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Abstract

The emergence of “big data” offers unprecedented opportunities for not only accelerating scientific
advances, but also enabling new modes of discovery. While we understand how to automate routine
aspects of data management and analytics, most elements of the scientific process currently require
considerable human expertise and effort. We argue that realizing the full potential of data to accelerate
discovery calls for a concerted effort in advancing Discovery Informatics: (i) understanding, formaliza-
tion, and information processing descriptions of the entire scientific process; (ii) design, development, and
evaluation of the computational artifacts (representations and processes) that embody such understand-
ing; and (iii) application of the resulting artifacts and systems to advance science (by augmenting
individual or collective human efforts, or by fully automating science).
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The Transformative Potential of Big Data

Rapid advances in instrumentation and sensors, digital storage, computing, and
communications have resulted in a transformation of many historically data-poor
sciences into increasingly data-rich sciences. New discoveries in biological, physical,
cognitive, and social sciences, and engineering are increasingly being driven by our
ability to acquire, share, integrate and analyze, and build predictive models from
data. Modern data-analytics techniques that integrate sophisticated probabilistic
models, statistical inference, and scalable data structures and algorithms into pow-
erful machine-learning algorithms have resulted in powerful ways to extract action-
able knowledge from data in virtually every area of human endeavor. Creative
applications of data analytics are enabling biologists to gain insights into how living
systems acquire, encode, process, and transmit information; neuroscientists to
uncover the neural bases of cognition; health scientists to not only diagnose and
treat diseases but also help individuals make healthy choices; economists to under-
stand markets; security analysts to uncover threats to national security; social sci-
entists to study the evolution and dynamics of social networks; and scholars to gain
new understandings of literature, arts, history, and cultures through advances in
the digital humanities.

The exponential growth in the volume, variety, and velocity of data in virtually
every area of human endeavor has led to the emergence of “big data.” The current
state of affairs in biomedical sciences helps illustrate the impact of “big data.” In 2011,
the number of peer-reviewed biomedical research articles appearing in PubMed
exceeded 2,700 per day. A consequence of this explosion in the rate of growth of
scientific literature is that it is virtually impossible for a scientist to keep up with all of
the findings in his or her discipline. Peer-reviewed research articles constitute only
one kind of big data. Many scientific investigations increasingly need to draw on
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experimental and observational data, expertise, and results from multiple disparate
data sources across multiple disciplines. Consequently, there is a huge, rapidly
widening, gap between our ability to accumulate big data and our ability to make
effective use of such data to advance discovery. Hence, there is an urgent need for
sophisticated tools for data curation, management, and analytics, including scalable
tools for storing, indexing, annotating, retrieving, organizing, assessing the reliability
of, and analyzing data (including observational and experimental data, literature,
images, spatial, temporal, richly structured, e.g., network data).

Realizing the Potential of Big Data: The Leap from “Stamp Collecting”
to “Physics”

“All science is either stamp collecting or physics,” said Rutherford. The emergence
of big data has led to an exponential growth in the volume and variety, and rate of
acquisition of stamp collections. Advances in computing, storage, and communica-
tion technologies have made it possible to organize, annotate, link, share, discuss,
and analyze increasingly voluminous, exquisitely diverse data, i.e., “stamp collec-
tions.” Yet our current understanding of complex biological, cognitive, economic,
and social phenomena remains, much like the understanding of physics before
Newton, descriptive, or in Rutherford’s terminology, stamp collecting. What would
it take for these disciplines to make the leap from stamp collecting to physics, i.e.,
from descriptive sciences to predictive sciences?

Realizing the Potential of Big Data: The Importance of Models

It was the invention of calculus by Newton and Leibnitz that for the first time
allowed precise descriptions of rate of change, and hence fundamental constructs
of classical physics such as velocity and acceleration, that helped transform the
study of the physical universe from “stamp collecting” to “physics,” from a
descriptive science into a predictive science. It might be arguable as to whether it
is possible to discover the analogs of simple laws like Newton’s laws of motion that
provide accurate predictive models of complex biological, cognitive, economic,
and social phenomena. Fortunately however, the invention of the formal notion of
computation as the process of manipulating symbolic descriptions by Turing and
others, offers a powerful machinery, analogous to calculus for physics, for speci-
fying precise recipes—algorithms—that can be used to describe the relationships
between, and the processes that operate on, the biological, cognitive, economic,
and social entities that make up the world around us. Because anything that is
describable can be described using a computer program, algorithms provide a
powerful substrate for specifying, and reasoning about, theories of the world. If
we take this view, we understand a phenomenon when we have an algorithm that
describes it at the desired level of abstraction. Thus, we will have a theory of
protein folding when we can specify an algorithm that takes as input, a linear
sequence of amino acids that make up the protein (and the relevant features of
the cellular environment in which folding is to occur), and produces as output, a
description of the three-dimensional structure of the protein (or more precisely,
a set of stable configurations).
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Making sense of data requires advances in knowledge representation languages
and modeling formalisms for describing and predicting the underlying phenomena
at varying levels of abstraction. A shift in emphasis from collecting and cataloging
data to understanding the behavior of complex systems, i.e., from “stamp collect-
ing” to “physics” calls for representation and modeling languages with precise
formal semantics for describing, sharing, and communicating scientific models,
theories, and hypotheses. The need for automation dictates that the models must be
specified in a form that can be processed by computers; and queries against the
model and data be translated into precise computational problems.

Realizing the Potential of Big Data: The Importance of Processes and Tools

While we understand how to automate routine aspects of data management and
analytics, humans are still largely responsible for most elements of the scientific
process (see Chalmers, 1999; Hacking, 1983; Rosenberg, 2000, for characterizations
of the scientific process). Examples of elements of the scientific process that have
largely resisted automation include: mapping the current state of knowledge; gen-
erating and prioritizing questions; designing studies; designing, prioritizing, plan-
ning, and executing experiments; interpreting results; forming hypotheses;
drawing conclusions; replicating studies; validating claims; documenting studies;
communicating results; reviewing results; and integrating results into the larger
body of knowledge in a discipline. Hence, we need automated or interactive tools to
support all of these key elements of the scientific process. Because science is increas-
ingly a collaborative endeavour, we need sharable and communicable representa-
tions and processes, organizational and social structures and processes that facilitate
collaborative discovery, including mechanisms for decomposing tasks, assigning
tasks to and incentivizing participants, sharing relevant “mental models,” combin-
ing results, and at least in some domains, engaging large numbers of participants
with varying levels of expertise and ability in discovery (“citizen science”).

Realizing the Potential of Big Data: The Informatics of Discovery

As our ability to gather digital information of all kinds outstrips our cognitive ability
to process, assimilate, and use the information, realizing the potential of data—big
and small—to extract useful knowledge to inform our decisions and actions and to
make the leap from “stamp collecting” to “physics” in biological, cognitive, and
social sciences, calls for deeper understanding of the processes of discovery and the
methods and tools that embody such understanding to help accelerate discovery.

Realizing the transformative potential of data requires frameworks that organize
the hypotheses that are under consideration, the data that supports them, the
models that have been created from the data, and the hypotheses resulting from the
models. Note that the processes of discovery have to do primarily with acquiring,
organizing, verifying, validating, integrating, analyzing, reasoning with, and com-
municating information (models, hypotheses, theories, and explanations) concern-
ing natural and built systems. Hence, computing, the science of information
processing, offers not only a powerful formal framework and exploratory apparatus
for sciences (Djorgovski, 2005) but also the theoretical and experimental tools for
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the study of the feasibility, structure, expression, and automation of the processes
that underlie discovery.

While automating aspects of scientific discovery has been a topic of considerable
interest in artificial intelligence (de Jong & Rip, 1997; Dzeroski & Todorovski, 2007;
Glymour, 2004; Langley, Simon, Bradshaw, & Zytkow, 1987; Pearl, 2003; Shrager &
Langley, 1990; Valdez-Perez, 1999), information science (Smalheiser, 2012;
Swanson & Smalheiser, 1997), and cognitive science (Klahr, 2000), it is only rela-
tively recently that some of the prerequisites for automating discovery (such as
technology for automating data acquisition, databases, and knowledge bases that
capture the relevant background knowledge in specific disciplines, e.g., biological
sciences, open access to large bodies of scientific literature, technologies for con-
necting resources and experts, and for constructing and sharing scientific
workflows) have become available (Gil & Hirsh, 2012). King et al. (2009) have
demonstrated the possibility of automating science by building a robot scientist
capable of autonomously generating and testing hypotheses, in this instance, con-
cerning the functional genomics of yeast (Saccharomyces cerevisiae).

These developments, together with the transformative potential of big data
across many areas of science and even the humanities, strongly argue for a con-
certed effort to revisit the challenges of automating aspects of discovery as well as
developing computational tools to augment human abilities in the domain of
scientific discovery. Realizing the full potential of big data to advance discovery calls
for a new discipline, Discovery Informatics (Honavar, 2013), that aims to: under-
stand and formalize the representations, processes, and organizational structures
that are crucial to discovery in the sciences as well as the humanities; design,
develop, and evaluate the computing and information artifacts that embody such
understanding; and apply the resulting artifacts and systems to facilitate discovery.

Conclusion

The emergence of “big data” offers unprecedented opportunities for not only
accelerating scientific advances, but also enabling new modes of discovery. While we
understand how to automate routine aspects of data management and analytics,
most elements of the scientific process currently require considerable human exper-
tise and effort and have resisted automation. We have argued that a concerted effort
to advance the informatics of discovery is of utmost importance in the success of
efforts to realize the full transformative potential of big data.

Advances in Discovery Informatics inevitably require collaborative projects that
bring together bench scientists in one or more specific domains of inquiry, e.g., the
biomedical sciences, with information and computer scientists, organizational and
social scientists, cognitive scientists, philosophers of science, to study and formalize
the representations, processes, and organizational structures that are crucial to
discovery. Such collaborations would be hard to sustain in the absence of funding
mechanisms that support not only collaborative research in Discovery Informatics
but also fundamental research in the relevant disciplines including computer
science, informatics, artificial intelligence, robotics, data and computing infrastruc-
ture, cognitive science and social science on the one hand and the applications of
discovery informatics in specific domains that are ripe for such efforts, e.g., systems
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biology, materials science, health sciences, behavior and brain sciences on the other.
Particularly important are funding mechanisms that support interdisciplinary
research-based pre- and postdoctoral training opportunities for preparing a diverse
cadre of young scientists to pursue careers in Discovery Informatics.

Given the critical role of Discovery Informatics in realizing the transformative
potential of big data investments in Discovery Informatics are likely to directly
benefit multiple areas of national priority including education, food, health, envi-
ronment, energy, and security.
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