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Abstract. Package-based Description Logics (P-DL) is a novel for-to store remote subsumptions, andig][for DDL ABox reasoning.
malism for modular ontologies. In P-DL, an ontology is composed This algorithm is compatible with the state-of-the-art tableau-
of a collection of modules callepgackagesA package can partially based DL reasoners and lends itself to a simple implementation as
reuse knowledge in other packages by a selective importing mectdemonstrated by the DRAGO (Distributed Reasoning Architecture
anism. This paper investigates a sound and complete tableau-basied a Galaxy of Ontologies)13] system. However, the algorithm
reasoning algorithm for a P-DL languagélCPc, which extends has several limitations: It does not support inference of inter-module

AL‘C with acyclic concept importing betwegn packages. The algosypsumption (e.gi : A =R j : B) or transitive subsumption prop-
rithm allows the reasoning process to be distributed based on local _.. . - cC .
. . . agation among multiple modules (e.g. given A = j : B and
reasoning services offered by each module. The algorithm allows the C ) ' - i o
reasoning process to be distributed based on local reasoning servicks B — & : €, inferi : A = k : C). Without principled ways
offered by each module. Local tableaux associated with the ontolt® €nsure semantic soundness of bridge rules, the algorithm may
ogy modules while physically separate, may conceptually overlap b)f,all due to incomplete moc_iellmg. For gxample, If module 1 entails
communicating with each other via a set of messages. Our invesl £ Car, module 2 ema”g]é’@f“”;hmg C ~UselessThing,
tigation shows the algorithm can avoid several semantic difficultiesand there are bridge rulgs : Car — 2 : UsefulThing and
associated with existing approaches, such as transitive subsumptign. ¢, =, 9 . UselessThing, the algorithm can not detect the

propagation and inter-module unsatisfiability detection. inconsistency. For another example, Bird 25, Penguin and

1 INTRODUCTION 1:=Fly 2 9. Penguin do not rendeR : Penguin unsatisfiable
even if module 1 entail®ird C Fly. In general, the algorithm may
Because of the distributed and context-specific nature of web onAot detect inter-module unsatisfiability propagation without one-to-
tologies, there is growing interest in modular ontology languageone domain relationslD, (2], nor detect inconsistencies due to im-
such as Distributed Description Logics (DDL4][ £-connections  proper bridge rules.
[8,16] and Package-extended Description Logics (P-[8]) Conse- &-connectionsbetween DLs|Y, (6] restrict the local domains of
quently, sound and complete distributed reasoning algorithms are uthe £-connected ontology modules to be disjoint. Roles are divided
gently needed to support large scale applications of ontologies. Sughto disjoint sets oflocal roles (connecting concepts in one mod-
algorithms ideally should avoid the need to combine the ontologyle) andlinks (connecting inter-module concepts). For example, two
modules into a centralized knowledge base. Distributing the reasomnodules about peoplel() and pets [2) can be connected by a
ing effort across the modules helps respect the autonomy of eadink owns, andL; can use such a link to build local concepts, e.g.

autonomous ontology module. 1: DogOwner C Jowns.(2 : Dog).

DRAGO [13] (for DDL) and Pellet[L4] (for £-Connections) offer £-Connections allow straightforward implementation of reasoning
examples of efforts aimed at developing distributed reasoning algobased on existing tableau OWL reasoners, e.g. Pellet. The tableau-
rithms. based reasoning procedure as presente, if][is an extension to

DDL connects concepts in different modules withidge rules  existing DL tableau algorithm. Instead of having a single tableau,

such as onto%) and into @)) to simulate cross-module concept the algorithm will generate a set of tableaux (trees) linkedcby
subsumptions. Serafini and Tamilin (200Z1[have presented a dis- Connection instances (cross-module role instances).
tributed tableau algorithm for DDL. Their algorithm divides the sat- _However, reasoning within thé-Connections framework has a
isfiability problem w.r.t. a DDL TBox into several local satisfiability Significant limitation, namely, the lack of inter-module subsump-
problems w.r.t. local TBoxes in ontology modules. The basic idea betions since local domains of all modules are strictly disjoint. In gen-
hind this algorithm is to infer subsumption in one module from sub-€ral,&-Connections do not support transitive knowledge propagation
sumptions in another module and proper inter-module bridge rulestmong ontology modules. Current prototype implementation of the
. . ) = . c . £-Connections reasoner (as a part of Pellet), which is motivated by
For example, if there are bridge rulesA = j - G,i: B = j: H the “combined tableau” ide&[5], only “colors” but does not sep-
and moduleg entailsA C B, thenG C H can be inferred in module :

. . : arate each local tableau. Therefore, a reasoning process will result
bt oo o 7N O CObined ARk Snle memory Space, s cquuaenty
P 9 9 r%rcing TBoxes of all involved modules to be locally loaded. Such a

1 Artificial Intelligence Research Laboratory, Department of ComputerStrategy defeats many benefits of modular ontologies (e.g., scaleabil-
Science, lowa State University, Ames, IA 50011-1040, USAaojie, ity and local module autonomy).
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In summary, DDL and E-Connections are motivated by, and hence
are responsive to, different application scenarios. Their expressivity (1a)
and reasoning power is complementary in several ways. However, (1b)
both of them are also limited in several ways. Due to the strong lo- (1c)
cal domain disjointness assumption adopted in those approaches, the
distributed reasoning processes with such approaches may encounteypg)
semantic difficulties as shown above. They also fail to provide solu- (o) 2
tions for some critical distributed reasoning tasks, such as transitive
concept subsumption across multiple modules. We will omit the prefix “1:” and “2:” when there is no confusion.

P-DL [3], by relaxing the local domain disjointness assumption,Both 1 : Dog M 2 : Pet and31 : eats.(2 : DogFood) are2-
allows discovery of a distributed model for a set of ontology mod-concepts constructed using some foreign terms.
ules that_ls identical tp that obtainable by combining the OmOlogyDefinition 3 (Acyclic and Cyclic Importing) A P-DL  ontol-
modules into a centralized ontology, a property we refer texaet- L . S0 ) :
nessof distributed reasoning relative to its centralized counterpart.oqy {£} has acyclic importing relatllon. it for anyr. 7 I
This paper investigates a sound and complete tableau-based reaséf. € £~ (F3) = Fi & I (F;), otherwise it has cyclic importing
. Pape 9 piete relation.
ing algorithm for a P-DL languagelLCPc, which extendsALC
with acyclic concept importing between packages. The algorithm al- For example, ifP anima1 also imports the concepPet from
lows the reasoning process to be distributed based on local reasonifpet, the ontology will have cyclic importing relation.
services offered by each module. Local tableaux associated with the For simplicity, we do not concern ourselves here with some addi-
ontology modules while physically separate, may conceptually overtional features of P-DL, such as package hierarchy and scope limi-
lap by communicating with each other via a set of messages. Our préation modifiers(8]. We denote the package based extension to DL
liminary investigation shows that the proposed algorithm can solveas’P. Hence, ALCP is the package-based version of DALC. In
many known reasoning difficulties in existing approaches. Complexwhat follows, we will examine a restricted type of package exten-

PAnimal
: Dog C 1: Carnivore
: Carnivore C 1 : Animal
: Carnivore C V1 : eats.(1 : Animal)

PPet
: PetDog C 1: DogmM?2: Pet
: PetDog C 31 : eats.(2 : DogFood)

—

[\]

ity study shows the algorithm for the package-bagett’ language
has the same time complexity as that of a canonité&l reasoning
algorithm.

2 PACKAGE-BASED DESCRIPTION LOGICS

A P-DL ontology is composed of a set of packad8k ferms
(such asDog, Animal) and axioms (such aBog C Animal) are
defined in specific home packages.

Definition 1 (Package) Let O = (S, A) be an ontology, wheré&

is the set of terms andl is the set of axioms over terms H1 A
packageP = (Ags, A 4) of the ontologyO is a fragment oD, such
that As C S, Ax C A. Atermt € Ag or an axiomt € Ay

is called amemberof P, denoted ag € P. P is called the (only)
home packagef ¢, denoted ag{P(t) = P.

Terms can be names of classes (i.e., concepts), properties (i.
roles), or instances (i.e., individuals). A package can use terms de-
fined in another package. In other words, an existing package can be

importedinto another package.

Definition 2 (Foreign Term and Importing) A termt¢ that appears
in a packageP, but has a home packaggthat is different fromP is
called aforeign termin P. We say thaf’ imports@ : ¢ and denote it
as@ L pof any term defined iid) is imported intoP, we say that
P imports@ and denote it ag) — P.

Theimporting closurel. (P) of a packageP contains all pack-
ages that are directly or indirectly imported in#®, such that:

e (directimporting)R — P = R € I..(P)
e (indirect importing)Q — RandR € I.(P) = Q € I (P)

A conceptC' is understandabléo a packageP if the concept is
constructed only using terms iR and concept terms id—. (P). A
packageP is said to becompletew.r.t. a concepC if C' is under-
standable taP, otherwiseP is incompletew.r.t. C.

Foreign terms can be used to construct local concepts. All concepts By iff S (CT)
7

except for atomic foreign concepts in packaBeare i-concepts.
Therefore, althougl®; can import concepts iF; (: # j), i-concepts
are still disjoint withj-concepts. For example, an ontologyhas two
packages:

e.

sion which only allows acyclic import of concept names, denoted as
‘Pc. For example, the importin® a nimail rats, Ppet, Or mutual
importing between packages, is not alloweddiCPc¢ .

The semantics of P-DL are expressed as follows: For a package-

based ontology({P;},{P; > Pj}iz;), a distributed model is

M = ({Z;},{r};}izs), whereZ; = (A;,(.);) is the local model

of packageP;, rj; C A; x A; is the interpretation for the im-

porting relationP; 4 P;. For convenience, we denote the iden-

tity function f(x) = x asr}; for anyi andt. For any such a rela-
tion r from A; to A; and any individual € A;, r(d) denotes the
set{d € Aj|(d,d’) € r}. For a subseD C A;, r(D) denotes

Uaepr(d), is the image set ab.

We require that the importing relation meet the following require-
ments:

e Every importing relation is one-to-one in that it maps an object of

' t%i to a single unique object itf .

e Importing relations are consistent for different terms, i.e., for any

i:t1 £ 1ty and anyz, x1, T2 € A, rfjl (z) = rfj (z) and

rif(z1) = r2(z2) # @ — 1 = x,. Therefore, each object

in the model of a source package corresponds uniquely to an ob-

ject in the model of any target package for any interpretation of
importing relations.

e Compositional Consistency: if;;* (z) = y1, rii*(z) = s,
rj:;ct3(y2) = ys, , (Wheret; andt, may or may not be same), and
y1,Yy2,ys are not empty set, them = ys;. (Compositional con-
sistency helps ensure that importing relations (defined in below)
is inferrable.)

The above requirements help to ensurettaasitive reusabilityof
modules and the exactness of distributed reasoning algorithm (rela-
tive to its centralized counterpart). A conceéptC' is satisfiablew.r.t.
aP-DLO = ({P,},{P; 5 P;}.z;) if there exists a distributed
model ofO such thatC?: # @. A packageP, withessesubsump-
tioni: C C j: D (i,j, k can be different(, D are understandable
C rj1.(D%) holds for every model of; and all
packages in its importing closure.

The importing approach adopted by P-DL is different from the
“linking” approach adopted by DDL ané-Connections in that it



partially relaxes the strong local model disjointness assumption that Given a concep€ and a TBox7, the tableau is a tree expanded

is required in the other two formalisms. from an initial root nodeco, L(xo) = C 1 C7, with the following
The image domain relatiorbetweenZ; andZ; is ri; = Uyri; expansion rules

and is strictly one-to-one. Consequentty; in a P-DL model iso- . )

morphically “copies” the relevant partial domain frafato Z; and ~ ® [-rule: if Ci M C2 € L(z), X is not blocked{C1, C2} & L(x),

establishes unambiguous communication between the two packages.the”L(a_’) = L(z) U{Cn, 02}

Since the construction of a local model is dependent on the structur® "-Tule: if C1 L C2 € L(z), X is not blocked{C1, C2} N L(z) =

of local models of imported modules, it is possible that local models ©» thenL(z) = L(z) U{C1} or L(z) = L(x) U {C2}

are in fact partially overlapping. e J-rule: if HR.C € L(x), x is not blocked, and: has no R-
Concept bridge rules in DDL argekConnection links can be easily ~ Successo with ¢ € L(y), then create a new nodg with

reduced to P-DL axiom&]. On the other hand, it also offers the pos- ~ L({z: %)) = {R} andL(y) = {C} _

sibility of avoiding many of the semantic difficulties of current mod- ® V-Tule: if VR.C'" € L(z), x is not blocked, and there is a R-

ular ontology language proposals. For example, knowledge in one Successoy of z with C' ¢ L(y), thenL(y) = L(y) U{C}

P-DL package can be t_ransitively rgused by 9thef paclfages. The an-14 ensure termination, a node can be blocked with ghbset

swer to a P-DL reasoning problem is semantically equivalent to thaBIocking strategy: for any node, if there is an ancestor nogeof =

obtained by reasoning over an integrated ontol@jylh what fol- in the tree, and.(x) C L(y), « is blocked. No expansion rule will
lows, we will investigate an algorithm for constructing a P-DL model applied to a blocked node.

for a specific reasoning problem for the package extended version of An ALC tableau contains elashif there is {C, ~C} € L(z) for

the DL ALC . some node: and concep€. A tableau isconsistentf it contains no

clash, and igompletdf no expansion rule can be applied. The given
3 REASONING WITH ALCPc concept is satisfiable if and only if the algorithm finds a consistent
3.1 Preliminaries: reasoning with ALC and complete tableau.

Modern description logics exploit tableau algorithrid} for de- L
ciding concept satisfiability w.r.t. a knowledge base. A tableau algo-3-2 Distributed Tableaux for ALCPc
rithms for a specific DL language contains the following main ele-

. The main idea behind thelLCP¢ tableau algorithm is to con-
ments:

struct multiple federated local tableaux instead of a single global

e A completion graphalso calledableauthat represents a model of tableau. The connection between local tableaux is enabled by the
the DL language. Such a completion graph has the “tree modelimage relations, i.e. a local tableau is able to create “image” nodes of
property. its nodes in another local tableau. Formally, we have:

e A set oftableau expansion rulgs construct a complete and con-
sistent completion graph.

e A set ofblocking rulesto detect infinite cyclic models and ensure
termination.

e A set ofclash conditiongo detect logic contradictions.

Definition 4 (ALCP¢ Distributed Tableau) A distributed tableau
for an ALCPc ontology{ P, } is a tuple({T;}, {ri; }i=,), whereT;
is a local ALC tableau for the packag®;, r;; is the image relation
between; and T}, such that it creates one-to-one mappings from
a subset of nodes if; to a subset of nodes ;. For anyi-node
For an.ALC ontology O and anALC -conceptC, a tableau al- = andj-nodey, (z,y) € rq;, z is said the pre-image of andy is
gorithm will construct a common model for both and C. If one  the image ofc. The local labelL;(z) of z in a local tableau’; only
such model (i.e. a completion graph) is fouritlis satisfiable, other- ~ containsi-concepts.
wise C' is unsatisfiable. Before the reasoning process starts, the con-
cepts inO andC' should be transformed into thdegation Normal
Form (NNF), i.e., with negation only occurs in front of atomic con-
cepts. Reasoning w.r.t. a TBAX can be reduced to reasoning w.r.t.
an empty TBox with theénternalizationtechnique. GiverY, a con-

The P-DL semantics require that all images of a node in any local
tableau should be uniquely identified. This can be done by keeping
the original name of a node the same as its image nodes’ names. For
example, a nodé: z in a local tablead’; can be copied in another
local tableaul’; with the same namé : = (we will omit the prefix

tCr i fin = n =C; U D;). Any individual . . .
ceptCr is defined a<’y (CiEDi)eT( Ci i)- Any individua when there is no confusion). As we will show later, such a property of
z in any model of7” will be an instance of’r. image nodes helps to deliver nodes transitively across multiple local

A completion graph or #éableauT = (V, E, L) is a tree, where  tableaux, and is essential to solve several known semantic difficulties
V is the node setF is the edge setl is a function that assigns in existing modular ontology languages.
labels for each node and edge. Each nedethe tree represents an It should be noted that the “copying” of nodes across multiple lo-
individual in the domain of the model, and the latiglr) contains  cal tableaux does not require that they are completely identical. If a
all concepts of whiche is an instance. Each edde, y) represents  nodex is copied in both local tableauk; and7}, local labelsL; (x)
a set of role instances in the model, and the ldb€l, y)) contains  and L, (z) are strictly disjoint since-concepts ang-concepts are
the names of those roles. K € L({z,y)), y is aR-successoof z.  disjoint. Some nodes in a local tableau may also not be shared by
In an ALC -tableau: other local tableaux. Therefore, the partial sharing of nodes does not
. mean the sacrifice of local semantics.
!f C € L(x), then=C ¢ L(2), The distributed tableau is not a combined tableau since all local
if C1 M C2 € L(z), thenC; € L(xz) andC> € L(x), . I
. tableaux will be autonomously created and maintained by the local
if C1 UC2 € L(z), thenCy € L(x) orCy € L(x), . . :
. reasoners provided for different packages. The local tableaux reside
if YVR.C € L(z) andR € L({z,y)), thenC € L(y), - - ) .
if 3R.C € L(x), then there is some such thatkt & L((x,1)) on their own reasoning servers and communicate in a peer-to-peer
) rh 4 Y fashion. The communication between a local tablBaand a tableau
andC € L(y). : . S
T; is supported by the following set of message primitives:



e Membership m(y, C): given an individual and ani-concepiC, X o L, (x)={A3R.B} T An example of such
querying if there is a pre-image or imageof y in T}, such that (LR 2 a distributed tableau
CelL(y) VS p=iAare | 7Y L(y)={B.3P.C} | is given in Figurél.

e Reporting 7(y, C): given an individualy and ani-conceptC, P 2 L2)=(C.IP.C} We have two packages:
if there is a pre-image or imagg of y in T;, C ¢ Li(y’), then T p s P:TC1:ATEC
Li(y') = Li(y')U{C}; if there is no existing pre-image or image HW Lw={CaPC}| 3(1:R).(2:B), P :
y' of y, create &’ with L(y) = {C} and addy’, y) to the image Figure 1. Distributed Tableaux Example TE(2:P)2:0).
relationr;; P, imports conceptB

e Clash L(y): an individualy in T; contains a clash. from P>. The reasoning task is to check the consistendyothere-

e Model T(y): no expansion rules can be appliedypar any of its  fore P, is the witness packag@; andT are local tableaux for the
descendants iff;. two packages, withy as a shared node. Note that(y) and L (y)

If i = j, such messages are reduced to local operatiefs; C) are disjoint. The_blocking str_ategy (eg_gis blocked b_yx in Ty since
is reduced to querying if' € L; (y), r(y, C) is reduced to adding’ L1(y) C L1(=x)) is also localized and is presented in the below.
to L;(y), L(y) is reduced to a local inconsistency report ang) L . . .
is reduced to a local completion report. For convenience, we do  3-4  Termination Strategy with Acyclic Importing
distinguish a local operation from a remote message operation. The termination of the algorithm can be obtained with subset
To simplify the communication process we have: blocking when there is only acyclic importing among packages. A
P-DL ontology with acyclic importing relation has the property that
local tableaux for the ontology have only unidirectional reporting
messages. Formally, we have:

Definition 5 (Concept Destination) An atomic concepC' or its
negation—C"s destination isC’s home packagé{P(C). A com-
plex concept’s destination is the package in which it is generated.
Destination ofC' is denoted ag(C). Definition 6 (Message DescendantA local tableauT’; is a direct
message descendantBf, ¢ # j, if there is at least one reporting
message sent froffi; to T;; T; is a message descendanf§fif itis a
direct message descendanflof or it is a direct message descendant
of aT;'s message descendant.

A membership message(y,C) or reporting message(y, C')
operation is always sent to the destination packagg,afe.,5(C).

3.3 ALCP. Tableau Expansions

The ALCPc expansions rules are derived from the
ALC expansion rules as follows: each module is only locally
internalized, instead of being globally internalized w.r.t. a combined This lemma follows from the observation that for any pairZof
TBox; a local tableau can create “copies” of its local nodes inandT}, if there is a reporting message frafhto T;, there must be an
another local tableau (as needed) during an expansion. For a localconcept that is occurring i@}, therefore packag®; must import
tableauT;, the expansion rules are: P;. This property can be easily extended to multiple packages and
hence the lemma. This immediately leads to the following lemma:

Lemma 1 GivenaP-DL ontology P; }, a local tableaul; is a mes-
sage descendant of &, only if P; € I (P;)

e M-rule: if C1 M C> € L;(x), x is not blocked, then
(1) if m(x, C1)=false, dor(z, C1) Lemma 2 Given a distributed tableau{T:}, {r:;}i»;) of an
(2) if m(z, C2)=false, dor(z, C2) ALCP¢ ontology, if a local tablead; is T;’s message descendant,

e U-rule: if Cy U Cz € Li(x), X is not blocked, butn(z,C1) A thenT; must not bel;'s message descendant.
m(z, C2)=false, then do(z, C1) orr(z, C2)

e Jrule: if 3R.C' € Li(z), x is not blocked, and: has no R- The blocking strategy fa LCPc works as follows:
successoy with m(y, C)=true, then create a new nogewith  pefinition 7 (Subset Blocking for. ACCPe ) For a distributed
Li({z,y)) = {R} and dor(y, C) _ tableau{T;} of an ALCP. ontology{ P;}, a noder is blocked by a

o Vorule: if VR.C' € Li(z), X is not blocked, and there is @ R- oqe, iff botha: andy are in the same local tabledl;, y is a local
successoy of z with m(y, C)=false, then do(y, C). ancestor ofz, and L; (z) C Li(y).

e CE-rule: ifCr, &€ L;(z), thenL;(z) = L;(z) U Cr,, whereC'r, -
is the internalized concept for the TBox Bf. The correctness of such a blocking strategy is guaranteed by the

following facts: For any node in a local tablead’, if it has image

A distributed tableau is said to bdistributively completéf no . . N
ALCP¢ expansion rule can be applied on any of its local tableau, ancﬁ‘Odes in another local tabledy (i # j), since the ontology has

it is distributively consistenf all of its local tableaux are consistent. g?rﬁg(\j\;irlllqg:?argtnegnf\}\?rt:gg’eg%tcgé Peoroar?iﬁ O:T']t:Sr::Sessgfh(i?;?Oerg'
For a satisfiability query involving a conceftsent to the package P 9 ges. ’

P; (called thewitness packagewhereC' is understandable t&;, Itf Fhere '3 a P;Eh frc:jnzr tl? antotther node n T, ‘h‘? path onllytf:on-t
we will first create its local tableau with an initial node ({Cz; M ains noces I and will not transverse via any image reations to

C} € L;(x0)), and apply theALCPe tableau expansion rules until other local tableaux. Thus, we can detect and prevent infinite expan-
J 3

a distributively complete and consistent tableau is found, or all searcfon INT: onl_y with local topology mformaﬂon . -
processes for such a distributed tableau fail. _ The blocl_<|ng strategy a_lllows expansion of a node even if its pre-
Since different packages may stand for different semantic pointd"'a9€ and image noggs in other local tableaux are locally blocked.
of view, a satisfiability problem may have different answers whenFor, example, in Figure, while y is blocked i, its image node In
witnessed by different packages. In what follows, we assume that th&2 1S further expanded. Such a strategy prevents infinite creation of
satisfiability problem of a concept is only witnessed by a package image nodes in other local tableaux, but allows existing image nodes

P; that is complete w.r.iC (i.e. C' is understandable tB;). to be further validated. _
The coordination of different local tableaux fotLCPc with

acyclic importing operates as follows:



e Waiting: If a nodex has sent a reporting message to another local4 SOUNDNESS, COMPLETENESS AND

tableau,z is temporarily blocked until it receives a clagh(mes- COMPLEXITY
sage _from any of its image node, or modej(messages from all The basic intuition behind thelLCPc expansion rules is to re-
of its image nodes.

« Clash Messagelf a nodex contains a local clash (e.g. with both duce the inconsistency checking of distributed tableaux to only local
C and—C in L;(z)), or it receives a clash report, .1)' if there is tableau inconsist_ency checking. Since a local tableBuis actu-
no other search choice (efrrule choices) that can be applied to ally a representathn for an ABOX_ (denoted.43 .Of a packager,
2, send clash reports () to 2's local direct ancestor and all pre- an ALCP¢ expansion rule is equwale_nt to adding new facts to the
image nodes, and destroy all image relations figm) if there are AB%X' gor ?xamplte, a_local t_ablleaLtJ tW'th nAogmsy,CC < é(m) and
other search choices, restore the state (including image relation h fi-edge fromz o yn%equ(ljva Tn 0 ag) AO){ (x.)’ (9)},
of z to the state before the last choice, and try the next choice. or some concept ha e}n role nam/ ) reportl_ng message

« Model Message if no ALCP. expansion rules can be applied (%> C) adds new facltgj(:c ) andz — 2’ to the destination pack-
to z,  has no clash nor receives any clash message, there is n@?ce OfC’_Wh?re‘T —xisan lrknlage relation instance. We will denote
image node of, or all image nodes return model messages, then? act using owercas_e Greek letters, eogﬁ .
send model messagds(z) to «'s local direct ancestor and all The result of applying amlLCP¢ expansion rule can be classified
pre-image nodes. into three types using the ABox-type representation:

The intuition behind clash and model messages is that a node ha$% Augme_ntingNew facts are inferred from existing facts in a IOC?'
a clash if it has local clash @ny of its image node has a clash, and ﬁ?(f(ﬁ'e' Ioca;tableau) and are added to the same ABox i.e.
it is complete if it is locally complete andll its image nodes are - .U {‘?‘}’ = o . .
complete. Such a strategy is driven by the fact that image nodes ar& Se_a_rchlng D|fferent_cand|dates for inferred facts are added to the
“copies” of the pre-image node. The algorithm terminates when the original local ABox i.e.A; = AU{a}, A2 = AU{}, A | (o
root node in the local tableau of the witness package receives a clash or 5). . inf ; her local
message (i.e., the given concept is unsatisfiable) or a model messade _Repo/rtlng New inferred facts are added to another local ABox,
(i.e., the given concept is satisfiable). Le.B'=BU{a}, AR o

. Since ALCP¢ expansions will send any concept fact to the ABox
3.5 ALCPc Expansion Examples of its destination package, and inconsistency only occurs for the co-
existence ofC(z) and ~C(z), if there is a global inconsistency,

T x | Bl T it must result in a local consistency in a certain ABox (i.e. local
Li(;)=l{:ng;)B,o ...... '(X:). L,(x)={B, tableau). If there is an inconsistent local ABox, the entire set of
T L= - 16| RBRR ABoxes (i.e. the distributed tableau) must also be inconsistent. We
fi‘;fﬁcuﬁ%} g ®) . denote( A, B) as the union of two ABoxesl, 5.
A e 2 1
"(z.A) .
0) // S\ rxA) L) AsaR, Pt Yo Li=(A Lemma 3 If an ABoxA is expanded by thel LCP. tableau expan-
///l‘x) “XX\\ 5 ﬁBf((AﬂﬁC), Tw | A sion rules via
= o [ = 3r8, -8 [P
2 R ST X 1 H(zA) . , . . e . .
LO=(B-C | rxdy| Lix=CAB Ly(2)={B.-A-3R 12C) i e augmenting fromA to A’, thenA is consistent iffA” is consistent;
<. B} | ABE iy I el S, e searching fromA to A; or A, then A is consistent iff4; is
@) £ G consistent otAs is consistent;
© e reporting fromA, Bto A, B, then(A, B) is consistent iff A, B)
Figure 2. ALCPc Expansion Examples is consistent.

Example 1 Transitive Subsumption Propagation. Given three  Given a set of distributively complete and consistent ABoxes (and
packagesPy : {1 : AC 1: B}, P, :{l: BLC 2:C},  hence also local tableaux)4;} for a P-DL {P;}, we can build a
P;:{2:CLC 3: D}, testsubsumptioh: A C 3: D withessed by  distributed model as follows:

Ps. The expansion and message exchange between local tableaux is
shown in Figuré8 (a). Since there is no consistent distributed tableaue For each ABoxA4;, the domain of local individuald; is the set
for AM—D, A C D is witnessed byPs. of all individuals occurring in it.

Example 2 Detect Inter-module Unsatisfiability. Given two pack- e For each concept nant@ € P;, C%i = {z|C(z) € A;}
agesP, : {1: BC1:F},P,:{1: PC1:B,2: PC—1:F}, e Foreachrole nam& € P;, R* = {(z,y)|R(z,y) € A}
test the satisfiability oR : P witnessed byP,. The results shows e Forimage relatiom;;, ri; = {(z,y)|z € Ai, (x — y) € A;}}

2 : Pis unsatisfiable (Figuf (b)). o _

Example 3 Reasoning from Local Point of View. Given two pack- _ Consequently, a concept is satisfiable w.rt. a witness package

agesP, : {1: AC1:C},P,:{1:AC32:R(2:B),2: P if and only if the ALCP. expansion rules can find a common

BC1:AMN(~1:C)} test satisfiability ofl : A witnessed byP; distributed model for”, P and P’s importing closure. Formally, we
and P, respectively. It is easy to sekis satisfiable when witnessed have:

by P, but unsatisfiable when witnessed By (Figurd2 (c) Shows | emma 4 (Soundness and Completenessd distributively com-
one possible search result). This example shows reasoning in P-Dliete and consistent distributed tableaux can be obtained from the

always stands for the local semantic point of view of the witnessy,jication of finite.ACCPe expansion rules for the satisfiability
packages, therefore the same reasoning problem can have differefjtviam of a concepf’ witnessed by a package w.r.t. a P-DL on-

answers when witnessed from different packages. Note that in Fig&blogy{Pi}, if and only if there exists a common distributed model
urel2 (c), z in T» is not further expanded due to the waiting strategy ¢or  and {I.(P;), P;}
and the following clash message frafp. T



The complexity of reasoning consists can be expressed in termeé Module Expressivity: Web ontology languages such as OWL are
of complexity of local reasoning processes and the communication based on expressive extensions4fC , e.g..SHOZQ(D). Al-
process. The communication space cost is mainly due to the storage though we restricted ourselves #LC in this paper, we believe
requirement for image domain relations. In the worst case each local that the strategy used in this paper can be extended to many ex-
tableau completely copies all nodes from other local tableux. If there pressive extensions of£C .
arem nodes in total in all local tableaux, and there arsuch local e Cyclic Importing: Cyclic importing among ontology modules is
tableaux, the storage needed for image domain relations will be of unavoidable in real-world applications. We are currently working
the order ofO(m?/n). Sincen is finite andm can be polynomially on a new version of the reasoning algorithm that is able to handle
bounded by the size of the combined terminology set of all packages such cases and allows bidirectional message flow between local

and the testing concept (the well-known dept-first search strategy for reasoners with more a complicated backtracking strategy.
ALC is still applicable), the upper bound on communication space ACKNOWLEDGEMENT : This research is supported by grants

complexity is polynomial w.r.t. the size of the whole P-DL ontology
and the testing concept. If the ontology modules are well designe4
much of the reasoning is likely to be localized within individual pack-
ages, resulting in space requirement that is significantly lower than
the worst case upper bound.
The communication time cost is measured by the total num-
ber of messages exchanged between local tableaux. Assuming thg]
distributed tableaux igonceptuallyreduced to a single combined
tableau, a message operation can be reduced to a local operation. F[)ZI]
example,m(z, C) is reduced to testing i€ € L(z) andr(z,C)
is reduced to adding’ to L(x). Consequently, the number of such [3]
message operations is bounded by the total number of equivalent lo-
cal operations in alLC reasoning process w.r.t a combined knowl- 4]
edge base of all packages. Therefore, we have the following lemma:

Lemma 5 (Complexity) The run time complexity of the tableu- [5]
based distributed reasoning algorithm presented in this paper for
ALCPc P-DL is no greater the run time complexity of the classi-
cal tableau-based algorithm fod LC in the worst case w.r.t. the size

of the input concept and the total size of the combined terminology[e]
set of all packages.

Itis known the reasoning complexity fot LC -satisfiability w.r.t. Y

cyclic TBoxes isSEXPTIME [9]. Therefore ALCPc also has the same
reasoning complexity upper bound. The practical performance of{8]
the algorithm can be improved by caching strategy. For example, if
m(zx, C) returns true, the calling package can store the result Iocally[g]
thus avoid repeated queries. [10]

5 CONCLUSIONS

We have presented a distributed tableau-based reasoning algorithm
for the package-based extension of the DL langudg€Pc . The  [12]
approach adopted in this algorithm is novel in several respects in that

it: [13]

1. Strictly avoids combining the local ontology modules in a central-
ized memory space: Unlike the tableau algorithm that is based o4
classical DL semantics, this approach enables distributed reason-
ing with localized semantics and each local reasoning module can
operate in a peer-to-peer fashion.

2. Relaxes the local domain disjointness assumption adopted in ex-
isting modular ontology reasoning algorithms, thereby avoiding
some of the semantic difficulties associated with existing ap-
proaches.

3. Guarantees that the results of reasoning in the distributed setting
are identical to those obtainable by applying a reasoner to an on-
tology constructed by integrating the different modules, without
having higher complexity of reasoning.

(11]

Work in progress is aimed at overcoming some of the limitations
of the distributed reasoning algorithm fgt£LCP. P-DL described
in this paper:

rom the National Science Foundation (0219699) and the National
nstitutes of Health (GM066387) and the lowa State University Cen-
ter for Integrative Animal Genomics to Vasant Honavar.
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