
	Preliminaries
	Problem Definition
	Locality Sensitive hashing
	Random Hyper-Plane Tessellations (RHPT)
	Controlling for Confounding Covariates

	Causal Effect Estimation Using Random Hyperplane Tessellations
	Approximate Balancing Scores using RHPT
	Empirical evidence that RHPT yields approximate balancing scores
	Uncertainty in causal estimates using RHPT matching

	Experiments
	Evaluation Metrics
	Data sets
	News
	HC-MNIST

	Hyperparameters for Deep learning models
	Results

	Conclusion and Discussion
	Additional experimental results
	Implementation Details

