
Abstraction Super-structuring Normal Forms:
Towards a Theory of Structural Induction?

Adrian Silvescu and Vasant Honavar
Department of Computer Science, Iowa State University, Ames, IA, USA

Abstract. Induction is the process by which we obtain predictive laws
or theories or models of the world. We consider the structural aspect
of induction. We answer the question as to whether we can find a fi-
nite and minimalistic set of operations on structural elements in terms
of which any theory can be expressed. We identify abstraction (group-
ing similar entities) and super-structuring (combining topologically e.g.,
spatio-temporally close entities) as the essential structural operations
in the induction process. We show that only two more structural op-
erations, namely, reverse abstraction and reverse super-structuring (the
duals of abstraction and super-structuring respectively) suffice in order
to exploit the full power of Turing-equivalent generative grammars in
induction. We explore the implications of this theorem with respect to
the nature of hidden variables, radical positivism and the 2-century old
claim of David Hume about the principles of connexion among ideas.

1 Introduction

The logic of induction, the process by which we obtain predictive laws, theories,
or models of the world, has been a long standing concern of philosophy, science,
statistics and artifical intelligence. Theories typically have two aspects: structural
or qualitative (corresponding to concepts or variables and their relationships, or,
in philosophical parlance, ontology) and numeric or quantitative (corresponding
to parameters e.g., probabilities). Once the qualitative aspect of a certain law
is fixed, the quantitative aspect becomes the subject of experimental science
and statistics. Induction is the process of inferring predictive laws, theories, or
models of the world from a stream of observations.

Under the computationalistic assumption (i.e., the Church-Turing thesis,
which asserts that any expressible theory can be described by a Turing Ma-
chine [18]), one way to solve the induction problem is to enumerate all the
Turing machines (and run them in parallel - dovetailing in order to cope with
the countably infinite number of them) and pick one that strikes a good balance
? This work was supported in part by a grant (IIS 0711356) from the National Science
Foundation and in part by the Iowa State University Center for Computational
Intelligence, Learning, and Discovery. The work of Vasant Honavar was supported
by the National Science Foundation, while working at the Foundation. Any opinion,
finding, and conclusions contained in this article are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

between the predictability (of the finite experience stream) and size (complexity)
[16], [17], [15], [20] of the predictive model, or within a Bayesian setting, using
a weighted vote among the predictions of the various models [7] (see [2] and
references therein). In the general setting, the number of types of possible struc-
tural laws that can be postulated is infinite which makes it difficult to design a
general purpose induction strategy. We ask whether a finite and minimalistic set
of fundamental structural operations suffice to construct any set of expressible
laws. The existence of such a set would mean that the learner can work with a
small finite set of possible operations as opposed to an infinite one which in turn
would make it easier to conceive of a general purpose induction strategy.

Because Turing machines are rather opaque from a structural standpoint, we
use the alternative, yet equivalent, mechanism of generative grammars1. This al-
lows us to work with theories that can be built recursively by applying structural
operations drawn from a finite set. The intuition behind this approach is that
induction involves incrementally constructing complex structures using simpler
structures (e.g., using super-structuring, also called chunking), and simplifying
complex structures when possible (e.g., using abstraction). Such a compositional
approach to induction offers the advantage of increased transparency over the
enumerate-and-select approach pioneered by Solomonoff [16], [17]. It also offers
the possibility of reusing intermediate structures as opposed to starting afresh
with a new Turing machine at each iteration, thereby replacing enumeration by
a process akin to dynamic programming or its heuristic variants such as the A*
algorithm.

We seek laws or patterns that explain a stream of observations through suc-
cessive applications of operations drawn from a small finite set. The induced
patterns are not necessarily described solely in terms of the input observations,
but may also use (a finite number of) additional internal or hidden (i.e., not
directly observable) entities. The role of these internal variables is to simplify
explanation. The introduction of internal variables to aid the explanation pro-
cess is not without perils [12]2. One way to preclude the introduction of internal
variables is to apply the following demarcation criterion: If the agent cannot dis-
tinguish possible streams of observations based on the values of an internal vari-
able, then the variable is non-sensical (i.e., independent of the data or “senses”)
3. The direct connection requirement restricts the no-nonsense theories to those
formed out empirical laws [1] (i.e., laws that relate only measurable quantities).
However several scientists, including Albert Einstein, while being sympathetic
to the positivist’s ideas, have successfully used in their theories, hidden variables
that have at best indirect connection to observables. This has led to a series of

1 See [10] for a similarly motivated attempt using Lambda calculus.
2 Consider for example, a hidden variable which stands for the truth value of the
sentence: “In heaven, if it rains, do the angels get wet?”

3 This is a radical interpretation of an idea that shows up in the history of Philosophy
from Positivism through the empiricists and scholastics down to Aristotle’s “Nihil
est in intellectu quod non prius fuerit in sensu” (There is nothing in the mind that
was not previously in the senses).

revisions of the positivist’s doctrine culminating in Carnap’s attempt to accom-
modate hidden variables in scientific explanations [3]. The observables and the
internal variables in terms of which the explanation is offered can be seen as the
ontology4 - i.e., the set of concepts and their interrelationships found useful by
the agent in theorizing about its experience. In this setting, structural induction
is tantamount to ontology construction.

The rest of the paper is organized as follows: Section 2 introduces Abstraction
Super-structuring Normal Forms (ASNF) that correspond to a general class
of Turing-equivalent generative grammars that can be used to express theories
about the world; and shows that: abstraction (grouping similar entities) and
super-structuring (combining topologically e.g., spatio-temporally close entities)
as the essential structural operations in the induction process; Only two more
structural operations, namely, reverse abstraction and reverse super-structuring
(the duals of abstraction and super-structuring respectively), suffice in order
to exploit the full power of Turing-equivalent generative grammars in induction.
Section 3 interprets the theoretical results in a larger context the nature of hidden
variables, radical positivism and the 2-century old claim of David Hume about
the principles of connexion among ideas. Section 4 concludes with a summary.

2 Abstraction Super-Structuring Normal Forms

We start by recapitulating the definitions and notations for generative grammars
and the theorem that claims the equivalence between Generative Grammars
and Turing Machines. We then draw the connections between the process of
induction and the formalism of generative grammars and motivate the quest
for a minimalistic set of fundamental structural operations. We then get to the
main results of the paper: a series of characterization theorems of two important
classes of Generative Grammars: Context-Free and General Grammars, in terms
of a small set of fundamental structural operations.

2.1 Generative Grammars and Turing Machines

Definitions (Grammar) A (generative) grammar is a quadruple (N,T, S,R)
where N and T are disjoint finite sets called NonTerminals and Terminals, re-
spectively, S is a distinguished element from N called the start symbol and R
is a set of rewrite rules (a.k.a. production rules) of the form (l → r) where
l ∈ (N ∪ T)∗N(N ∪ T)∗ and r ∈ (N ∪ T)∗. Additionally, we call l the left hand
side (LHS) and r the right hand side (RHS) of the rule (l → r). The language
generated by a grammar is defined by L(G) = {w ∈ T ∗|S ∗→ w} where ∗→ stands
for the reflexive transitive closure of the rules from R. Furthermore +→ stands
for the transitive (but not reflexive) closure of the rules from R. We say that
two grammars G,G′ are equivalent if L(G) = L(G′). The steps contained in a
4 The ontology in this case is not universal as it is often the case in philosophy; it is
just a set of concepts and interrelations among them that afford the expression of
theories.

set of transitions α ∗→ β is called a derivation. If we want to distinguish between
derivations in different grammars we will write α ∗→G β or mention it explicitly.
We denote by ε the empty string in the language. We will sometimes use the
shorthand notation l → r1|r2|...|rn to stand for the set of rules {l → ri}i=1,n.
See e.g., [13] for more details and examples.

Definition (Grammar Types) Let G = (N,T, S,R) be a grammar. Then

1. G is a regular grammar (REG) if all the rules (l → r) ∈ R have the
property that l ∈ N and r ∈ (T ∗ ∪ T ∗N).

2. G is context-free grammar (CFG) if all the rules (l → r) ∈ R have the
property that l ∈ N .

3. G is context-sensitive grammar (CSG) if all the rules (l → r) ∈ R
have the property that they are of the form αAβ → αγβ where A ∈ N and
α, β, γ ∈ (N ∪T)∗ and γ 6= ε. Furthermore if ε is an element of the language
one rule of the form S → ε is allowed and furthermore the restriction that S
does not appear in the right hand side of any rule is imposed. We will call
such a sentence an ε−Amendment.

4. G is general grammar (GG) if all the rules (l→ r) ∈ R have no additional
restrictions.

Theorem 1. The set of General Grammars is equivalent in power with the set
of Turing Machines. That is, for every Turing Machine T there exists a General
Grammar G such that L(G) = L(T) and vice versa.

Proof. This theorem is a well known result. See for example [13] for a proof5.
�

2.2 Structural Induction and Generative Grammars

Before proceeding with the main results of the paper we examine the connections
between the setting of generative grammars and the problem of structural induc-
tion. The terminals in the grammar formalism denote the set of observables in
our induction problem. The NonTerminals stand for internal variables in terms
of which the observations (terminals) are explained. The “explanation” is given
by a derivation of the stream of observations from the initial symbol S ∗→ w. The
NonTerminals that appear in the derivation are the internal variables in terms of
which the surface structure given by the stream of observations w is explained.
Given this correspondence, structural induction aims to find an appropriate set
of NonTerminals N and a set of rewrite rules R that will allow us to derive
(explain) the input stream of observations w from the initial symbol S. The pro-
cess of Structural Induction may invent a new rewrite rule l → r under certain
conditions and this new rule may contain in turn new NonTerminals (internal
variables) which are added to the already existing ones. The common intuition

5 Similar results of equivalence exist for transductive versions of Turing machines
and grammars as opposed to the recognition versions given here (See e.g., [2] and
references therein). Without loss of generality, we will assume the recognition as
opposed to the transductive setting.

is that l is a simpler version of r, as the final goal is to reduce w to S. The
terminals constitute the input symbols (standing for observables), the NonTer-
minals constitute whatever additional “internal” variables that are needed, the
rewrite rules describe their interrelationship and altogether they constitute the
ontology. The correspondence between the terms used in structural induction
and generative grammars is summarized in Table 1.

Structural Induction Generative Grammar
Observables Terminals T

Internal Variables NonTerminals N
Law / Theory production rule(s) l→ r

Ontology Grammar G
Observations Stream word w

Explanation Derivation S ∗→ w

Partial Explanation Derivation α ∗→ w
Table 1. Correspondence between Structural Induction and Generative Grammars

Thus, in general, structural induction may invent any rewrite rule of the form
l→ r, potentially introducing new NonTerminals, the problem is that there are
infinitely many such rules that we could invent at any point in time. In order
to make the process more well defined we ask whether it is possible to find a
set of fundamental structural operations which is finite and minimalistic, such
that all the rules (or more precisely sets of rules) can be expressed in terms of
these operations. This would establish a normal form in terms of a finite set of
operations and then the problem of generating laws will be reduced to making
appropriate choices from this set without sacrificing completeness. In the next
subsection we will attempt to decompose the rules l→ r into a small finite set of
fundamental structural elements which will allow us to design better structure
search mechanisms.

2.3 ASNF (Abstraction SuperStructuring Normal Form) Theorems

Issue (ε−Construction). In the rest of the paper we will prove some theorems
that impose various sets of conditions on a grammar G in order for the grammar
to be considered in a certain Normal Form. If ε ∈ L(G) however, we will allow two
specific rules of the grammar G to be exempted from these constraints and still
consider the grammar in the Normal Form. More exactly if ε ∈ L(G) and given a
grammar G′ such that L(G′) = L(G\{ε}) and G′ = (N ′, T, S′, R′) is in a certain
Normal Form then the grammar G = (N ∪{S}, T, S,R = R′∪{S → ε, S → S′})
where S /∈ N ′ will also be considered in that certain Normal Form despite the
fact that the two productions {S → ε, S → S′} may violate the conditions of the
Normal Form. These are the only productions that will be allowed to violate the
Normal Form conditions. Note that S is a brand new NonTerminal and does not
appear in any other productions aside from these two. Without loss of generality

we will assume in the rest of the paper that ε /∈ L(G). This is because if ε ∈ L(G)
we can always produce using the above-mentioned construction a grammar G′′
that is in a certain Normal Form and L(G′′) = L(G′) from a grammar G′ that is
in that Normal Form and satisfies L(G′) = L(G\{ε}). We will call the procedure
just outlined the ε − Construction. We will call the following statement the
ε − Amendment: Let G = (N,T, S,R) be a grammar, if ε is an element of
the language L(G) one rule of the form S → ε is allowed and furthermore the
restriction that S does not appear in the right hand side of any rule is imposed.

First we state a weak form of the Abstraction SuperStructuring Normal Form
for Context Free Grammars.

Theorem 2 (Weak-CFG-ASNF). Let G = (N,T, S,R), ε /∈ L(G) be a
Context Free Grammar. Then there exists a Context Free Grammar G′ such
that L(G) = L(G′) and G′ contains only rules of the following type:

1. A→ B
2. A→ BC
3. A→ a

Proof . Since G is a CFG it can be written in the Chomsky Normal Form [13].
That is, such that it contains only productions of the forms 2 and 3. If ε ∈ L(G)
then a rule of the form S → ε is allowed and S does not appear in the RHS of
any other rule (ε − Amendment). Since we have assumed that ε /∈ L(G) we do
not need to deal with ε−Amendment and hence the proof.

�
Remarks.

1. We will call the rules of type 1 Renamings (REN).
2. We will call the rules of type 2 SuperStructures (SS) or compositions.
3. The rules of the type 3 are just convenience renamings of observables into

internal variables in order to uniformize the notation and we will call them
Terminal (TERMINAL).

We are now ready to state the the Weak ASNF theorem for the general case.
Theorem 3 (Weak-GEN-ASNF). Let G = (N,T, S,R), ε /∈ L(G) be

a General (unrestricted) Grammar. Then there exists a grammar G′ such that
L(G) = L(G′) and G′ contains only rules of the following type:

1. A→ B
2. A→ BC
3. A→ a
4. AB → C

Proof . See Appendix of [19].
Remark. We will call the rules of type 4 Reverse Super-Structuring (RSS).
In the next theorem we will strengthen our results by allowing only the re-

namings (REN) to be non unique. First we define what we mean by uniqueness
and then we proceed to state and prove a lemma that will allow us to strengthen

the Weak-GEN-ASNF by imposing uniqueness on all the productions safe re-
namings.

Definition (strong-uniqueness). We will say that a production α → β
respects strong-uniqueness if this is the only production that has the property
that it has α in the LHS and also this is the only production that has β on the
RHS.

Lemma 2. Let G = (N,T, S,R), ε /∈ G a grammar such that all its produc-
tions are of the form:

1. A→ B
2. A→ ζ , ζ /∈ N
3. ζ → B , ζ /∈ N
Modify the the grammar G to obtain G′ = (N ′, T, S′, R′) as follows:

1. Introduce a new start symbol S′ and the production S′ → S.
2. For each ζ /∈ N that appears in the RHS of one production in G let {Ai →
ζ}i=1,n all the the productions that contain ζ in the RHS of a production.
Introduce a new NonTerminal Xζ and the productions Xζ → ζ and {Ai →
Xζ}i=1,n and eliminate the old productions {Ai → ζ}i=1,n.

3. For each ζ /∈ N that appears in the LHS of one production in G let {ζ →
Bj}j=1,m all the the productions that contain ζ the LHS of a production.
Introduce a new NonTerminal Yζ and the productions ζ → Yζ and {Yζ →
Bj}j=1,m and eliminate the old productions {ζ → Bj}j=1,m.

Then the new grammar G′ generates the same language as the initial grammar
G and all the productions of the form A→ ζ and ζ → B , ζ /∈ N respect strong-
uniqueness. Furthermore, if the initial grammar has some restrictions on the
composition of the ζ /∈ N that appears in the productions of type 2 and 3, they
are respected since ζ is left unchanged in the productions of the new grammar and
the only other types of productions introduced are renamings that are of neither
type 2 nor type 3.

Proof. See Appendix of [19].
By applying Lemma 2 to the previous two Weak-ASNF theorems we obtain

strong versions of these theorems which enforce strong-uniqueness in all the
productions safe the renamings.

Theorem 4 (Strong-CFG-ASNF). Let G = (N,T, S,R), ε /∈ L(G) be a
Context Free Grammar. Then there exists a Context Free Grammar G′ such that
L(G) = L(G′) and G′ contains only rules of the following type:

1. A→ B
2. A→ BC - and this is the only rule that has BC in the RHS and this is the

only rule that has A in the LHS (strong-uniqueness).
3. A→ a - and this is the only rule that has a in the RHS and this is the only

rule that has A in the LHS (strong-uniqueness).

Proof. Apply Lemma 2 to the grammar converted into Weak-CFG-ASNF�
Theorem 5 (Strong-GEN-ASNF). Let G = (N,T, S,R), ε /∈ L(G) be

a general (unrestricted) grammar. Then there exists a grammar G′ such that
L(G) = L(G′) and G′ contains only rules of the following type:

1. A→ B
2. A→ BC - and this is the only rule that has BC in the RHS and this is the

only rule that has A in the LHS (strong-uniqueness).
3. A→ a - and this is the only rule that has a in the RHS and this is the only

rule that has A in the LHS (strong-uniqueness).
4. AB → C - and this is the only rule that has C in the RHS and this is the

only rule that has AB in the LHS (strong-uniqueness).

Proof. Apply Lemma 2 to the grammar converted into Weak-GEN-ASNF�
Remark. After enforcing strong uniqueness the only productions that con-

tain choice are those of type 1 - renamings (REN).
In the light of this theorem we proceed to introduce the concept of abstraction

and prove some additional results.

2.4 Abstractions And Reverse Abstractions

Definitions (Abstractions Graph). Given a grammar G = (N,T, S,R) which
is in an ASNF from any of the Theorems 1 - 4 we call an Abstractions Graph of
the grammar G and denote it by AG(G) a Directed Graph G = (N,E) whose
nodes are the NonTerminals of the grammar G and whose edges are constructed
as follows: we put a directed edge starting from A and ending in B iff A → B
is a production that occurs in the grammar. Without loss of generality, we can
assume that the graph has no self loops, i.e., edges of the form A → A; If
such self-loops exist, the corresponding productions can be eliminated from the
grammar without altering the language. In such a directed graph a node A has a
set of outgoing edges and a set of incoming edges which we refer to as out-edges
and in-edges respectively. We will call a node A along with its out-edges the
Abstraction at A and denote it ABS(A) = {A,OEA = {(A,B)|(A,B) ∈ E}}.
Similarly, we will call a node A along with its in-edges the Reverse Abstraction
at A and denote it RABS(A) = {A, IEA = {(B,A)|(B,A) ∈ E}}.

2.5 Grow Shrink Theorem

Theorem 6. Let G = (N,T, S,R), ε /∈ L(G) be a General Grammar. Then we
can convert such a grammar into the Strong-GEN-ASNF i.e., such that all the
productions are of the following form:

1. A→ B
2. A→ BC - and this is the only rule that has BC in the RHS and this is the

only rule that has A in the LHS. (strong-uniqueness)
3. A → a - and this is the only rule that has A on the LHS and there is no

other rule that has a on the RHS. (strong uniqueness)
4. AB → C - and this is the only rule that has C in the RHS and this is the

only rule that has AB in the LHS. (strong-uniqueness)

And furthermore for any derivation w such that γ ∗→ w , in G, γ ∈ N+ there
exists a derivation γ

∗→ µ
∗→ ν

∗→ w such that µ ∈ N+, ν ∈ N∗ and γ
∗→ µ

contains only rules of type 1 and 2 (REN, SS), µ ∗→ α contains only rules of the

type 1, more particularly only Reverse Abstractions and type 4 (REN(RABS),
RSS) and ν ∗→ w contains only rules of type 3 (TERMINAL).

Proof. See Appendix of [19].
We have therefore proved that for each General GrammarG we can transform

it in a Strong-GEN-ASNF such that the derivation (explanation in structural
induction terminology) of any terminal string w can be organized in three phases
such that: Phase 1 uses only productions that grow (or leave unchanged) the
size of the intermediate string; Phase 2 uses only productions that shrink (or
leave unchanged) the size of the intermediate string; and Phase 3 uses only
TERMINAL productions6. In the case of grammars that are not in the normal
form as defined above, the situation is a little more complicated because of
successive applications of grow and shrink phases. However, we have shown that
we can always transform an arbitrary grammar into one that in the normal
form. Note further that the grow phase in both theorems use only context free
productions.

We now proceed to examine the implications of the preceeding results in the
larger context including the nature of hidden variables, radical positivism and
the David Hume’s principles of connexion among ideas.

3 The Fundamental Operations of Structural Induction

Recall that our notion of structural induction entails: Given a sequence of ob-
servations w we attempt to find a theory (grammar) that explains w and si-
multaneously also the explanation (derivation) S ∗→ w. In a local way we may
think that whenever we have a production rule l → r that l explains r. In a
bottom up - data driven way we may proceed as follows: First introduce for
every observable a a production A → a. The role of these productions is sim-
ply to bring the observables into the realm of internal variables. The resulting
association is between the observables and the corresponding internal variables
unique (one to one and onto) and hence, once this association is established,
we can forget about the existence of observables (Terminals). Since establishing
these associations is the only role of the TERMINAL productions, they are not
true structural operations. With this in mind, if we are to construct a theory in
the GEN-ASNF we can postulate laws of the following form:

1. A → BC - Super-structuring (SS) which takes two internal variables B
and C that occur within proximity of each other (adjacent) and labels the
compound. Henceforth, the shorter name A can be used instead for BC.
This is the sole role of super-structuring - to give a name to a composite
structure to facilitate shorter explanations at latter stages.

2. A → B|C - Abstraction (ABS). Introduces a name for the occurrence of
either of the variables B or C. This allows for compactly representing two

6 At first sight, it may seem that this construction offers a way to solve the halting
problem. However, this is not the case, since we do not answer the question of
deciding when to stop expanding the current string and start shrinking, which is key
to solving the halting problem.

productions that are identical except that one uses B and the uses C by a
single production using A. The role of Abstraction is to give a name to a
group of entities (we have chosen two only for simplicity) in order to facilitate
more general explanations at latter stages which in turn will produce more
compact theories.

3. AB → C - Reverse Super-structuring (RSS) which introduces up to two
existing or new internal variables that are close to each other (with respect
to a specified topology) that together “explain” the internal variable C.

4. A → C, B → C - Reverse Abstraction (RABS) which uses existing or new
internal variables A and B as alternative explanations of the internal variable
C (we have chosen two variables only for simplicity).

3.1 Reasons for Postulating Hidden Variables

Recall that are at least two types of reasons for creating Hidden Variables:

1. (OR type) - [multiple alternative hidden causes] The OR type corresponds
to the case when some visible effect can have multiple hidden causes H1→
Effect, H2 → Effect . In our setting, this case corresponds to Reverse
Abstraction. One typical example of this is: The grass is wet, and hence
either it rained last night or the sprinkler was on. In the statistical and
machine learning literature the models that use this type of hidden variables
are called mixture models [9].

2. (T-AND type) - [multiple concurrent hidden causes] The T-AND type, i.e.,
topological AND type, of which the AND is a sepcial case. This corresponds
to the case when one visible effect has two hidden causes both of which
have to occur within proximity of each other (with respect to a specified
topology) in order to produce the visible effect. H1H2 → Effect. In our
setting, this corresponds to Reverse Super-structuring. In the Statistical /
Graphical Models literature the particular case of AND hidden explanations
is the one that introduces edges between hidden variables in the dependence
graph [5], [9], [11].

The preceding discussion shows that we can associate with two possible reasons
for creating hidden variables, the structural operations of Reverse Abstraction
and Reverse Super Structuring respectively. Because these are the only two types
of productions that introduce hidden variables in the GEN-ASNF, this provides
a characterization of the rationales for introducing hidden variables.

3.2 Radical Positivism

If we rule out the use of RSS and RABS, the only operations that involve the pos-
tulation of hidden variables, we are left with only SS and ABS which corresponds
to the radical positivist [1] stance under the computationalist assumption. An
explanation of a stream of observations w in the Radical Positivist theory of the
world is mainly a theory of how the observables in the world are grouped into
classes (Abstractions) and how smaller chunks of observations are tied together

into bigger ones (Super-Structures). The laws of the radical positivist theory are
truly empirical laws as they only address relations among observations. However,
structural induction, if it is constrained to using only ABS and SS, the class of
theories that can be induced is necessarily a subset of the set of theories that
can be described by Turing Machines. More precisely, the resulting grammars
will be a strict subset of Context Free Grammars, (since CFG contain SS, and
REN(ABS+RABS)). Next we will examine how any theory of the world may
look like from the most general perspective when we do allow Hidden Variables.

3.3 General theories of the world

If structural induction is allowed to take advantage of RSS and RABS in ad-
dition to SS and ABS, the resulting theories can make use of hidden variables.
Observations are a derivative byproduct obtained from a richer hidden vari-
able state description by a reduction: either of size - performed by Reverse
SuperStructuring or of information - performed by Reverse Abstraction. Note
that, while in general, structural induction can alternate several times between
REN+SS and RABS+RSS, we have shown that three phases suffice: a growth
phase (REN+SS); a shrink phase (RABS+RSS); and a Terminal phase. Whether
we can push all the RABS from the first phase into the second phase and make
the first phase look like the one in the radical positivist stance (only ABS+SS)
remains an open question (See Appendix of [19] for a Conjecture to this effect).

3.4 Hume’s principles of connexion among ideas

We now examine, against the backdrop of GEN-ASNF theorem, a statement
made by philosopher David Hume more that 2 centuries ago: “I do not find
that any philosopher has attempted to enumerate or class all the principles of
association [of ideas]. ... To me, there appear to be only three principles of con-
nexion among ideas, namely, Resemblance, Contiguity in time or place, and
Cause and Effect” [6]. If we substitute Resemblance with Abstraction (since ab-
straction is triggered by resemblance or similarity), Contiguity in time or place
with Super-Structuring (since proximity, e.g., spatio-temporal proximity drives
Super-Structuring) and Cause and Effect with the two types of explanations that
utilize hidden variables, it is easy to see that the GEN-ASNF theorem is simply
a precise restatement of Hume’s claim under the computationalist assumption.

4 Summary

We have shown that abstraction (grouping similar entities) and super-structuring
(combining topologically e.g., spatio-temporally close entities) as the essential
structural operations in the induction process. A structural induction process
that relies only on abstraction and super-structuring corresponds to the radi-
cal positivist stance. We have shown that only two more structural operations,
namely, reverse abstraction and reverse super-structuring (the duals of abstrac-
tion and super-structuring respectively) (a) suffice in order to exploit the full

power of Turing-equivalent generative grammars in induction; and (b) opera-
tionalize two rationales for the introduction of hidden variables into theories of
the world. The GEN-ASNF theorem can be seen as simply a restatement, under
the computationalist assumption, of Hume’s 2-century old claim regarding the
principles of connexion among ideas.

References

1. A.J. Ayer, Language, Truth, and Logic. London: Gollancz. (2nd edition,
1946), 1936.

2. M. Burgin. Super-Recursive Algorithms. Springer, 2005.
3. R. Carnap. An introduction to the Philosophy of Science. Basic Books,

1966.
4. N. Chomsky. Syntactic Structures. The Hague: Mouton. 1957.
5. G. Elidan and N. Friedman. Learning Hidden Variable Networks: The

Information Bottleneck Approach. Journal of Machine Learning Research
(JMLR), 6:81-127, 2005.

6. D. Hume. An Enquiry Concerning Human Understanding. Hackett Publ
Co. 1993.

7. M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on
Algorithmic Probability. EATCS, Springer, 2005.

8. S.-Y. Kuroda. Classes of languages and linear-bounded automata. Infor-
mation and Control, 7(2): 207–223, 1964.

9. S. L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.
10. T. Oates, T. Armstrong, J. Harris and M. Nejman. On the Relationship

Between Lexical Semantics and Syntax for the Inference of Context-Free
Grammars. Proceedings of the 19th National Conference on Artificial In-
telligence ({AAAI}), 431–436, 2004.

11. J. Pearl. Probabilistic Reasoning in Intelligent Systems.Morgan Kaufmann
Publishers, 1988.

12. K. R. Popper. The Logic of Scientific Discovery, Basic Books (English ed.
1959), 1934.

13. A. Salomaa. Computation and Automata. Cambridge University Press,
1985.

14. W. Savitch. How to make arbitrary grammars look like context-free gram-
mars. SIAM Journal on Computing, 2:174-182, 1973.

15. J. Schmidhuber, J. Zhao and M. Wiering Shifting Bias with Success Story
Algorithm. Machine Learning, 28:105-130, 1997.

16. R. Solomonoff. A Formal Theory of Inductive Inference, Part I. Informa-
tion and Control, 7(1):1-22, 1964.

17. R. Solomonoff. A Formal Theory of Inductive Inference, Part II. Informa-
tion and Control, 7(2):224-254, 1964.

18. A. Turing. On computable numbers with an application to the
Entscheuidungs-problem, Proc. Lond. Math. Soc., Ser.2, 42:230-265, 1936.

19. A. Silvescu and V. Honavar. Abstraction Super-structuring Normal Forms:
Towards a Computationalist Theory of Structural Induction. Technical
Report. Department of Computer Science. Iowa State University. 2011.
www.cs.iastate.edu/~silvescu/papers/trasnf/trasnf.pdf

20. C.S. Wallace and D. Dowe, Minimum Message Length and Kolmogorov
complexity, Computer Journal. Vol 42, No. 4, pp 270-283. 1999.

