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Abstract

We consider the problem of predictive modeling from irreg-
ularly and sparsely sampled longitudinal data with unknown,
complex correlation structures and abrupt discontinuities. To
address these challenges, we introduce a novel inducing clus-
ters longitudinal deep kernel Gaussian Process (ICDKGP).
ICDKGP approximates the data generating process by a zero-
mean GP with a longitudinal deep kernel that models the
unknown complex correlation structure in the data and a de-
terministic non-zero mean function to model the abrupt dis-
continuities. To improve the scalability and interpretability
of ICDKGP, we introduce inducing clusters corresponding
to centers of clusters in the training data. We formulate the
training of ICDKGP as a constrained optimization problem
and derive its evidence lower bound. We introduce a novel
relaxation of the resulting problem which under rather mild as-
sumptions yields a solution with error bounded relative to the
original problem. We describe the results of extensive experi-
ments demonstrating that ICDKGP substantially outperforms
the state-of-the-art longitudinal methods on data with both
smoothly and non-smoothly varying outcomes.

Introduction
Longitudinal data, consisting of repeated, often irregularly
sampled observations, of variables and outcomes for a set
of individuals (Liang et al. 2021, 2020), are ubiquitous in
many applications, e.g., predictive modeling of health risks
from electronic health records data, or educational outcomes
from activity logs in online platforms. Such data display
complex, often unknown, correlation structures: longitudinal
correlation (LC) across time, cluster correlations (CC) across
individuals, or multi-level correlations (MC) (Liang et al.
2021). Gaussian processes (GP) (Williams and Rasmussen
2006) offer an attractive framework for predictive model-
ing from such data (Liang et al. 2021). Existing GP models
optimize kernel parameters under the assumption that the
longitudinal outcome being modeled is sufficiently smooth.
However, in many real-world applications, the longitudinal
outcome can show abrupt discontinuities, e.g., due to unob-
served transitions between hidden states e.g., healthy versus
sick.
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Key Contributions. We consider the problem of predictive
modeling from irregularly and sparsely sampled longitudi-
nal data with unknown, complex correlation structures and
abrupt discontinuities. Specifically, we approximate the data
generating process by a zero-mean GP with a longitudinal
deep kernel to recover the complex correlation structure in the
data and a deterministic non-zero mean function that helps
account for the discontinuities in the observed outcomes.
We improve the scalability of GP predictions by replacing
inducing points (Titsias 2009) with inducing clusters (set
to centers of clusters in the training data), thereby substan-
tially reducing the number of inducing points needed and
performing regression and clustering simultaneously without
increasing computational complexity. We show that induc-
ing clusters mimic the mean-field assumption that is often
used in variational inference with sparse GP while enhancing
both the scalability and interpretability of the learned GP.
We formulate the problem of training the resulting inducing
clusters deep kernel Gaussian process (ICDKGP) as a con-
strained optimization problem and derive its evidence lower
bound (ELBO). We introduce a novel relaxation of the result-
ing problem which under rather mild assumptions yields a
solution with error bounded relative to that of the original
problem. Through extensive experiments with both simulated
and real-world data, we show that ICDKGP substantially
outperforms the state-of-the-art (SOTA) baselines in terms of
both predictive accuracy and correlation structure recovery.

Related Work
GP for Longitudinal Data Analysis. Gaussian processes
(GP) (Williams and Rasmussen 2006; Cheng et al. 2019),
offer an attractive approach for predictive modeling from
longitudinal data. GP dispenses with assumptions about the
parametric form of the data generating process using pa-
rameterized kernels to model complex, a priori unknown
correlation structure in the data: If a function f : X → R
has a GP prior f∼GP(µ, kθ) where µ is the mean function
and kθ(·, ·) is a kernel function parameterized by θ, then
any finite collection of components of f (denoted as f) has
a multivariate Gaussian distribution (f|X)∼N (µX ,KXX),
where µX is the mean vector, and (KXX)ij = kθ(xi,xj)
is the covariance matrix. A zero mean GP, given a kernel
with a universal approximation property, e.g., dot product,
RBF, polynomial, or Matérn kernel (Williams and Rasmussen



2006), and sufficient training data can approximate any suffi-
ciently well-behaved function with arbitrarily high accuracy
(Micchelli, Xu, and Zhang 2006). GP can accommodate data
sampled at irregularly spaced time points via interpolation
(Liang et al. 2021). Previous work on GP models for longitu-
dinal data focuses primarily on the design of suitable kernels
to account for the complex correlation structure in the data.
Cheng et al. (2019) introduced an additive kernel optimized
to yield the desired predictive performance. Timonen et al.
(2019) explored the use of a heterogeneous kernel for model-
ing random effects in non-Gaussian data. Liang et al. (2021)
introduced an efficient method for learning a deep kernel that
models both time-varying and time-invariant effects. Chen
et al. (2020) used a transformer network and kernel warping
to fuse information from multiple data sources.

Inducing Points for Speeding up GP. A body of work
has been proposed to speed up GP using inducing points
(reviewed in (Liu et al. 2020)). Titsias (2009) and Hensman,
Matthews, and Ghahramani (2015) showed how to combine
inducing points and variational inference to reduce the com-
putational complexity of GP for regression and classification
respectively. Wilson et al. (2016) introduced an efficient way
to sample the inducing points. Shi, Titsias, and Mnih (2020)
showed how to leverage inducing points to speed up a GP
that is expressed as a sum of two independent GPs. Much pre-
vious work on inducing points was aimed at approximating
the inverse of the covariance matrix KXX . Subsequent work
was aimed at improving the selection of inducing points to
as to enhance the efficiency and accuracy of the resulting GP.

Zero Mean and Non-zero Mean GP. It has been observed
that the zero mean assumption is tantamount to asserting
that all available prior knowledge can be effectively incorpo-
rated into the form of the GP kernel. The kernel parameters
are then optimized to obtain the desired predictive perfor-
mance (Iwata and Ghahramani 2017; Chung et al. 2020;
De Ath, Fieldsend, and Everson 2020). However, Iwata and
Ghahramani (2017) showed that when the training data are
scarce, a zero mean GP produces outcome predictions that
approach zero in regions with no training data. Recent work
has demonstrated the benefits of GP models with non-zero
mean functions. For example, Chung et al. (2020) utilized a
recurrent neural network (RNN) to model the mean function
of a GP to capture population-average effects from longitudi-
nal electronic health records. De Ath, Fieldsend, and Everson
(2020) compared GP models with linear and quadratic mean
functions and found that when the outcome to be predicted
is discontinuous, nonlinear mean functions tended to outper-
form constant or linear mean functions.

GP Variants for Non-stationary Data GP models have
been extended to cope with non-stationary data using non-
stationary kernels (Noack and Sethian 2022; Tompkins,
Oliveira, and Ramos 2020), or non-stationary covariance
functions (Paciorek and Schervish 2003; Paun, Husmeier,
and Torney 2023), or kernel interpolation methods (Graßhoff,
Jankowski, and Rostalski 2020) to cope with non-stationary
data. Other work has explored sparsity-inducing kernels
(Noack et al. 2023), and GP regression models that incor-
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Figure 1: Overview of ICDKGP. Module 1 involves a zero-
mean deep kernel Gaussian Process responsible for projecting
input data into a latent space; Module 2 fits a mean function
with the latent space; Module 3 integrates inducing clusters
with the mean function for final prediction.

porate domain knowledge to cope with non-stationary lon-
gitudinal gene expression data (Cheng et al. 2019; Vantini
et al. 2022). The current work shares some similarities with
these methods in that it decomposes the underlying kernel
into time-invariant and time-variant components, but differs
from them in terms of how it achieves scalability, namely, by
generalizing inducing points to inducing clusters.

Inducing Clusters Deep Kernel GP
After (Liang et al. 2021), we use D = (X,y) to denote a
longitudinal data set where X ∈ RN×P is the covariate ma-
trix and y ∈ RN×1 is the vector of measured outcomes. A
row xit in X denotes the observation for individual i at time
index t. Because the observations for each individual are
irregularly time-sampled, for each i, we have a sub-matrix
Xi ∈ RNi×P ⊂ X , where Ni denotes the number of obser-
vations available for individual i. Denoting the number of
individuals in D by I , we use y = (y⊤

1 , · · · ,y⊤
I )

⊤ to repre-
sent the outcomes associated with X = (X⊤

1 , · · · , X⊤
I )⊤.

ICDKGP consists of three main modules as shown in
Fig. 1: Module 1, a zero mean deep kernel GP that projects
the input data to a latent space; Module 2, a deterministic
state-space mean function to the latent space. Module 3, inte-
gration of the mean function and the data using ICDKGP.

Module 1: Zero Mean Deep Kernel GP. Module 1 em-
ploys a deep kernel by combining the expressive power of
deep neural networks with the flexibility of a non-parametric
kernel. The deep kernel eliminates the need for ad-hoc heuris-
tics or trial-and-error since it learns to fit the correlation
structure in the data. Formally, let e : RP → RD be a general
DNN-based encoder function, and g : RD × RD → R be a
valid kernel function, then for any pair of data points xi,xj ,
the deep kernel is computed as kθ(xi,xj) = g(e(xi), e(xj)).
We adopt the longitudinal deep kernel proposed in (Liang
et al. 2021) to model the unknown multilevel correlation
structure of longitudinal data. Specifically, the kernel func-
tion kθ is the sum of two components:

kθ(xit,xjq) =α(v)2kRBF (e
(v)(xit), e

(v)(xjq))+

α(i)2kRBF (e
(i)(xit), e

(i)(xjq)) (1)

Here, e(v) and e(i) respectively denote the encoder networks
that model the time-varying and time-invariant components
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Figure 2: Graphical explanation of kernel computation in
ICDKGP. The initial latent representation e(X) is computed
the same way as in (Liang et al. 2021). The updated form of
latent representation ê(X) is obtained by computing the prox-
imity between the data points and inducing clusters, followed
by the proximity mapping. The kernel value is computed
based on the updated latent representation.

of the unknown correlation structure in a latent space (See
Fig. 2.). For notation brevity, let e(x) be the concatenation
between e(v)(x) and e(i)(x), The longitudinal kernel kθ in
(1) can be rewritten on the latent space e(X ). An explanation
of kernel computation is shown on the left panel of Fig. 2.

Module 2: Mean Function for GP. We model GP mean by
a deterministic state-space function which allows the result-
ing GP to be expressed as the sum of a deterministic function
and a zero mean GP: f = f⊥ + f∥, where f⊥(X) = µX

and f∥ ∼ GP(0, kθ). The choice of a deterministic mean
function allows us to relegate correlation estimation to Mod-
ule 1 because var[f ] = var[f∥] = kθ(·, ·), with Module 2
(the mean function) f⊥ accounts for the non-smoothly time-
varying outcomes. Let X ′ = e(X) ∈ RN×D be the output
from module 1. The state-space mean model maintains K
learnable hidden state encodings C = {ck}Kk=1. Given data
x′ ∈ X ′, we first obtain its state representation by comparing
and mapping x′ to the state encodings based on a proximity
score measured by the dot product, such that

v(x′) = C⊤softmax(Cx′) (2)

Then the mean prediction (or logit) is obtained by processing
the state encoding v(x′) through a multi-layer neural network
with the structure: Input MLP−−−→

GeLU
Hidden MLP−−→ Output. We use

the mean squared prediction error as the loss.

Module 3: Inducing Kernel GP. Recall that inducing
points are used to increase the efficiency of the GP posterior
by reducing the effective number of rows in X , from N to M
(M ≪ N ), where M is the number of inducing points. Let
u = {um}Mm=1 be the collection of inducing points and Z
be their feature vectors, then solving the GP usually involves
maximizing the following ELBO (Wilson et al. 2016):

log p(y) ≥ Eq(f,u)[log p(y|f)]− KL[q(f,u)||p(f,u)] (3)

where p(y|f) is the likelihood model, p(u) = N (µZ ,KZZ)
and q(u) = N (mZ , S) are the observational prior and varia-
tional prior for inducing points respectively. The joint varia-
tional distribution q(f,u) = p(f|u)q(u).

Unlike the previous use of inducing points primarily for
speeding up GP, we use them to enhance the interpretability
of ICDKGP. Specifically, we choose inducing points that cor-
respond to cluster centers of the training data such that (i) the
cluster centers are approximately mutually independent and
(ii) each data point is assigned to its nearest cluster centers
with high confidence. To see how these conditions can be
enforced, recall the joint signal distributions:1

p(f,u) = N
([

µX

µZ

]
,

[
KXX KXZ

K⊤
XZ KZZ

])
(4)

q(f,u) = N
([

µX +A(mz − µZ)
mZ

]
,

[
V AS

SA⊤ S

])
(5)

where A = KXZK
−1
ZZ , V = KXX−AK⊤

XZ+ASA⊤. Since
the KL divergence term in (3) acts as a soft constraint to min-
imize the difference between the observational distribution
p(f,u) and variational distribution q(f,u), we enforce the
cluster centers constraint on both distributions p and q as
follows: (i) KZZ and S should both be an almost diagonal
matrix (Hari 1999) and (ii) all but one of the elements of each
row of KXZ and AS should be approximately zero. These
two constraints have to be enforced on the joint covariance
matrix while ensuring that it remains symmetric positive def-
inite (SPD). Because the covariance matrix is specified by a
kernel function, the SPD condition is guaranteed. Hence, we
turn our attention to ensuring that the kernel parameters are
chosen to enforce the above two constraints. Note that the
constraint on S is trivial to enforce because we can simply
parameterize S to be a diagonal matrix, which is equivalent to
applying the mean-field approximation (i.e., fully factorizing
q(u)) (Hensman, Matthews, and Ghahramani 2015). With
this parameterization, it is easy to show that if all constraints
on KZZ and KXZ hold, so does the constraint on AS.

The preceding observations lead to the following con-
strained optimization problem:

argmax
Θ

L1 = Eq(f,u)[log p(y|f)]− KL[q(u)||p(u)] (6)

s.t. max diag(BB⊤) ≤ ϵ, max diag(CC⊤) ≤ ϵ
(6a)

where B = KZZ − diag(KZZ), C = KXZ − D ◦
KXZ with D as a masking matrix defined by Dxz ={
1, Dxz = maxj Dxj

0, otherwise
. Here, ϵ is a hyperparameter that

specifies the threshold for the constraints; and ‘◦’ denotes the
Hadamard (element-wise) product. Solving the constrained
optimization problem in (6) is hard because the masking ma-
trix D has zero gradients everywhere. Hence, in what follows,
we introduce a relaxed version of (6).

1Result of (5) is derived by applying the Gaussian Identities
(Williams and Rasmussen 2006) on q(f, u) = p(f|u)q(u).



Relaxed Formulation of ICDKGP. To better exploit the
cluster structure, we redefine the latent representation of each
data point x ∈ X , i.e., e(x), through a soft mapping of the
inducing cluster that is closest to it (see Fig. 2):

ê(x) = sxz∗e(z∗) + (1− sxz∗)e(x) (7)

where sxz ∈ SXZ is the proximity score between x and z.
The kernel function in (1) offers a natural measure of pair-
wise proximity SXZ between data points in X and data points
in Z. As such, we define SXZ = softmax(KXZ/τ), where
τ is a hyperparameter (temperature). Smaller τ forces an
approximately row-wise one-hot structure on SXZ . Clearly,
SXZ > 0 and

∑
z sxz = 1. Let and z∗ = argmaxz Sxz and

sxz∗ = maxz sxz . Based on this new data representation, we
can relax the constrained optimization problem (6) as follows:

argmax
Θ

L2 = Eq(f,u)[log p(y|f)]− KL[q(u)||p(u)] (8)

s.t. max diag(BB⊤) ≤ ϵ, 1−min
x∈X

sxz∗ ≤ η

(8a)

ϵ and η are the hyperparameters. The constraint (6a) in (6)
is now replaced by (8a) in (8). We can view the proximity
score sXZ as a smooth approximation of the masking matrix
D, which renders optimizing L2 subject to (8a) easier than
the original problem of optimizing L1 subject to (6a). The
following lemmas explicate the relationship between L1 and
L2 and between the solution of (8) and that of (6):

Lemma 1. A feasible solution that maximizes L2 yields a
feasible solution that maximizes L1 as η → 0.

Proof. Let diag(BB⊤) = r and r∗ = max r. According to
(6a), r∗ ≤ ϵ. As η → 0, we have minx sxz∗ → 1, meaning
∀x, sxz∗ → 1, thus per (7), ê(x) → e(z∗). From (1), we have
kθ(ê(x), e(z)) → kθ(e(z

∗), e(z)). Hence, the covariance
KXZ is reduced to KZ∗Z . Therefore, max diag(CC⊤) =
max diag(BB⊤) = r∗ ≤ ϵ. Hence, as η → 0, a feasible
solution of L2 is also a feasible solution of L1.

Lemma 1 states that as η → 0, solving L2 results in a
feasible solution for L1. From (7), we can achieve this by
setting ∀x ∈ X , e(z∗) = e(x), i.e., making the inducing
clusters coincide with the data points. This is not feasible in
practice. Lemma 2 offers a way out of this difficulty.

Lemma 2. Maximizing L2 subject to (8a) becomes equiv-
alent to maximizing L1 subject to (6a) when the training
data form apparent Mixture of Gaussian (MoG) distributions
around the inducing clusters in the latent space e(X ).

Proof. Let the center of the cluster to which a data point x
belongs be z∗ = argmaxz Kxz . Since we assume that the
training data form MoG distributions in the latent space, with
the generative model for MoG, the data point x ∈ X can be
generated with e(x) = e(z∗) + ξ, where ξ follows a zero-
mean Multivariate Gaussian Distribution. Substituting this
into (7), we have ê(x) = e(z∗) + (1− sxz∗)ξ. Clearly, we
have E[e(x)] = E[ê(x)],det(V[e(x)]) ≥ det(V[ê(x)]). As
the clusters become apparent in the latent space, the following

conditions hold: (i) all data points e(x) fall closer and closer
to their center, making det(V[ξ]) → 0, thus e(x) → ê(x) →
e(z∗). Following (1) and the discussion in lemma 1, the
second part in (6a) is redundant when the first part holds; (ii)
sxz∗ → 1, thus the second part in (8a) holds for any η > 0.
Since the second part in both (6a) and (8a) will always hold
when the first part holds, we can simply drop the second part
in both formulations, thus making L2 equivalent to L1.

Assumptions and Discussions. Lemmas 1 and 2 show
that to make the relaxed version of the optimization problem
equivalent to the original, one can either increase the num-
ber of inducing points or assume the latent space obeys a
clustering structure with MoG distribution. In the absence
of cluster structure in the latent space, lemma 1 ensures that
with small η, it is feasible to optimize L1 to Θ. In the pres-
ence of a strong cluster structure in the latent space, lemma 2
shows that it suffices to optimize L2. Note that with small
ϵ, η, the constraints (8a) would force a cluster structure in
ê(X ) regardless of the structure in e(X ). Because lemma 2
requires that data points in the latent space follow a Gaussian
Distribution around its cluster centers, we enforce a Gaussian
prior on the latent space e(X ) (See (9) and more details in
Appendix).

Optimization. The straightforward way to optimize L2

subject to (8a) involves working with its dual using the tech-
nique of Lagrangian multipliers. For inducing clusters to
work as intended, ϵ and η to must be sufficiently small. Alter-
natively, we can solve an unconstrained optimization of:

argmin
Θ

L3 = −Eq(f,u)[log p(y|f)] + KL[q(u)||p(u)]

+ λ1 max diag(BB⊤)− λ2 min
x∈X

max
z∈Z

sxz − λ3LGau(e(X ))

(9)

where λi, i = 1, 2, 3 are regularization coefficients. LGau is
the Gaussian prior applied to latent representation on the
training data e(X ) (See Appendix for details). Karush-Kuhn-
Tucker (KKT) conditions imply that there is a one-to-one
mapping between λ1 and ϵ, and between λ2 and η, provided
the constraints (8a) in L2 are active.2. For non-Gaussian like-
lihood, the expectation term in L3 is intractable. However, we
can use Monte Carlo sampling and reparameterization to ob-
tain an efficient approximation of the likelihood. That is, we
can draw T samples from (f,u) ∼ q(f,u) then approximate
the expectation as 1

T

∑T
i=1 log p(y|f

(i)).

Experiments and Results
Experimental Setup. We compare ICDKGP to several
state-of-the-art methods for predictive modeling from lon-
gitudinal data on both simulated and real-world benchmark
data sets. The experiments are designed to answer the follow-
ing research questions: (RQ1) How does the performance of
ICDKGP compare with state-of-the-art baselines on standard
longitudinal regression tasks? (RQ2) Can ICDKGP better

2The same trick is often used to convert constraint ℓ1-regularized
regression to unconstrained LASSO regression (Hastie, Tibshirani,
and Wainwright 2019).



recover complex a priori unknown correlation structure in
the longitudinal data? (RQ3) To what extent does the per-
formance of ICDKGP depend on the mean function and
inducing clusters?

To answer RQ1, we conducted experiments with simulated
data with smooth and non-smooth target functions and several
real-world data sets. We evaluated the performance of each
model on each regression task using 10 independent runs,
using 50%, 20%, and 30% of data for training, validation, and
testing respectively. Following (Liang et al. 2020), we report
the mean and standard deviation of R2 between the predicted
outcomes and actual outcomes. R2 = 1−MSE of model

MSE of mean (where
MSE denotes the mean squared error). R2 measures the
relative improvement of the model’s regression accuracy over
a baseline that uses the mean of outcomes over the training
set as its prediction. The sign of R2 indicates whether the
model performs better than the baseline.

To answer RQ2, because the true underlying correlation
structure of the real-world data is not known, we used sim-
ulated data with a known correlation structure. Following
the procedure described in (Liang et al. 2021), we compare
the learned correlation matrix with the known ground truth
correlation matrix for the simulated data.

To answer RQ3, we compared ICDKGP with two of its
variants: (i) DKGP, a deep kernel GP regression model using
standard inducing points and the state-space mean function
(Module 1 and Module 2); and (ii) DKGP-ZM, DKGP with
zero means (Module 1). We also compared the visualizations
of the latent representations learned by ICDKGP (ê(X)) and
DKGP (e(X)) using a 2-dimensional T-SNE plot.

Simulated Data. We simulated longitudinal data with the
desired correlation structure. Specifically, we set the outcome
y = f(X) + ϵ where f(X) is a non-linear transformation of
the observed covariate matrix X and the residual ϵ∼N(0,Σ).
Correlation type and smoothness are varied by manipulating
Σ (Liang et al. 2021). To simulate a smooth target function
with longitudinal correlation, we set Σ to a block diagonal
matrix with non-zero entries for within-individual observa-
tions. To simulate a smooth target function with multi-level
correlation, we first split the individuals into C clusters and
assign non-zero entries for the data points in the same cluster.
To simulate a non-smooth target function across the obser-
vations per individual, we split the observations for each
individual into 2 clusters and assign non-zero entries for the
data points in the same cluster. Following (Liang et al. 2021),
we simulated longitudinal data consisting of 30 covariates
for 40 individuals to obtain 20 observations per individual.
We vary the number of clusters C from 2 to 5. Details of
simulated data generation are given in the Appendix.

Real-world Data. We used three real-world longitudinal
data sets, each with some degree of discontinuities. (i) The
SWAN (Sutton-Tyrrell et al. 2005) data is taken from a lon-
gitudinal study of women’s health in midlife. We trained
models to predict the adjusted CESD score, which is often
used to screen for depression. (ii) GSS (Smith et al. 2015)
data is taken from a 30-year longitudinal study designed to
monitor, understand, and explain changes in the attitudes
and behaviors of Americans. Specifically, we trained mod-

els to predict the self-reported happiness of individuals; (iii)
TADPOLE (Marinescu et al. 2018) data is taken from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) longi-
tudinal study of individuals at high for Alzheimer’s Disease.
We focused on predicting the ADAS-Cog13 score from the
TADPOLE data using demographic features and MRI mea-
sures. When all the methods ran to completion on a data set,
their regression performance was compared on the entire data
set. When baseline methods fail to run to completion on these
real-world data sets, following (Liang et al. 2021), we com-
pared the regression methods on a subset of each real-world
data set consisting of 50 individuals with the largest number
of observations. We report execution failure if a method fails
to converge within 48 hours or generates an execution error.
Additional details, e.g., on how the data were pre-processed,
etc., are provided in the Appendix.

State-of-the-Art Baseline Methods. We compared ICD-
KGP with the following SOTA baselines: (i) Conventional
longitudinal regression models, i.e., GLMM (Bates et al.
2015), GEE (Inan and Wang 2017); (ii) State-of-the-art
(SOTA) longitudinal regression models, i.e., LMLFM (Liang
et al. 2020) and L-DKGPR (Liang et al. 2021); (iii) SOTA
GP models for general regression, i.e., SKIPGP, exact GP
with scalable kernel interpolation for product kernels (Gard-
ner et al. 2018), SVGP, stochastic variational GP regression
(Hensman, Matthews, and Ghahramani 2015) and its variant
DSVGP that incorporates a deep kernel.

Implementation and Supplementary Material. Full
implementation details and the Appendix can be ac-
cessed through https://github.com/junjieliang672/ICDKGP/
blob/main/ICDKGP-AAAI24 appendix.pdf.

Results
We proceed to describe the results of our experiments that
answer our research questions RQ1-RQ3.

Predictive Performance of ICDKGP vs SOTA Baselines
on Simulated Data. Table 1 summarizes the results of
our experiments on simulated data with both smooth and
non-smooth target functions. We see that ICDKGP substan-
tially outperforms all of the GP models for general regression
(i.e., SVGP, DSVGP and SKIPGP) and most longitudinal
models (GLMM, GEE, and LMLFM) when the data exhibit
multi-level correlations (MC). This result is in part explained
by the fact that GEE and GLMM are designed for settings
where the correlation structure in the data is known; LMLFM
handles only a special case of MC where cluster correlation
exists only among individuals observed at the same time
points. Although SVGP, DSVGP, and SKIPGP can handle
data with arbitrary stationary correlation structure, they lack
to ability to handle time-invariant effects. Though L-DKGPR
delivers the best performance among the SOTA baselines,
because of its zero mean assumption, it fails to learn a kernel
that is expressive enough to model the target function. In con-
trast, ICDKGP can better model the target function thereby
outperforming the SOTA baselines.

Predictive Performance of ICDKGP vs SOTA Baselines
on Real-World Data. Table 2 summarizes how ICDKGP



Target Type Method LC MC(C = 2) MC(C = 3) MC(C = 4) MC(C = 5)

Smooth

ICDKGP 84.2±2.9 99.5±0.5 99.5±0.3 99.5±0.3 99.6±0.3
L-DKGPR 86.0±0.2 91.3±0.2 99.6±0.2 99.8±0.2 99.8±0.2
LMLFM 54.7±15.1 -138.3±121.9 -48.3±123.6 22.6±49.0 36.2±41.1

SVGP 78.5±3.1 -102.7±83.1 -102.7±83.1 -51.6±41.5 -36.4±35.2
DSVGP 51.1±10.9 -138.3±126.4 -30.6±21.3 -27.4±27.8 -5.8±3.3
SKIPGP 17.4±40.6 -104.9±86.5 -67.2±36.1 -85.0±40.2 -77.3±36.9
GLMM 5.3±27.9 -656.3±719.8 -801.4±507.4 -684.1±491.3 -528.7±313.5

GEE 59.0±24.5 -636.1±606.0 -703.6±465.8 -665.6±554.3 -516.5±457.5

Non-smooth

ICDKGP 84.2±5.2 89.1±0.5 89.6±2.9 92.0±5.4 93.1±3.2
L-DKGPR 76.8±17.8 62.7±41.9 75.0±12.0 89.6±5.5 83.4±7.8
LMLFM 76.4±8.8 70.8±1.9 69.4±3.6 73.1±4.6 69.2±7.3

SVGP 69.2±13.6 31.2±20.4 26.0±28.7 19.3±26.3 10.2±19.9
DSVGP 78.5±16.9 35.0±28.0 31.5±29.6 20.7±30.3 9.7±24.5
SKIPGP 68.4±13.5 31.2±20.1 28.1±25.0 19.8±25.5 12.1±18.2
GLMM 66.8±15.9 18.7±26.0 11.4±38.4 1.9±30.6 -10.9±27.1

GEE 71.6±14.9 29.3±24.6 25.8±28.8 17.7±30.1 5.0±23.6

Table 1: Regression accuracy R2 (%) comparison on simulated data over different correlation structures.

Data sets N I P ICDKGP L-DKGPR LMLFM SVGP DSVGP SKIPGP GLMM GEE

TADPOLES 595 50 24 53.8±5 44.0±6 8.7±5 -0.5±4 -1.7±5 -6.7±26 50.8±6 -11.4±5
SWANS 550 50 137 47.9±4 46.8±5 38.6±4 -24.3±8 19.9±3 -36.8±10 40.1±8 46.4±8
GSSS 1.5K 50 1.6K 25.3±3 19.1±4 15.3±1 8.9±6 6.0±13 NI NC -4.6±4

TADPOLEL 8.7K 1.7K 24 63.1±2 64.9±1 10.4±1 21.3±1 14.1±4 OOM 61.9±2 17.6±1
SWANL 28.4K 3.3K 137 54.2±0 52.5±0 48.6±2 46.4±0 46.1±1 OOM NC NC
GSSL 59.6K 4.5K 1.6K 56.4±1 56.9±0 54.8±2 55.6±0 45.8±4 OOM NC NC

Table 2: Regression accuracy R2 (%) on real-world data. We use N to denote the number of data points in the data set, I the
number of individuals, and P the number of features. For models that fail during the inference we use ‘NI’ to denote numerical
issues, ’NC’ for failure to converge within 48 hours, and ’OOM’ for out-of-memory issues.

compares with SOTA baselines on real-world data sets. Com-
parison of SVGP and DSVGP suggests no clear advantage in
replacing a standard RBF kernel with a deep kernel without
also adding elements that accommodate, as in the case of
ICDKGP, the complex correlation structure of longitudinal
data. We further observe that when N (number of individuals
represented in the data set) is small, ICDKGP outperforms
L-DKGPR by a wide margin, whereas when N is large, L-
DKGPR catches up with ICDKGP. We conclude that the
mean function used in ICDKGP offers an advantage over
zero mean models like L-DKGPR, especially when N is
small.

Correlation Structure Recovery by ICDKGP vs. SOTA
Baselines. Results of experiments with estimation of the un-
derlying correlation structure of longitudinal data are shown
in Fig. 3. We see that for both smooth and non-smooth target
functions, ICDKGP outperforms SOTA baselines in accu-
rately recovering the underlying correlation structure. Each
of the models shows a degradation in their performance in
the non-smooth setting as compared to the smooth setting
(e.g., L-DKGPR col. 3 compared to col. 7 in Fig. 3). This
suggests that accurate recovery of the correlation structure is
harder in the case of non-smoothly time-varying outcomes.
The comparison of methods e.g., DKGP, that use a non-zero

Figure 3: Recovering correlation structure: Comparison of
IDDKGP with SOTA baselines on simulated data.

mean function with methods that do not, e.g., L-DKGPR, sug-
gest the benefits of non-zero mean in modeling non-smoothly
time-varying outcomes. (col. 7 vs. col. 8 in Fig. 3). As ob-
served in (Liang et al. 2021), accurate recovery of the un-
known correlation structure is extremely challenging in the
absence of a strong prior on the kernel structure. Deep kernels
offer a versatile data-driven approach to modeling complex



Data
sets

ICDKGP DKGP DKGP-ZM Mean
Function

M=10 M=10 M=100 M=10 M=100

TADPOLEL 63.1±1.8 60.7±3.9 60.2±4.1 58.9±3.1 61.7±3.4 57.1±3.9
SWANL 54.2±0.2 54.4±0.5 54.8±0.8 43.3±3.8 52.8±0.9 53.9±0.6
GSSL 56.4±0.9 53.9±1.3 53.7±1.2 48.2±10.2 51.9±5.4 54.8±0.7

Table 3: Effects on the regression accuracy R2 (%) of different components of ICDKGP on full real-world data.

Simulated Data

(Smooth)

Simulated Data 

(Non-smooth)
TADPOLE SWAN GSS

MC (M=2) MC (M=2)

MC (M=2) MC (M=2)

ICDKGP

DKGP

Figure 4: T-SNE visualization of the learned latent represen-
tation of ICDKGP and DKGP. The grey and the red dots
represent the data points and the inducing cluster centers
respectively.

correlation structures. Comparison of ICDKGP with DKGP
shows the benefits of inducing clusters in recovering the
underlying complex correlation structure from data. Since
ICDKGP, DKGP, and L-DKGPR all work within the MLE
framework, they search for a kernel that maximizes the like-
lihood. When the optimal solution is surrounded by a large
number of local maxima, it is easy to get stuck in one of such
local maxima. Based on the results in Fig. 3, we conjecture
that inducing clusters offers a useful prior to constraining
the search space, thus delivering better results. We further
observe that when inducing clusters are replaced by inducing
points as in DKGP, we see a significant drop in performance.
We conclude that inducing clusters help to recover complex
multi-level correlation structure in the data.

Role of Non-zero Mean Function. Table 3 shows results of
comparison of DKGP (deep kernel GP with non-zero mean
function) with DKGP-ZM (the with zero mean counterpart of
DKGP) shows that DKZP-ZM needs an order of magnitude
more inducing points to match the predictive performance
of DKGP. Not surprisingly, the mean function serves as an
empirical prior that improves the model’s predictions.

Role of Inducing Clusters. The results summarized in Ta-
ble 3 show that ICDKGP consistently outperforms DKGP,
albeit by a small margin. The 2-dimensional T-SNE plots
of the learned latent representations of the data are shown
in Fig. 4. Here, we find that in the case of simulated data,
ICDKGP finds a much clearer cluster structure (red points)
that matches the ground truth (cluster of grey points) whereas
DKGP fails to do so. In the case of real-world data, ICD-
KGP finds substantially more convincing clusters compared
to DKGP. Specifically, the significant performance improve-
ment of ICDKGP over SOTA baselines on TADPOLE data is

explained by its ability to learn complex correlation structure
(Fig. 4, col. 3).

Summary and Discussion
Summary. We proposed ICDKGP, a novel inducing clusters
based longitudinal deep kernel Gaussian process for pre-
dictive modeling of irregularly time-sampled, non-smooth,
longitudinal data with complex, multi-level correlation struc-
tures. ICDKGP decomposes the underlying GP as a sum of a
deterministic mean function that reflects the discontinuities
in the observed outcomes and a zero mean GP equipped with
a longitudinal deep kernel to recover the complex correla-
tion structure in the data. To limit the degrees of freedom
(or complexity) of the model and enhance its interpretability,
we constrain the inducing points to be the learned centers of
clusters in the training data. We formulated the problem of
training ICDKGP as a constrained optimization problem and
derived its evidence lower bound. We provided a practical
solution to the problem based on a novel relaxation whose
solutions provably approximate the solution of the original
problem under mild assumptions. The results of extensive
experiments demonstrate that the predictive models produced
by ICDKGP outperform those obtained by SOTA baselines in
terms of their ability to accurately predict outcomes and to re-
cover the underlying correlation structure from the data. Our
experiments also show the contributions of inducing clusters
and of non-zero mean function to ICDKGP’s performance
advantages over SOTA baselines.

Discussion. Although the focus of this paper was on predic-
tive modeling and correlation structure recovery from longi-
tudinal data, the inducing clusters based formulation of deep
kernel GP should be more broadly applicable to machine
learning problems that are amenable to GP-based solutions.
Work in progress is investigating such GP models across a
broad range of machine learning problems. Also of interest
are introducing constraints to confine the learned latent space
to Mixture of Gaussians (e.g., (Jiang et al. 2017)) and ap-
plications of ICDKGP as well as its variants to challenging
real-world applications, e.g., predictive modeling of health
risks and health outcomes from longitudinal health data, e.g.,
electronic health records.
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