
A Distributed Tableau Algorithm for Package-based
Description Logics

Jie Bao and Doina Caragea and Vasant G Honavar1

Abstract. Package-based Description Logics (P-DL) is a novel for-
malism for modular ontologies. In P-DL, an ontology is composed
of a collection of modules calledpackages. A package can partially
reuse knowledge in other packages by a selective importing mech-
anism. This paper investigates a sound and complete tableau-based
reasoning algorithm for a P-DL languageALCPC , which extends
ALC with acyclic concept importing between packages. The algo-
rithm allows the reasoning process to be distributed based on local
reasoning services offered by each module. The algorithm allows the
reasoning process to be distributed based on local reasoning services
offered by each module. Local tableaux associated with the ontol-
ogy modules while physically separate, may conceptually overlap by
communicating with each other via a set of messages. Our inves-
tigation shows the algorithm can avoid several semantic difficulties
associated with existing approaches, such as transitive subsumption
propagation and inter-module unsatisfiability detection.

1 INTRODUCTION

Because of the distributed and context-specific nature of web on-
tologies, there is growing interest in modular ontology languages
such as Distributed Description Logics (DDL) [4], E-connections
[8, 6] and Package-extended Description Logics (P-DL) [3]. Conse-
quently, sound and complete distributed reasoning algorithms are ur-
gently needed to support large scale applications of ontologies. Such
algorithms ideally should avoid the need to combine the ontology
modules into a centralized knowledge base. Distributing the reason-
ing effort across the modules helps respect the autonomy of each
autonomous ontology module.

DRAGO [13] (for DDL) and Pellet [14] (for E-Connections) offer
examples of efforts aimed at developing distributed reasoning algo-
rithms.

DDL connects concepts in different modules withbridge rules

such as onto (
w−→) and into (

v−→) to simulate cross-module concept
subsumptions. Serafini and Tamilin (2004) [11] have presented a dis-
tributed tableau algorithm for DDL. Their algorithm divides the sat-
isfiability problem w.r.t. a DDL TBox into several local satisfiability
problems w.r.t. local TBoxes in ontology modules. The basic idea be-
hind this algorithm is to infer subsumption in one module from sub-
sumptions in another module and proper inter-module bridge rules.

For example, if there are bridge rulesi : A
w−→ j : G, i : B

v−→ j : H
and modulei entailsA v B, thenG v H can be inferred in module
j. Further results based on this approach are reported in [10] with a
new fixed-point semantics of bridge rules and a caching mechanism

1 Artificial Intelligence Research Laboratory, Department of Computer
Science, Iowa State University, Ames, IA 50011-1040, USA.{baojie,
dcaragea, honavar}@cs.iastate.edu

to store remote subsumptions, and in [12] for DDL ABox reasoning.
This algorithm is compatible with the state-of-the-art tableau-

based DL reasoners and lends itself to a simple implementation as
demonstrated by the DRAGO (Distributed Reasoning Architecture
for a Galaxy of Ontologies) [13] system. However, the algorithm
has several limitations: It does not support inference of inter-module

subsumption (e.g.i : A
v−→ j : B) or transitive subsumption prop-

agation among multiple modules (e.g. giveni : A
v−→ j : B and

j : B
v−→ k : C, infer i : A

v−→ k : C). Without principled ways
to ensure semantic soundness of bridge rules, the algorithm may
fail due to incomplete modelling. For example, If module 1 entails
> v Car, module 2 entailsUsefulThing v ¬UselessThing,

and there are bridge rules1 : Car
v−→ 2 : UsefulThing and

1 : Car
v−→ 2 : UselessThing, the algorithm can not detect the

inconsistency. For another example,1 : Bird
w−→ 2 : Penguin and

1 : ¬Fly
w−→ 2 : Penguin do not render2 : Penguin unsatisfiable

even if module 1 entailsBird v Fly. In general, the algorithm may
not detect inter-module unsatisfiability propagation without one-to-
one domain relations [10, 2], nor detect inconsistencies due to im-
proper bridge rules.
E-connectionsbetween DLs [7, 6] restrict the local domains of

theE-connected ontology modules to be disjoint. Roles are divided
into disjoint sets oflocal roles (connecting concepts in one mod-
ule) andlinks (connecting inter-module concepts). For example, two
modules about people (L1) and pets (L2) can be connected by a
link owns, andL1 can use such a link to build local concepts, e.g.
1 : DogOwner v ∃owns.(2 : Dog).
E-Connections allow straightforward implementation of reasoning

based on existing tableau OWL reasoners, e.g. Pellet. The tableau-
based reasoning procedure as presented in [6, 5] is an extension to
existing DL tableau algorithm. Instead of having a single tableau,
the algorithm will generate a set of tableaux (trees) linked byE-
connection instances (cross-module role instances).

However, reasoning within theE-Connections framework has a
significant limitation, namely, the lack of inter-module subsump-
tions since local domains of all modules are strictly disjoint. In gen-
eral,E-Connections do not support transitive knowledge propagation
among ontology modules. Current prototype implementation of the
E-Connections reasoner (as a part of Pellet), which is motivated by
the “combined tableau” idea [6, 5], only “colors” but does not sep-
arate each local tableau. Therefore, a reasoning process will result
in one combined ABox in a single memory space, thus equivalently
forcing TBoxes of all involved modules to be locally loaded. Such a
strategy defeats many benefits of modular ontologies (e.g., scaleabil-
ity and local module autonomy).



In summary, DDL and E-Connections are motivated by, and hence
are responsive to, different application scenarios. Their expressivity
and reasoning power is complementary in several ways. However,
both of them are also limited in several ways. Due to the strong lo-
cal domain disjointness assumption adopted in those approaches, the
distributed reasoning processes with such approaches may encounter
semantic difficulties as shown above. They also fail to provide solu-
tions for some critical distributed reasoning tasks, such as transitive
concept subsumption across multiple modules.

P-DL [3], by relaxing the local domain disjointness assumption,
allows discovery of a distributed model for a set of ontology mod-
ules that is identical to that obtainable by combining the ontology
modules into a centralized ontology, a property we refer to asexact-
nessof distributed reasoning relative to its centralized counterpart.
This paper investigates a sound and complete tableau-based reason-
ing algorithm for a P-DL languageALCPC , which extendsALC
with acyclic concept importing between packages. The algorithm al-
lows the reasoning process to be distributed based on local reasoning
services offered by each module. Local tableaux associated with the
ontology modules while physically separate, may conceptually over-
lap by communicating with each other via a set of messages. Our pre-
liminary investigation shows that the proposed algorithm can solve
many known reasoning difficulties in existing approaches. Complex-
ity study shows the algorithm for the package-basedALC language
has the same time complexity as that of a canonicalALC reasoning
algorithm.

2 PACKAGE-BASED DESCRIPTION LOGICS

A P-DL ontology is composed of a set of packages [3]. Terms
(such asDog, Animal) and axioms (such asDog v Animal) are
defined in specific home packages.

Definition 1 (Package) Let O = (S, A) be an ontology, whereS
is the set of terms andA is the set of axioms over terms inS. A
packageP = (∆S , ∆A) of the ontologyO is a fragment ofO, such
that ∆S ⊆ S, ∆A ⊆ A. A term t ∈ ∆S or an axiomt ∈ ∆A

is called amemberof P , denoted ast ∈ P . P is called the (only)
home packageof t, denoted asHP(t) = P .

Terms can be names of classes (i.e., concepts), properties (i.e.,
roles), or instances (i.e., individuals). A package can use terms de-
fined in another package. In other words, an existing package can be
importedinto another package.

Definition 2 (Foreign Term and Importing) A termt that appears
in a packageP , but has a home packageQ that is different fromP is
called aforeign termin P . We say thatP importsQ : t and denote it

asQ
t−→ P . If any term defined inQ is imported intoP , we say that

P importsQ and denote it asQ 7→ P .
The importing closureI 7→(P ) of a packageP contains all pack-

ages that are directly or indirectly imported intoP , such that:

• (direct importing)R 7→ P ⇒ R ∈ I 7→(P )
• (indirect importing)Q 7→ R andR ∈ I 7→(P ) ⇒ Q ∈ I 7→(P )

A conceptC is understandableto a packageP if the concept is
constructed only using terms inP and concept terms inI 7→(P ). A
packageP is said to becompletew.r.t. a conceptC if C is under-
standable toP , otherwiseP is incompletew.r.t. C.

Foreign terms can be used to construct local concepts. All concepts
except for atomic foreign concepts in packagePi are i-concepts.
Therefore, althoughPi can import concepts inPj (i 6= j), i-concepts
are still disjoint withj-concepts. For example, an ontologyO has two
packages:

PAnimal

(1a) 1 : Dog v 1 : Carnivore
(1b) 1 : Carnivore v 1 : Animal
(1c) 1 : Carnivore v ∀1 : eats.(1 : Animal)

PPet

(2a) 2 : PetDog v 1 : Dog u 2 : Pet
(2b) 2 : PetDog v ∃1 : eats.(2 : DogFood)

We will omit the prefix “1:” and “2:” when there is no confusion.
Both 1 : Dog u 2 : Pet and∃1 : eats.(2 : DogFood) are2-
concepts constructed using some foreign terms.

Definition 3 (Acyclic and Cyclic Importing) A P-DL ontol-
ogy {Pi} has acyclic importing relation if for anyi 6= j,
Pj ∈ I 7→(Pi) → Pi 6∈ I 7→(Pj), otherwise it has cyclic importing
relation.

For example, ifPAnimal also imports the conceptPet from
PPet, the ontology will have cyclic importing relation.

For simplicity, we do not concern ourselves here with some addi-
tional features of P-DL, such as package hierarchy and scope limi-
tation modifiers [3]. We denote the package based extension to DL
asP. Hence,ALCP is the package-based version of DLALC. In
what follows, we will examine a restricted type of package exten-
sion which only allows acyclic import of concept names, denoted as

PC . For example, the importingPAnimal
eats−−−→ PPet, or mutual

importing between packages, is not allowed inALCPC .
The semantics of P-DL are expressed as follows: For a package-

based ontology〈{Pi}, {Pi
t−→ Pj}i6=j〉, a distributed model is

M = 〈{Ii}, {rt
ij}i6=j〉, whereIi = 〈∆i, (.)i〉 is the local model

of packagePi, rt
ij ⊆ ∆i × ∆j is the interpretation for the im-

porting relationPi
t−→ Pj . For convenience, we denote the iden-

tity function f(x) = x asrt
ii for any i andt. For any such a rela-

tion r from ∆i to ∆j and any individuald ∈ ∆i, r(d) denotes the
set{d′ ∈ ∆j |〈d, d′〉 ∈ r}. For a subsetD ⊆ ∆i, r(D) denotes
∪d∈Dr(d), is the image set ofD.

We require that the importing relation meet the following require-
ments:

• Every importing relation is one-to-one in that it maps an object of
tIi to a single unique object intIj .

• Importing relations are consistent for different terms, i.e., for any
i : t1 6= i : t2 and anyx, x1, x2 ∈ ∆i, rt1

ij (x) = rt2
ij (x) and

rt1
ij (x1) = rt2

ij (x2) 6= Ø → x1 = x2. Therefore, each object
in the model of a source package corresponds uniquely to an ob-
ject in the model of any target package for any interpretation of
importing relations.

• Compositional Consistency: ifri:t1
ik (x) = y1, ri:t2

ij (x) = y2,

rj:t3
jk (y2) = y3, , (wheret1 andt2 may or may not be same), and

y1, y2, y3 are not empty set, theny1 = y3. (Compositional con-
sistency helps ensure that importing relations (defined in below)
is inferrable.)

The above requirements help to ensure thetransitive reusabilityof
modules and the exactness of distributed reasoning algorithm (rela-
tive to its centralized counterpart). A concepti : C is satisfiablew.r.t.

a P-DL O = 〈{Pi}, {Pi
t−→ Pj}i6=j〉 if there exists a distributed

model ofO such thatCIi 6= Ø. A packagePk witnessessubsump-
tion i : C v j : D (i, j, k can be different,C, D are understandable
to Pk) iff rC

ik(CIi) ⊆ rD
jk(DIj ) holds for every model ofPk and all

packages in its importing closure.
The importing approach adopted by P-DL is different from the

“linking” approach adopted by DDL andE-Connections in that it



partially relaxes the strong local model disjointness assumption that
is required in the other two formalisms.

The image domain relationbetweenIi andIj is rij = ∪tr
t
ij

and is strictly one-to-one. Consequently,rij in a P-DL model iso-
morphically “copies” the relevant partial domain fromIi to Ij and
establishes unambiguous communication between the two packages.
Since the construction of a local model is dependent on the structure
of local models of imported modules, it is possible that local models
are in fact partially overlapping.

Concept bridge rules in DDL andE-Connection links can be easily
reduced to P-DL axioms [2]. On the other hand, it also offers the pos-
sibility of avoiding many of the semantic difficulties of current mod-
ular ontology language proposals. For example, knowledge in one
P-DL package can be transitively reused by other packages. The an-
swer to a P-DL reasoning problem is semantically equivalent to that
obtained by reasoning over an integrated ontology [2]. In what fol-
lows, we will investigate an algorithm for constructing a P-DL model
for a specific reasoning problem for the package extended version of
the DLALC .

3 REASONING WITH ALCPC
3.1 Preliminaries: reasoning withALC

Modern description logics exploit tableau algorithms [1] for de-
ciding concept satisfiability w.r.t. a knowledge base. A tableau algo-
rithms for a specific DL language contains the following main ele-
ments:

• A completion graph, also calledtableauthat represents a model of
the DL language. Such a completion graph has the “tree model”
property.

• A set oftableau expansion rulesto construct a complete and con-
sistent completion graph.

• A set ofblocking rulesto detect infinite cyclic models and ensure
termination.

• A set ofclash conditionsto detect logic contradictions.

For anALC ontologyO and anALC -conceptC, a tableau al-
gorithm will construct a common model for bothO andC. If one
such model (i.e. a completion graph) is found,C is satisfiable, other-
wiseC is unsatisfiable. Before the reasoning process starts, the con-
cepts inO andC should be transformed into theNegation Normal
Form (NNF), i.e., with negation only occurs in front of atomic con-
cepts. Reasoning w.r.t. a TBoxT can be reduced to reasoning w.r.t.
an empty TBox with theinternalizationtechnique. GivenT , a con-
ceptCT is defined asCT = u

(CivDi)∈T
(¬Ci tDi). Any individual

x in any model ofT will be an instance ofCT .
A completion graph or atableau T = 〈V, E, L〉 is a tree, where

V is the node set,E is the edge set,L is a function that assigns
labels for each node and edge. Each nodex in the tree represents an
individual in the domain of the model, and the labelL(x) contains
all concepts of whichx is an instance. Each edge〈x, y〉 represents
a set of role instances in the model, and the labelL(〈x, y〉) contains
the names of those roles. IfR ∈ L(〈x, y〉), y is aR-successorof x.
In anALC -tableau:

• if C ∈ L(x), then¬C 6∈ L(x),
• if C1 u C2 ∈ L(x), thenC1 ∈ L(x) andC2 ∈ L(x),
• if C1 t C2 ∈ L(x), thenC1 ∈ L(x) or C2 ∈ L(x),
• if ∀R.C ∈ L(x) andR ∈ L(〈x, y〉), thenC ∈ L(y),
• if ∃R.C ∈ L(x), then there is somey such thatR ∈ L(〈x, y〉)

andC ∈ L(y).

Given a conceptC and a TBoxT , the tableau is a tree expanded
from an initial root nodex0, L(x0) = C u CT , with the following
expansion rules:

• u-rule: if C1 u C2 ∈ L(x), x is not blocked,{C1, C2} 6⊆ L(x),
thenL(x) = L(x) ∪ {C1, C2}

• u-rule: if C1 tC2 ∈ L(x), x is not blocked,{C1, C2} ∩L(x) =
Ø, thenL(x) = L(x) ∪ {C1} or L(x) = L(x) ∪ {C2}

• ∃-rule: if ∃R.C ∈ L(x), x is not blocked, andx has no R-
successory with C ∈ L(y), then create a new nodey with
L(〈x, y〉) = {R} andL(y) = {C}

• ∀-rule: if ∀R.C ∈ L(x), x is not blocked, and there is a R-
successory of x with C 6∈ L(y), thenL(y) = L(y) ∪ {C}
To ensure termination, a node can be blocked with thesubset

blocking strategy: for any nodex, if there is an ancestor nodey of x
in the tree, andL(x) ⊆ L(y), x is blocked. No expansion rule will
be applied to a blocked node.

An ALC tableau contains aclash if there is{C,¬C} ∈ L(x) for
some nodex and conceptC. A tableau isconsistentif it contains no
clash, and iscompleteif no expansion rule can be applied. The given
concept is satisfiable if and only if the algorithm finds a consistent
and complete tableau.

3.2 Distributed Tableaux forALCPC
The main idea behind theALCPC tableau algorithm is to con-

struct multiple federated local tableaux instead of a single global
tableau. The connection between local tableaux is enabled by the
image relations, i.e. a local tableau is able to create “image” nodes of
its nodes in another local tableau. Formally, we have:

Definition 4 (ALCPC Distributed Tableau) A distributed tableau
for anALCPC ontology{Pi} is a tuple〈{Ti}, {rij}i6=j〉, whereTi

is a localALC tableau for the packagePi, rij is the image relation
betweenTi and Tj , such that it creates one-to-one mappings from
a subset of nodes inTi to a subset of nodes inTj . For any i-node
x and j-nodey, (x, y) ∈ rij , x is said the pre-image ofy andy is
the image ofx. The local labelLi(x) of x in a local tableauTi only
containsi-concepts.

The P-DL semantics require that all images of a node in any local
tableau should be uniquely identified. This can be done by keeping
the original name of a node the same as its image nodes’ names. For
example, a nodei : x in a local tableauTi can be copied in another
local tableauTj with the same namei : x (we will omit the prefix
when there is no confusion). As we will show later, such a property of
image nodes helps to deliver nodes transitively across multiple local
tableaux, and is essential to solve several known semantic difficulties
in existing modular ontology languages.

It should be noted that the “copying” of nodes across multiple lo-
cal tableaux does not require that they are completely identical. If a
nodex is copied in both local tableauxTi andTj , local labelsLi(x)
andLj(x) are strictly disjoint sincei-concepts andj-concepts are
disjoint. Some nodes in a local tableau may also not be shared by
other local tableaux. Therefore, the partial sharing of nodes does not
mean the sacrifice of local semantics.

The distributed tableau is not a combined tableau since all local
tableaux will be autonomously created and maintained by the local
reasoners provided for different packages. The local tableaux reside
on their own reasoning servers and communicate in a peer-to-peer
fashion. The communication between a local tableauTj and a tableau
Ti is supported by the following set of message primitives:



• Membership m(y, C): given an individualy and ani-conceptC,
querying if there is a pre-image or imagey′ of y in Ti, such that
C ∈ Li(y

′)
• Reporting r(y, C): given an individualy and ani-conceptC,

if there is a pre-image or imagey′ of y in Ti, C 6∈ Li(y
′), then

Li(y
′) = Li(y

′)∪{C}; if there is no existing pre-image or image
y′ of y, create ay′ with L(y′) = {C} and add(y′, y) to the image
relationrij

• Clash⊥(y): an individualy in Tj contains a clash.
• Model >(y): no expansion rules can be applied ony or any of its

descendants inTj .

If i = j, such messages are reduced to local operations:m(y, C)
is reduced to querying ifC ∈ Lj(y), r(y, C) is reduced to addingC
to Lj(y), ⊥(y) is reduced to a local inconsistency report and>(y)
is reduced to a local completion report. For convenience, we do not
distinguish a local operation from a remote message operation.

To simplify the communication process we have:

Definition 5 (Concept Destination) An atomic conceptC or its
negation¬C ’s destination isC ’s home packageHP(C). A com-
plex conceptC ’s destination is the package in which it is generated.
Destination ofC is denoted asδ(C).

A membership messagem(y, C) or reporting messager(y, C)
operation is always sent to the destination package ofC, i.e.,δ(C).

3.3 ALCPC Tableau Expansions

The ALCPC expansions rules are derived from the
ALC expansion rules as follows: each module is only locally
internalized, instead of being globally internalized w.r.t. a combined
TBox; a local tableau can create “copies” of its local nodes in
another local tableau (as needed) during an expansion. For a local
tableauTi, the expansion rules are:

• u-rule: if C1 u C2 ∈ Li(x), x is not blocked, then
(1) if m(x, C1)=false, dor(x, C1)
(2) if m(x, C2)=false, dor(x, C2)

• t-rule: if C1 t C2 ∈ Li(x), x is not blocked, butm(x, C1) ∧
m(x, C2)=false, then dor(x, C1) or r(x, C2)

• ∃-rule: if ∃R.C ∈ Li(x), x is not blocked, andx has no R-
successory with m(y, C)=true, then create a new nodey with
Li(〈x, y〉) = {R} and dor(y, C)

• ∀-rule: if ∀R.C ∈ Li(x), x is not blocked, and there is a R-
successory of x with m(y, C)=false, then dor(y, C).

• CE-rule: ifCTi 6∈ Li(x), thenLi(x) = Li(x) ∪ CTi , whereCTi

is the internalized concept for the TBox ofPi.

A distributed tableau is said to bedistributively completeif no
ALCPC expansion rule can be applied on any of its local tableau, and
it is distributively consistentif all of its local tableaux are consistent.

For a satisfiability query involving a conceptC sent to the package
Pj (called thewitness package), whereC is understandable toPj ,
we will first create its local tableau with an initial nodex0 ({CTj u
C} ∈ Lj(x0)), and apply theALCPC tableau expansion rules until
a distributively complete and consistent tableau is found, or all search
processes for such a distributed tableau fail.

Since different packages may stand for different semantic points
of view, a satisfiability problem may have different answers when
witnessed by different packages. In what follows, we assume that the
satisfiability problem of a conceptC is only witnessed by a package
Pj that is complete w.r.t.C (i.e.C is understandable toPj).

x L1(x)={A,∃R.B}

y y

z

L2(y)={B,∃P.C}

L2(z)={C,∃P.C}

R

P

T1

T2

L1(y)={A,∃R.B}

w L2(w)={C,∃P.C}
P

Figure 1. Distributed Tableaux Example

An example of such
a distributed tableau
is given in Figure1.
We have two packages:
P1 : > v 1 : A,> v
∃(1 : R).(2 : B), P2 :
> v (2 : P ).(2 : C).
P1 imports conceptB

from P2. The reasoning task is to check the consistency ofP1, there-
fore P1 is the witness package.T1 andT2 are local tableaux for the
two packages, withy as a shared node. Note thatL1(y) andL2(y)
are disjoint. The blocking strategy (e.g.y is blocked byx in T1 since
L1(y) ⊆ L1(x)) is also localized and is presented in the below.

3.4 Termination Strategy with Acyclic Importing

The termination of the algorithm can be obtained with subset
blocking when there is only acyclic importing among packages. A
P-DL ontology with acyclic importing relation has the property that
local tableaux for the ontology have only unidirectional reporting
messages. Formally, we have:

Definition 6 (Message Descendant)A local tableauTi is a direct
message descendant ofTj , i 6= j, if there is at least one reporting
message sent fromTj toTi; Ti is a message descendant ofTj if it is a
direct message descendant ofTj , or it is a direct message descendant
of aTj ’s message descendant.

Lemma 1 Given a P-DL ontology{Pi}, a local tableauTi is a mes-
sage descendant of aTj , only if Pi ∈ I 7→(Pj)

This lemma follows from the observation that for any pair ofTi

andTj , if there is a reporting message fromTj toTi, there must be an
i-concept that is occurring inTj , therefore packagePj must import
Pi. This property can be easily extended to multiple packages and
hence the lemma. This immediately leads to the following lemma:

Lemma 2 Given a distributed tableau〈{Ti}, {rij}i6=j〉 of an
ALCPC ontology, if a local tableauTi is Tj ’s message descendant,
thenTj must not beTi’s message descendant.

The blocking strategy forALCPC works as follows:

Definition 7 (Subset Blocking forALCPC ) For a distributed
tableau{Ti} of anALCPC ontology{Pi}, a nodex is blocked by a
nodey, iff bothx andy are in the same local tableauTi, y is a local
ancestor ofx, andLi(x) ⊆ Li(y).

The correctness of such a blocking strategy is guaranteed by the
following facts: For any nodex in a local tableauTi, if it has image
nodes in another local tableauTj (i 6= j), since the ontology has
acyclic importing relation, neitherTj nor any of its message descen-
dants will create new nodes inTi with reporting messages. Therefore,
if there is a path fromx to another nodey in Ti, the path only con-
tains nodes inTi and will not transverse via any image relations to
other local tableaux. Thus, we can detect and prevent infinite expan-
sion inTi only with local topology information inTi.

The blocking strategy allows expansion of a node even if its pre-
image and image nodes in other local tableaux are locally blocked.
For example, in Figure1, while y is blocked inT1, its image node in
T2 is further expanded. Such a strategy prevents infinite creation of
image nodes in other local tableaux, but allows existing image nodes
to be further validated.

The coordination of different local tableaux forALCPC with
acyclic importing operates as follows:



• Waiting : If a nodex has sent a reporting message to another local
tableau,x is temporarily blocked until it receives a clash(⊥) mes-
sage from any of its image node, or model(>) messages from all
of its image nodes.

• Clash Message: If a nodex contains a local clash (e.g. with both
C and¬C in Li(x)), or it receives a clash report, 1) if there is
no other search choice (e.g.∃-rule choices) that can be applied to
x, send clash reports⊥(x) to x’s local direct ancestor and all pre-
image nodes, and destroy all image relations fromx; 2) if there are
other search choices, restore the state (including image relations)
of x to the state before the last choice, and try the next choice.

• Model Message: if no ALCPC expansion rules can be applied
to x, x has no clash nor receives any clash message, there is no
image node ofx, or all image nodes return model messages, then
send model messages>(x) to x’s local direct ancestor and all
pre-image nodes.

The intuition behind clash and model messages is that a node has
a clash if it has local clash oranyof its image node has a clash, and
it is complete if it is locally complete andall its image nodes are
complete. Such a strategy is driven by the fact that image nodes are
“copies” of the pre-image node. The algorithm terminates when the
root node in the local tableau of the witness package receives a clash
message (i.e., the given concept is unsatisfiable) or a model message
(i.e., the given concept is satisfiable).

3.5 ALCPC Expansion Examples

L3(x)={A ¬

D, ¬C D
A,¬C, ¬D}

L2(x)={¬B C
¬C, ¬B}

x

x x

L1(x)={¬A B
A, ¬B, B}

T3

T2 T1

r(x,A)r(x,¬C)

r(x,¬B)

⊥(x)

⊥(x)

⊥(x)

L2(x)={P,¬P B, 
¬P ¬F,B,¬F}

x x
L1(x)={B,¬
F,¬B F,F}

T2 T1r(x,B)
r(x,¬F)

⊥(x)

(a)

(b)

L1(x)={A, 
¬A C,C}

y

z

L2(y)={A,¬A ∃R.
B, ¬B (A ¬C), 

∃R.B, ¬B} P

T1T2

L2(z)={B,¬A ∃R
.B, ¬B (A ¬C), 
∃R.B, A ¬C, A, 

¬C}

y

L1(z)={A, 
¬C, ¬A C, 
C}

z

r(z,A)
r(z,¬C)

⊥(x)

r(z,A)

(x)

⊥

(c)

Figure 2. ALCPC Expansion Examples

Example 1: Transitive Subsumption Propagation. Given three
packages:P1 : {1 : A v 1 : B}, P2 : {1 : B v 2 : C},
P3 : {2 : C v 3 : D}, test subsumption1 : A v 3 : D witnessed by
P3. The expansion and message exchange between local tableaux is
shown in Figure2 (a). Since there is no consistent distributed tableau
for A u ¬D, A v D is witnessed byP3.

Example 2: Detect Inter-module Unsatisfiability. Given two pack-
agesP1 : {1 : B v 1 : F}, P2 : {1 : P v 1 : B, 2 : P v ¬1 : F},
test the satisfiability of2 : P witnessed byP2. The results shows
2 : P is unsatisfiable (Figure2 (b)).

Example 3: Reasoning from Local Point of View. Given two pack-
agesP1 : {1 : A v 1 : C}, P2 : {1 : A v ∃2 : R.(2 : B), 2 :
B v 1 : A u (¬1 : C)}, test satisfiability of1 : A witnessed byP1

andP2, respectively. It is easy to seeA is satisfiable when witnessed
by P1, but unsatisfiable when witnessed byP2 (Figure2 (c) shows
one possible search result). This example shows reasoning in P-DL
always stands for the local semantic point of view of the witness
packages, therefore the same reasoning problem can have different
answers when witnessed from different packages. Note that in Fig-
ure2 (c), z in T2 is not further expanded due to the waiting strategy
and the following clash message fromT1.

4 SOUNDNESS, COMPLETENESS AND
COMPLEXITY

The basic intuition behind theALCPC expansion rules is to re-
duce the inconsistency checking of distributed tableaux to only local
tableau inconsistency checking. Since a local tableauxTi is actu-
ally a representation for an ABox (denoted asAi) of a packagePi,
anALCPC expansion rule is equivalent to adding new facts to the
ABox. For example, a local tableau with nodesx, y, C ∈ L(x) and
an R-edge fromx to y is equivalent to an ABox{C(x), R(x, y)},
for some concept nameC and role nameP . A reporting message
r(x, C) adds new factsC(x′) andx → x′ to the destination pack-
age ofC, wherex → x′ is an image relation instance. We will denote
a fact using lowercase Greek letters, e.g.,α, β.

The result of applying anALCPC expansion rule can be classified
into three types using the ABox-type representation:

• Augmenting: New facts are inferred from existing facts in a local
ABox (i.e. local tableau) and are added to the same ABox i.e.
A′ = A ∪ {α},A |= α.

• Searching: Different candidates for inferred facts are added to the
original local ABox i.e.A1 = A∪{α},A2 = A∪{β},A |= (α
or β).

• Reporting: New inferred facts are added to another local ABox,
i.e.B′ = B ∪ {α},A |= α.

SinceALCPC expansions will send any concept fact to the ABox
of its destination package, and inconsistency only occurs for the co-
existence ofC(x) and¬C(x), if there is a global inconsistency,
it must result in a local consistency in a certain ABox (i.e. local
tableau). If there is an inconsistent local ABox, the entire set of
ABoxes (i.e. the distributed tableau) must also be inconsistent. We
denote(A,B) as the union of two ABoxesA,B.

Lemma 3 If an ABoxA is expanded by theALCPC tableau expan-
sion rules via

• augmenting fromA toA′, thenA is consistent iffA′ is consistent;
• searching fromA to A1 or A2, thenA is consistent iffA1 is

consistent orA2 is consistent;
• reporting fromA,B toA,B′, then(A,B) is consistent iff(A,B′)

is consistent.

Given a set of distributively complete and consistent ABoxes (and
hence also local tableaux){Ai} for a P-DL {Pi}, we can build a
distributed model as follows:

• For each ABoxAi, the domain of local individuals∆i is the set
of all individuals occurring in it.

• For each concept nameC ∈ Pi, CIi = {x|C(x) ∈ Ai}
• For each role nameR ∈ Pi, RIi = {(x, y)|R(x, y) ∈ Ai}
• For image relationrij , rij = {(x, y)|x ∈ Ai, (x → y) ∈ Aj}}

Consequently, a conceptC is satisfiable w.r.t. a witness package
P if and only if theALCPC expansion rules can find a common
distributed model forC, P andP ’s importing closure. Formally, we
have:

Lemma 4 (Soundness and Completeness)A distributively com-
plete and consistent distributed tableaux can be obtained from the
application of finiteALCPC expansion rules for the satisfiability
problem of a conceptC witnessed by a packagePj w.r.t. a P-DL on-
tology{Pi}, if and only if there exists a common distributed model
for C and{I 7→(Pj), Pj}.



The complexity of reasoning consists can be expressed in terms
of complexity of local reasoning processes and the communication
process. The communication space cost is mainly due to the storage
requirement for image domain relations. In the worst case each local
tableau completely copies all nodes from other local tableux. If there
arem nodes in total in all local tableaux, and there aren such local
tableaux, the storage needed for image domain relations will be of
the order ofO(m2/n). Sincen is finite andm can be polynomially
bounded by the size of the combined terminology set of all packages
and the testing concept (the well-known dept-first search strategy for
ALC is still applicable), the upper bound on communication space
complexity is polynomial w.r.t. the size of the whole P-DL ontology
and the testing concept. If the ontology modules are well designed,
much of the reasoning is likely to be localized within individual pack-
ages, resulting in space requirement that is significantly lower than
the worst case upper bound.

The communication time cost is measured by the total num-
ber of messages exchanged between local tableaux. Assuming the
distributed tableaux isconceptuallyreduced to a single combined
tableau, a message operation can be reduced to a local operation. For
example,m(x, C) is reduced to testing ifC ∈ L(x) andr(x, C)
is reduced to addingC to L(x). Consequently, the number of such
message operations is bounded by the total number of equivalent lo-
cal operations in anALC reasoning process w.r.t a combined knowl-
edge base of all packages. Therefore, we have the following lemma:

Lemma 5 (Complexity) The run time complexity of the tableu-
based distributed reasoning algorithm presented in this paper for
ALCPC P-DL is no greater the run time complexity of the classi-
cal tableau-based algorithm forALC in the worst case w.r.t. the size
of the input concept and the total size of the combined terminology
set of all packages.

It is known the reasoning complexity forALC -satisfiability w.r.t.
cyclic TBoxes isEXPTIME [9]. Therefore,ALCPC also has the same
reasoning complexity upper bound. The practical performance of
the algorithm can be improved by caching strategy. For example, if
m(x, C) returns true, the calling package can store the result locally
thus avoid repeated queries.

5 CONCLUSIONS

We have presented a distributed tableau-based reasoning algorithm
for the package-based extension of the DL languageALCPC . The
approach adopted in this algorithm is novel in several respects in that
it:

1. Strictly avoids combining the local ontology modules in a central-
ized memory space: Unlike the tableau algorithm that is based on
classical DL semantics, this approach enables distributed reason-
ing with localized semantics and each local reasoning module can
operate in a peer-to-peer fashion.

2. Relaxes the local domain disjointness assumption adopted in ex-
isting modular ontology reasoning algorithms, thereby avoiding
some of the semantic difficulties associated with existing ap-
proaches.

3. Guarantees that the results of reasoning in the distributed setting
are identical to those obtainable by applying a reasoner to an on-
tology constructed by integrating the different modules, without
having higher complexity of reasoning.

Work in progress is aimed at overcoming some of the limitations
of the distributed reasoning algorithm forALCPC P-DL described
in this paper:

• Module Expressivity: Web ontology languages such as OWL are
based on expressive extensions ofALC , e.g.,SHOIQ(D). Al-
though we restricted ourselves toALC in this paper, we believe
that the strategy used in this paper can be extended to many ex-
pressive extensions ofALC .

• Cyclic Importing: Cyclic importing among ontology modules is
unavoidable in real-world applications. We are currently working
on a new version of the reasoning algorithm that is able to handle
such cases and allows bidirectional message flow between local
reasoners with more a complicated backtracking strategy.

ACKNOWLEDGEMENT : This research is supported by grants
from the National Science Foundation (0219699) and the National
Institutes of Health (GM066387) and the Iowa State University Cen-
ter for Integrative Animal Genomics to Vasant Honavar.

REFERENCES
[1] F. Baader and U. Sattler. An overview of tableau algorithms for de-

scription logics.Studia Logica, 69(1):5–40, 2001.
[2] J. Bao, D. Caragea, and V. Honavar. On the semantics of linking and

importing in modular ontologies (extended version). Technical report,
TR-408 Computer Sicence, Iowa State University, 2006.

[3] J. Bao, D. Caragea, and V. Honavar. Towards collaborative environ-
ments for ontology construction and sharing. InInternational Sympo-
sium on Collaborative Technologies and Systems (CTS 2006). 2006.

[4] A. Borgida and L. Serafini. Distributed description logics: Di-
rected domain correspondences in federated information sources. In
CoopIS/DOA/ODBASE, pages 36–53, 2002.

[5] B. C. Grau, B. Parsia, and E. Sirin. Tableau algorithms for e-
connections of description logics. Technical report, University of Mary-
land Institute for Advanced Computer Studies (UMIACS), TR 2004-72,
2004.

[6] B. C. Grau, B. Parsia, and E. Sirin. Working with multiple ontologies
on the semantic web. InInternational Semantic Web Conference, pages
620–634, 2004.

[7] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of
description logics. InDescription Logics Workshop, CEUR-WS Vol 81,
2003.

[8] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of
abstract description systems.Artif. Intell., 156(1):1–73, 2004.

[9] K. Schild. Terminological cycles and the propositional -calculus. In
KR, pages 509–520, 1994.

[10] L. Serafini, A. Borgida, and A. Tamilin. Aspects of distributed and
modular ontology reasoning. InIJCAI, pages 570–575, 2005.

[11] L. Serafini and A. Tamilin. Local tableaux for reasoning in distributed
description logics. InDescription Logics Workshop 2004, CEUR-WS
Vol 104, 2004.

[12] L. Serafini and A. Tamilin. Distributed instance retrieval in heteroge-
neous ontologies. InProceedings of SWAP 2005, CEUR Workshop Vol
166, 2005.

[13] L. Serafini and A. Tamilin. Drago: Distributed reasoning architecture
for the semantic web. InESWC, pages 361–376, 2005.

[14] E. Sirin and B. Parsia. Pellet: An OWL DL Reasoner. InDescription
Logics Workshop, 2004.


	INTRODUCTION
	PACKAGE-BASED DESCRIPTION LOGICS
	REASONING WITH ALCPC 
	Preliminaries: reasoning with ALC 
	Distributed Tableaux for ALCPC 
	ALCPC Tableau Expansions
	Termination Strategy with Acyclic Importing
	ALCPC Expansion Examples

	SOUNDNESS, COMPLETENESS AND COMPLEXITY
	CONCLUSIONS

