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Abstract

The biclustering, co-clustering, or subspace clustering prob-

lem involves simultaneously grouping the rows and columns

of a data matrix to uncover biclusters or sub-matrices of

the data matrix that optimize a desired objective function.

In coherent biclustering, the objective function contains a

coherence measure of the biclusters. We introduce a novel

formulation of the coherent biclustering problem and use it

to derive two algorithms. The first algorithm is based on

loopy message passing; and the second relies on a greedy

strategy yielding an algorithm that is significantly faster

than the first. A distinguishing feature of these algorithms is

that they identify an exemplar or a prototypical member of

each bi-cluster. We note the interference from background

elements in bi-clustering, and offer a means to circumvent

such interference using additional regularization. Our ex-

periments with synthetic as well as real-world datasets show

that our algorithms are competitive with the current state-

of-the-art algorithms for finding coherent bi-clusters.

1 Introduction

The biclustering, co-clustering, two-way clustering, or
subspace clustering problem involves simultaneously
grouping the rows and columns of a data matrix to
uncover biclusters or sub-matrices of the data matrix
that optimize a desired objective function. Sometimes
these names refer to different variants of the biclustering
problem: for example, the term “co-clustering” was
used in [9] to describe the problem of finding biclusters
that form a checkerboard pattern in the data matrix.
Applications of biclustering include: finding groups of
genes that display similar expression patterns under
subsets of time points or conditions [6, 13, 25, 24, 21,
7, 8]; finding groups of users who share interest in

∗tukw@iastate.edu, Department of Computer Science, Iowa
State University, Ames, IA 50011, USA.
†xxouyang@apex.sjtu.edu.cn, Department of Computer Sci-

ence and Engineering, Shanghai Jiaotong University, Shanghai,
China.
‡handy@apex.sjtu.edu.cn, Department of Computer Science

and Engineering, Shanghai Jiaotong University, Shanghai, China.
§yyu@apex.sjtu.edu.cn, Department of Computer Science

and Engineering, Shanghai Jiaotong University, Shanghai, China.
¶honavar@cs.iastate.edu, Department of Computer Science,

Iowa State University, Ames, IA 50011, USA.

certain subsets of movies [25, 24]; finding clusters of
documents that share subsets of words [9]; and finding
correlations between groups of words and phrases in a
natural language corpus to induce grammar rules [1, 23].

The first algorithm for simultaneous clustering of
the rows and columns of a data matrix was introduced
by Hartigan [14] . In recent years, there has been a
growing interest in biclustering algorithms, especially
those algorithms capable of finding coherent biclusters
(see [17] for a survey). One of the first algorithms for co-
herent biclustering was described by Cheng and Church
[6], who define bicluster coherence as the mean squared
residue of the data matrix elements assigned to a biclus-
ter, and identify biclusters one at a time using greedy
search. The algorithm introduced by Yang et al. [25]
starts with a set of random biclusters and iteratively
expands or shrinks them in a greedy fashion. The co-
herent biclustering algorithm of Cho et al. [7] attempts
to find coherent biclusters positioned in a checkerboard
pattern. Lazzeroni and Owen [16] introduced a proba-
bilistic model (the plaid model) to describe arbitrarily
positioned and possibly overlapping coherent biclusters.
Recent work has explored nonparametric Bayesian mod-
els for biclustering [19, 15]. Deodhar et al. [8] have re-
cently introduced ROCC, a scalable and noise-tolerant
biclustering algorithm that can discover an a priori un-
known number of arbitrarily positioned, possibly over-
lapping, coherent biclusters.

Against this background, this paper introduces a
novel formulation of coherent biclustering and uses it
to derive two algorithms for solving the problem. The
first algorithm uses a message passing technique[11] to
optimize the coherence measure; the second employs a
greedy strategy resulting in an algorithm that is signif-
icantly faster and hence much more scalable than the
first. The proposed algorithms simultaneously find all
the coherent biclusters from a data matrix. They are
robust in the presence of noise as well as missing ele-
ments in the data matrix. Our first algorithm finds non-
overlapping (disjoint) biclusters, whereas our second al-
gorithm can cope with overlapping biclusters as well.
Unlike many existing algorithms that assume a checker-
board pattern of the biclusters [7, 9], our algorithms
can find biclusters that are arbitrarily positioned, a de-
sirable feature in applications where an object (a row



or a column of the data matrix) may belong to multiple
groups. Our algorithms can be used to find not only co-
herent biclusters, but also other types of biclusters such
as constant-value, constant-row, or constant-column bi-
clusters. They can utilize different optimization criteria
based on different models of noise in the data. Further-
more, they do not require that the number of biclusters
be pre-specified. To the best of our knowledge, with
the exception of the ROCC algorithm [8], few bicluster-
ing algorithms simultaneously offer all of these desirable
features.

In addition to the features enumerated above, the
proposed algorithms offer two distinct advantages over
existing approaches. The first advantage is that they
identify an exemplar element (i.e., a representative row-
column pair) of each bicluster. The exemplars facilitate
the process of optimizing the objective function of bi-
clustering; assist in the interpretation of the resulting
biclusters; and contribute to the increased robustness
of the algorithms in the presence of outliers (as com-
pared with existing approaches). The second advantage
of our algorithms is their robustness in the presence of
interference from background elements. Such interfer-
ence occurs if a row or column of background elements
can fit into a coherent bicluster according to the coher-
ence measure. For example, in the case of multiplicative
coherence measure, adding a row or column of zeros can
improve the coherence of a bicluster; but in many ap-
plications zero is the default value for the elements of
the data matrix, and hence it makes little sense to in-
clude a row or column of zeros which carry little useful
information into a bicluster. This problem is especially
pronounced in applications in which the data matrix
is typically sparse (containing a large number of back-
ground elements), as in the case of a word bigram ma-
trix in natural language processing applications. The
problem of background interference cannot be solved
by simply excluding background-value elements from bi-
clusters because a bicluster can sometimes contain such
elements. Moreover, because biclustering typically in-
volves iterative optimization, background interference
needs to be dealt with during the optimization process.
Dealing with background interference is further compli-
cated by noise in the data matrix which makes it hard
to reliably distinguish background elements (e.g., values
close to zero) from the rest of the elements of the data
matrix. We solve the background interference problem
by introducing an additional regularization term into
the objective function that drives biclustering.

Section 2 introduces our mathematical formulation
of the biclustering problem. Section 3 and 4 (respec-
tively) describe our message passing algorithm and our
greedy algorithm for biclustering. Section 5 presents

results of experiments comparing the biclustering algo-
rithms proposed in this paper with a few state-of-the-art
biclustering algorithms available in the literature. Sec-
tion 6 concludes with a summary of the paper.

2 Exemplar-based Robust Coherent
Biclustering

2.1 Bicluster Coherence. Given a data matrix A, a
bicluster is a submatrix of A that satisfies some desired
properties. A coherent bicluster is a bicluster in which
the value of each element is consistently a function of
the row and the column of the element. That is, ideally
the element at row i and column j of the bicluster has
value

aij = F (αi, βj , µ)

where αi is a constant specific to row i, βj is a
constant specific to column j, µ is a constant specific
to the bicluster, and F is some function. Two types
of coherence that have been studied in the literature
include:

additive coherence: F (αi, βj , µ) = µ+ αi + βj
multiplicative coherence: F (αi, βj , µ) = µ× αi × βj

Other simpler types of biclusters, e.g., constant-value bi-
clusters, constant-row biclusters, and constant-column
biclusters, are all special cases of coherent biclusters (see
[17] for details). Note that in general, elements of the
data matrix A and hence elements of biclusters need
not be scalars. For example, in [23] each element of A
is a vector and multiplicative coherence is defined with
µ being a bicluster-specific constant vector.

To measure the coherence of a bicluster, we need to
compare the actual value of each element aij with its
ideal value a∗ij . Since the values of αi, βj and µ are a
priori unknown, we have to estimate a∗ij from the data.
In most of the previous work, a∗ij is estimated using some
statistics of the bicluster, e.g., the mean of row i, the
mean of column j and the mean of the bicluster. In this
paper, we adopt a different approach to estimating a∗ij .
Within each bicluster, we specify an exemplar element,
say akl located at row k and column l. Then we have:

for additive coherence: a∗ij = ail + akj − akl
for multiplicative coherence: a∗ij = ail × akj ÷ akl

The value of a∗ij for other types of coherence or special
cases of coherence can be formulated in a similar fash-
ion. It is easy to see that, for a perfectly coherent bi-
cluster, this method yields exactly the same result as the
traditional method using mean values. However, when
the bicluster is not perfectly coherent, these two meth-
ods behave differently. In settings where the bicluster



contains relatively few elements and has significant lev-
els of noise, the mean-based estimates of a∗ij are likely
to be more robust than the exemplar-based estimates;
in settings where there are outliers in the bicluster, the
exemplar-based estimates of a∗ij are likely to be more
robust than their mean-based counterparts. The coher-
ence measure defined using exemplar-based estimates
of a∗ij induces relatively weak coupling between the ele-
ments of a bicluster, in comparison with the coherence
measure defined using mean-based estimates. As we
shall see, this simplifies the task of optimizing the co-
herence measure. Furthermore, the chosen exemplar of
a bicluster, i.e., a representative row-column pair, can
be useful in interpreting the bicluster.

Once the ideal values are estimated for all the
elements in the bicluster, we use the sum of the distances
between the actual and ideal values as the coherence
measure of the bicluster. Given a data matrix A, a
biclustering algorithm outputs a set B of biclusters
contained in A, whose overall coherence is given by:

K(B) =
∑
b∈B

∑
i∈b.rows

j∈b.columns

wij d(aij , a
∗
ij)

where aij and a∗ij are (respectively) the actual and ideal
values of the element at row i and column j that is
assigned to a bicluster b; d is a suitable distance measure
defined in accordance with the model of noise in the
data; wij is a non-negative weight that is used to cope
with missing values or imprecision in the data: it is
set to zero if the value of aij is unknown; and it is
set to a small positive value if the value of aij has a
high degree of imprecision associated with it. Here if
the distance measure d is defined to be the squared
difference between aij and a∗ij , and wij is set to 1 for
any i, j, then K(B) reduces to the total squared residue
defined in [7]. However, a variety of other distance
measures can be used, e.g., those described in [3].

Now suppose we require that each element in the
data matrix A must belong to exactly one bicluster
in B (so B corresponds to a partition of the elements
in the data matrix A). Recall that each bicluster in
B has an exemplar, so we can associate each element
aij of the data matrix A with the exemplar of the
bicluster that aij belongs to. Let cij be the index of the
exemplar of aij . Suppose the data matrix A is of the size
m×n, then c = (c11, c12, . . . , cmn) defines a biclustering
configuration, i.e., an assignment of the elements of
the data matrix A to a set of disjoint biclusters (or
equivalently, bicluster exemplars). Now we can rewrite
the coherence measure K(B) to an energy function of

the corresponding biclustering configuration c:

E(c) =

m∑
i=1

n∑
j=1

wij d(aij , a
∗
ij)

where a∗ij , the ideal value of aij , is computed as de-
scribed before, based on the exemplar of aij as speci-
fied by the index cij . In many biclustering applications,
however, it is not reasonable to insist that every element
of the data matrix A be assigned to a bicluster. For in-
stance, it is desirable to exclude the background (e.g.,
zero-valued) elements of A from the biclusters. We will
deal with this issue in the next subsection.

2.2 Regularization. Optimizing the overall coher-
ence of biclustering alone is likely to result in overfit-
ting, so we introduce two regularization terms in this
subsection.

First, we add a penalty term that grows in propor-
tion to the number of biclusters. This helps avoid get-
ting too many small or even single-element biclusters.
Since each bicluster has exactly one exemplar, penaliz-
ing the number of biclusters is equivalent to penalizing
each exemplar by a positive penalty term p1 (with one
exception, explained in the next paragraph). Based on
our experience, p1 should be assigned a value close to
the average distance between the actual and ideal ele-
ment values in the data matrix. Note that if we have
an a priori preference of some elements being or not be-
ing exemplars, we can also customize the value of p1 for
such elements when they serve as exemplars.

Since we require each element to belong to some bi-
cluster, many biclusters may consist of only background
elements (typically zero or close to zero). Such biclus-
ters carry little useful information, so it is reasonable
to ignore them in calculating the penalty based on the
number of biclusters. To avoid penalizing such biclus-
ters while keeping the energy function simple, first we
disallow any background element from being selected as
an exemplar for any element other than itself (to achieve
this, in computing the coherence measure we force the
distance between the actual and ideal values of an el-
ement to be infinity if the exemplar of this element is
a background element other than itself). Then, for a
background element exemplar (which can only be the
exemplar of itself), we assign a penalty ε that is typi-
cally set to zero but can also be set to a negative value
(thus becoming a reward, not a penalty) if we know a
priori that the biclusters in the data matrix are unlikely
to contain any background element.

Second, we add a small penalty based on the size
of each bicluster, in order to avoid a non-background
bicluster from incorporating any row or column consist-
ing of only background elements. Specifically, for each



bicluster we set this penalty as the sum of the num-
ber of rows and the number of columns of the bicluster
multiplied by a small positive constant p2 � p1. This
helps avoid including any row or column of background
elements into a bicluster, because doing so will increase
the bicluster size and thus incur the penalty, whereas
there would be no penalty if the row or column of back-
ground elements get assigned to biclusters consisting of
only themselves (as explained above).

Note that the penalty based on bicluster size would
not exclude any row or column of non-background
elements that do belong to the bicluster, because p1 that
penalizes the number of biclusters is much larger than p2
that penalizes the size of biclusters. In the case of a data
matrix containing a high level of noise, it can be difficult
to reliably distinguish between background and non-
background values of a data matrix. In such settings,
we can modify the penalty p2 to be proportional to
the probability that a row or column consists of only
background elements.

The second penalty term that penalizes bicluster
sizes is especially useful in settings where the data ma-
trix is sparse (i.e., contains a large number of back-
ground elements) and background elements can fit into
a coherent bicluster according to the coherence mea-
sure. For example, in the absence of this penalty, a
row or column of zeros can be added into a bicluster
of multiplicative coherence while do not hurt, or even
improve, the bicluster coherence; however, in settings
where background elements of the data matrix take the
value zero, such addition of rows or columns of zeros
into a bicluster can result in misleading and potentially
erroneous conclusions.

If an element in the data matrix selects itself as its
exemplar, then its ideal value a∗ is exactly the same
as its actual value a and the distance d(a, a∗) is 0.
Therefore we can rewrite the energy function with the
two regularization terms included in the following form:

E(c) =

m∑
i=1

n∑
j=1

CPij(cij)

where CPij is a Coherence&Prior matrix that combines
the coherence measure and the two regularization terms,
defined as follows. Suppose the value of cij is (k, l), then
if akl is a background-value element,

CPij((k, l)) =

{
+∞ if (k, l) 6= (i, j)
ε if (k, l) = (i, j)

and if akl is not a background-value element,

CPij((k, l)) =


wij d(aij , a

∗
ij) if k 6= i and l 6= j

p2 if k = i or l = j but (k, l) 6= (i, j)
p1 + 2p2 if (k, l) = (i, j)

As mentioned earlier, we can replace p1 with a value
customized for each element based on some a priori
preference as to whether the element in question should
be an exemplar; and we can replace p2 with a value
based on the probability of a row or column containing
only background elements.

2.3 Constraints. We now introduce two constraints
on the minimization of the energy function used to
drive biclustering. The first constraint is that, for any
two rows i, k and two columns j, l, if element aij and
element akl are associated with the same exemplar, or
if element ail and element akj are associated with the
same exemplar, then all of the four elements must be
assigned to the same exemplar. This constraint ensures
that the set of elements that choose the same exemplar
must constitute a valid bicluster, i.e., a submatrix of
the data matrix A. The second constraint is that if
the element aij is an exemplar for some element, then
aij must become its own exemplar. This ensures that
the exemplar of a bicluster necessarily belongs to the
bicluster.

We can combine the energy function E(c) and the
two constraints into a new objective function S(c),
such that if the configuration c = (c11, c12, . . . , cmn)
violates the constraints, then the function value is −∞;
otherwise it is the negative of the energy:

S(c) = −E(c) +
∑

1≤i<k≤m

∑
1≤j<l≤n

fijkl(c)

+
∑

1≤i≤k≤m

∑
1≤j≤n

∑
1≤l≤n

s.t. if i=k then j<l

gijkl(c)

f is the constraint function for the first constraint.

fijkl(c) =

 −∞ if (cij = ckl 6= ckj or 6= cil)
or (cil = ckj 6= cij or 6= ckl)

0 otherwise

g is the constraint function for the second constraint.

gijkl(c) =

 −∞ if (cij = (k, l) but ckl 6= (k, l))
or (ckl = (i, j) but cij 6= (i, j))

0 otherwise

This objective function can be represented by a
factor graph[5], as shown in Fig.1.

3 An Exemplar-Based Biclustering Algorithm
via Message Passing

We now proceed to introduce our exemplar-based bi-
clustering algorithm using message passing (EBMP).
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Figure 1: The factor graph representing the factoriza-
tion of the objective function. Each circle represents a
variable. Each box is a factor, connected to the vari-
ables it depends on.

3.1 The Basic Algorithm. Because exact opti-
mization on the factor graph shown in Fig.1 is in-
tractable, we resort to approximate inference. We can
apply the max-sum algorithm[5] here, which iteratively
propagates messages between factors and variables and
usually converges to an approximate optimum. How-
ever, the time complexity of direct application of the
max-sum algorithm on this factor graph is exponential
in the size of the data matrix. Hence, we derive below
an equivalent algorithm that is polynomial in the size
of the data matrix.

In the max-sum algorithm, the update rule for a
message from a factor h to a variable cij is given by:

αh→cij (c) = max
cx,...,cy

[
h(c, cx, . . . , cy) +

∑
z=x,...,y

ρcz→h(cz)

]
where cx, . . . , cy are the variables connected to h other
than cij , and ρcz→h(cz) denotes the message from the
variable cz to the factor h. We have three types of
factors, which we consider in turn.

First, if h is CPij , since it is connected to only one
variable cij , the message is always equal to the factor
CPij(c).

Second, if h is fijkl, note that fijkl(c) is either
−∞ or 0, so because of the max operation we need to
consider only the configurations that make this quantity
0 (i.e., configurations that satisfy the first constraint);
then we can exchange the order of max and sum,
resulting in the following simplified formula. Suppose
f is connected to the variables cij , cil, ckj , ckl, where i, k
are row indices and j, l are column indices.

(3.1)

αf→cij (c) = max[
max
c′ 6=c

ρckl→f (c′) + max
c′ 6=c′′

(ρcil→f (c′) + ρckj→f (c′′)),

ρckl→f (c) + ρcil→f (c) + ρckj→f (c)

]

There are two expressions in the max operation. The
first corresponds to the configuration where neither of
the two diagonal pairs of variables are equivalent, and
the second corresponds to the configuration where all
four variables are equivalent. It is easy to show that,
there are only two cases in which the second expression
may have a larger value than the first. First, when
c = arg max(ρckl

); second, when c = arg max(ρcil) =
arg max(ρckj

). With the exception of the preceding two
cases, the value of αf→cij (c) is a constant regardless of
the value of c, which we denote by ᾱf→cij .

ᾱf→cij = max
c′

ρckl→f (c′)+max
c′ 6=c′′

(
ρcil→f (c′) + ρckj→f (c′′)

)
Third, if h is gijkl, we can simplify the update

formula in a similar way. Suppose factor g is connected
to the variables cij , ckl.

(3.2)

αg→cij (c) =

 maxc′ ρckl→g(c′) if c = (i, j)
ρckl→g(c) if c = (k, l)
maxc′ 6=(i,j) ρckl→g(c′) otherwise

Again, the message value is a constant except in two
special cases, i.e., when c = (i, j) and when c = (k, l).
Denote this constant by ᾱg→cij .

ᾱg→cij = max
c′ 6=(i,j)

ρckl→g(c′)

In summary, each message from a constraint factor
to a variable can be summarized by a constant and
two special cases. We further apply a normalization
step that subtracts the constant ᾱh→cij from the values
of each message αh→cij (c), so that the normalized
αh→cij (c) is zero for any value of c except the two special
cases. The purpose of this normalization is to avoid
overflow, because all the message values are initially less
than or equal to 0 and are iteratively updated to the sum
of one or more other messages, leading to exponential
increase in magnitude in the absence of normalization.
It is easy to show that this normalization does not alter
the output of the algorithm.

The update rule for a message from variable cij to
factor h is simply the sum of all the incoming messages
of cij minus the message from h.

ρcij→h(c) =
∑

h′∈ne(cij)\h

αh′→cij (c)(3.3)

where ne(cij) is the set of factors connected to cij .
Now that we have specified all the message update

rules, we need a message passing schedule to determine
the order in which the messages are updated. The naive
round-robin schedule usually fails to converge in reason-
able time or yields poor results. Hence, we use residual



belief propagation (RBP)[10], an informed schedule that
orders the messages by how much they change as a re-
sult of update and always updates the message with the
largest change first. To avoid oscillation, when updating
a message we damp it so that the new message value is
a weighted average of its previous and current values.

We initialize all the messages to zero, and then it-
eratively update them according to the RBP schedule,
until the biclustering configuration c stays unchanged
for a number of iterations, or when a pre-specified max-
imal number of iterations is reached. The configuration
c can be read out by setting each cij to

arg max
c

∑
h∈ne(cij)

αh→cij (c)

where ne(cij) is the set of factors connected to cij .
Even with RBP and damping, however, sometimes

the algorithm can converge to a poor biclustering con-
figuration that violates some of the constraints. In that
case, we can rerun the algorithm, not on the original
factor graph, but on a simplified factor graph contain-
ing only the part of the configuration that violates the
constraints. This process can be repeated, each time
with a smaller graph, until the resulting biclustering
configuration does not violate any constraint.

An Illustrative Example of Biclustering Using
Message Passing. Figure 2 illustrates the operation
of the message passing algorithm on a simple data
matrix. We added very small amounts of noise into the
data to break symmetry and thus avoid oscillation by
ensuring that some elements are preferred over others
as exemplars. It can be seen that this data matrix
has a few different valid biclustering configurations, and
only the biclustering conformation shown in Fig.2(a)
has the smallest number of biclusters and therefore the
lowest energy. At the beginning of the run, all these
configurations are equally likely. During the execution
of the algorithm, the data elements can be seen to switch
back and forth between different candidate exemplars,
and finally settle on the best configuration.

3.2 Scaling Up the Algorithm. On a data matrix
consisting of n elements, the basic algorithm has a
space complexity of O(n3) (there are O(n2) factors and
messages, and each message requires O(n) space); and
it takes O(n) time for each message update. So it does
not scale up to settings where the data matrix contains
more than a few hundred elements. In this subsection,
we introduce a set of approximation techniques that
enhance the scalability of the algorithm.

First, we reduce the complexity of ρ messages from
variables to factors. Each ρ message is a vector of length

n, and during an update the basic algorithm recomputes
each element of this vector. However, note that when a
ρ message is used in computing an α message according
to Eq.3.1 or Eq.3.2, at most four values in the vector are
actually used: the maximum, the second maximum, and
at most two other values corresponding to the special
cases. This means we only need to store at most four
values in a ρ message, and each can be updated in
constant time by using a cache for the variable that
the message is connected to. Because the special cases
can change whenever any other ρ message connected to
the same factor is updated, we force all the ρ messages
of the same factor to be updated at the same time.

Now we turn to the α messages from factors to vari-
ables. As described in last subsection, each α message
contains only two scalars, which can be updated in con-
stant time. However, when an α message of a variable
is updated, for each of the O(n) ρ messages connected
to that variable, we need to recompute how much it
will change if updated, and reposition it in the priority
queue used by the RBP schedule. Note that according
to Eq.3.3 each ρ message of a variable is the sum of
all except one of the incoming α messages. Hence, we
can use the change in the sum of all the incoming α
messages to approximate the change in the ρ message.
This forces all the ρ messages of a variable to have the
same priority, which helps avoid checking each of them
individually when updating a related α message.

As a result of the preceding changes, we have re-
duced the time and space complexity of both types of
messages to O(1). By exploiting the sparseness in the
data matrix, we can further reduce the time and space
requirement of the algorithm. First, for each element
in the data matrix, usually only a small number of ele-
ments can serve as good exemplars, and the algorithm
needs to only keep track of such elements. Second, if
the data matrix contains a lot of background elements,
we can apply some heuristics (for example, a simplified
version of Bimax[20]) to quickly identify the likely back-
ground elements, which can be assigned to be their own
exemplars before running the biclustering algorithm. In
both cases, we can substantially reduce the number of
factors as well as the size of the messages, resulting in
significant savings in time and space required by the
algorithm.

4 A Greedy Algorithm of Exemplar-Based
Biclustering

Even with the speedups outlined above, the message
passing algorithm can be too slow to be useful on
very large data matrices encountered in some real-world
applications. In this section we introduce a greedy
algorithm of exemplar-based biclustering (EBG) that is
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Figure 2: An illustrative example of biclustering using message passing. (a) The data matrix. The best biclustering
configuration is denoted by the three boxes. (b)-(h) The exemplar preferences at different stages of the algorithm.
m is the number of messages propagated. An edge from node i to node j denotes that node i prefers node j as a
candidate exemplar; a dot at node i denotes that node i chooses itself as a candidate exemplar; the grayscale of
the edges and dots represents the strength of the preference.

significantly faster than the message passing algorithm.
The increase in speed is achieved by settling for a sub-
optimal solution.

For each element aij in the data matrix, we can
obtain a set of elements that prefer aij to be their
exemplar, i.e., the distances between the actual and
ideal values of such elements (as defined in section 2)
are below a threshold if they choose aij as the exemplar.
We can construct a candidate bicluster with aij as its
exemplar, by collecting the rows and columns of this set
of elements.

Note that in this process we do not check whether
any background element prefers aij to be its exem-
plar, because: 1) any row or column of a true bicluster
typically contains some non-background elements, and
therefore is likely to be included into the candidate bi-
cluster even if the background elements in the row or
column are not checked; and 2) if the data matrix is
sparse and background elements can fit into a coherent
bicluster, then checking background elements can po-
tentially introduce spurious rows or columns into the
candidate bicluster.

We repeat this process for each of the elements
except the background elements that are not allowed
to be exemplars for any element other than themselves.
The result of this process is a set of candidate biclusters,
many of which can be identical or similar to one another
because a true bicluster might contain multiple elements

that can serve as the exemplar. Hence, a heuristic de-
duplication step is carried out that removes a bicluster
b1 if b1 is identical to or contained within another
bicluster b2 and b1 is chosen by fewer elements as the
exemplar than b2.

Each remaining candidate bicluster needs to be
shrunk. This is necessary because for any exemplar
aij , an element preferring aij as its exemplar does
not necessarily imply that the row and column of the
element indeed belong to the bicluster that has aij as the
exemplar. The shrinking of a candidate bicluster can be
driven by the objective function S(c) defined in section
2. However, this objective function S(c) is defined over
a biclustering configuration c and not over an individual
candidate bicluster, so it cannot be directly used here.
We obtain a new objective function from S(c), first
by dropping the two constraint terms (we can ensure
the validity of the biclusters while shrinking them); and
second by decomposing the remaining energy function
E(c) into the sum of bicluster energies E(b) for each
bicluster b in the configuration c. E(b) is given by:

E(b) =
∑

i∈b.rows
j∈b.columns

CPij(cb)

where CPij is defined as in section 2.2, and cb is the
exemplar of bicluster b. So the energy E(b) over an
individual bicluster can now be used as the objective
function to guide the shrinking of the candidate biclus-



ters. However, since now we optimize each bicluster
separately, the second regularization term (which en-
courages smaller biclusters) is no longer balanced by
the first regularization term (which encourages fewer
and hence larger biclusters in E(c), but has no effect
in E(b)). Hence, we add a third regularization term to
E(b) to compensate this fact. The third regularization
term is proportional to the number of non-background
elements in the candidate bicluster.

E(b) =
∑

i∈b.rows
j∈b.columns

CPij(cij)− p3F (b)(4.4)

where F (b) is the number of non-background elements
in b, and p3 is a constant multiplier.

To shrink a candidate bicluster b, we greedily re-
move rows and/or columns to minimize E(b) as defined
in Eq.4.4. We do not allow the row and column of the
exemplar to be removed, so as to guarantee that the
bicluster contains its exemplar. After each of the candi-
date biclusters has been shrunk using this procedure, we
perform a second round of de-duplication to eliminate
any redundant bicluster, and then output the resulting
biclustering.

5 Experiments

We describe results of experiments that compare the
performance of the message passing algorithm and the
greedy algorithm for biclustering introduced in this pa-
per with several representative biclustering algorithms
available in the literature on synthetic datasets as well
as two real-world datasets.

5.1 Experiments with Synthetic Data. We com-
pared our message passing (EBMP) and greedy
(EBG) algorithms with two other coherent biclus-
tering algorithms, Chen&Church[6] (using the BicAT
software from http://www.tik.ethz.ch/sop/bicat/) and
ROCC[8], on four synthetic datasets. The first two of
the four datasets each contain fifteen 10×10 data ma-
trices, and the third and fourth datasets each contain
fifteen 50×50 data matrices. In each data matrix, the
number, sizes, positions and coherence parameters of
biclusters were all randomly generated. A 10×10 data
matrix contains three biclusters on average, and the av-
erage bicluster size is 3×3; a 50×50 data matrix contains
12.5 biclusters on average, and the average bicluster size
is 6×6. These biclusters constitute about one-fifth of
the data matrix, while the rest are background. We
only generated additively coherent biclusters, because
the implementations of Chen&Church and ROCC avail-
able to us do not support discovery of multiplicatively
coherent biclusters. We added small amounts of Gaus-
sian noise (with a standard deviation being 5% of the

average element value) into the matrices of the first and
third datasets, and we added large amounts of Gaussian
noise (with a standard deviation being 20% of the aver-
age element value) into the matrices of the second and
forth datasets.

We used a variant of purity and inverse purity[2],
which are widely used performance measures in the clus-
tering literature, to measure the quality of biclustering.
Suppose C is the set of biclusters found by a bicluster-
ing algorithm and L is the set of true biclusters in the
data matrix. Suppose each bicluster is represented by
the set of data elements it contains. Let Ci (Li) be the
i-th bicluster in C (L). Then we define

Purity =

∑
i maxj |Ci ∩ Lj |∑

i |Ci|

Inverse Purity =

∑
i maxj |Li ∩ Cj |∑

i |Li|

Intuitively, purity measures the extent to which the
elements assigned to each of the biclusters found by the
biclustering algorithm are actually clustered together in
the true biclusters; inverse purity measures the extent
to which the elements belonging to each of the true
biclusters are clustered together in the biclusters found
by the algorithm. Both measures have the range of [0, 1].

In each dataset, we used five data matrices to tune
the parameters of the algorithms, and used the remain-
ing ten data matrices for evaluating the performance of
the algorithms. In the case of nondeterministic algo-
rithms, each algorithm was run for five times on each
data matrix. Because the Chen&Church algorithm can-
not automatically infer the number of biclusters, we set
the number of biclusters to be the same as the number
of true biclusters in each run. For our message pass-
ing algorithm (EBMP), we ran the basic version on the
10×10 data matrices and the scaled-up version on the
50×50 data matrices.

Table 1 shows the results of our experiments. Both
the exemplar-based message passing algorithm (EBMP)
and exemplar-based greedy algorithm (EBG) intro-
duced in this paper yield significantly better results
than the Chen&Church and ROCC algorithms on the
synthetic data. Inspection of the produced biclusters
reveals that, even though background interference is
relatively weak in the case of data matrices with ad-
ditively coherent biclusters, both Chen&Church and
ROCC often include too many background elements
into the biclusters. In contrast, the biclusters found by
our algorithms (EBMP and EBG) contain significantly
fewer background elements because of the regularization
terms used in our objective function.

We further observe that on the 10× 10 datasets
the basic version of EBMP produces almost perfect



Chen&Church ROCC EBMP EBG
P IP P IP P IP P IP

10×10 small noise 0.1566 0.4086 0.2263 0.4262 0.9807 0.9722 0.9410 0.9009
10×10 large noise 0.1760 0.5033 0.2877 0.4262 0.8736 0.6445 0.8314 0.6489
50×50 small noise 0.0452 0.4753 0.1339 0.3639 0.7312 0.9664 0.9102 0.7859
50×50 large noise 0.0281 0.0455 0.1164 0.3848 0.7876 0.5839 0.7786 0.6786

Table 1: The experimental results on synthetic data. P and IP respectively denote purity and inverse purity.
Each measurement is averaged over five runs on ten data matrices. The basic version of our message passing
algorithm EBMP was run on the 10×10 data matrices and the scaled-up version of EBMP was run on the 50×50
data matrices.

biclustering results that are better than those produced
by EBG; however, on the 50×50 datasets (on which we
could not run the basic version of EBMP), the scaled-
up version of EBMP has performance similar to that
of EBG, which could be explained by the significant
amount of approximations used in the scaled-up version.

It is interesting to note that, on the 10×10 datasets
both Chen&Church and ROCC perform better with
larger amounts of noise in the data. We speculate that
this is because larger noise makes the spurious biclusters
even less coherent, making it easier for Chen&Church
and ROCC to exclude them from the biclustering result.
In contrast, EBMP and EBG exclude most of the spuri-
ous biclusters with their built-in mechanisms regardless
of the noise level, so larger noise only makes it more
difficult to uncover the true biclusters.

For the running time, on a typical 50× 50 data
matrix, Chen&Church and our greedy algorithm EBG
(both implemented in Java) finishes almost instanta-
neously, whereas ROCC (implemented in Matlab) runs
for under a minute, and our scaled-up version of mes-
sage passing algorithm EBMP (implemented in Java)
runs for several minutes.

5.2 Natural Language Bigram Data. A word bi-
gram is a concatenation of two words. Given a natural
language corpus, we can construct a word bigram ma-
trix, where each row or column is indexed by a word in
the vocabulary, and each element of the matrix contains
the frequency of the corresponding bigram (formed by
the word indexing the row and the word indexing the
column) in the corpus. Multiplicatively coherent biclus-
ters of the word bigram frequency matrix have been
found useful in inferring grammar rules (among other
things) from a natural language corpus [1, 23]. A natu-
ral language bigram matrix is usually very sparse, with
a large number of zeros. Since a row or column of zeros
can fit into a bicluster while increase its multiplicative
coherence, this sparsity leads to severe background in-
terference in biclustering. Hence the bigram frequency
data offers a challenging benchmark for coherent biclus-

tering algorithms.
We used a word bigram frequency matrix con-

structed from the ATIS corpus of the Penn Treebank
[18], which is widely used in natural language processing
studies. The corpus, which is based on a vocabulary of
401 distinct words, yields a 334× 341 bigram frequency
matrix (after removing rows and columns with all zero
entries). 98.9% of the elements in the resulting data
matrix are 0s. The correct biclustering of the bigrams
is unknown. One way to assess biclustering results is to
compare a clustering of words derived from the biclus-
tering against a reference clustering of words. Here we
use a clustering of words based on the part-of-speech of
words as the reference. However, it is possible to use a
more refined clustering of words based on word seman-
tics. The clustering evaluation metric is the F-measure
as defined in [2]

F =
∑
i

|Li|
N

max
j
{ 2|Li

⋂
Cj |

|Li|+ |Cj |
}

where Li is the i-th word cluster specified by the part-
of-speech, Cj is the j-th word cluster derived from the
biclustering result, and N is the number of words.

We compared our greedy algorithm (EBG) with
Chen&Church and ROCC on the word bigram data
matrix. The data matrix is too large for running our
message passing algorithm (EBMP). We experimented
with several settings of parameters for each of the three
algorithms but found the performance to be relatively
independent of the parameters (with difference in per-
formance between parameter choices < 0.05). Here we
only show the result with the best parameter setting for
each algorithm (Table 2). The results show that our
exemplar-based greedy algorithm (EBG) outperforms
both Chen&Church and ROCC on the word bigram
data. This can be explained by the fact that EBG is
more robust in the presence of severe background in-
terference arising from the large number of zeros in the
data matrix. EBG also runs significantly faster on this
data matrix, because EBG is designed to exploit of the
sparsity of the data matrix to reduce its run time.



F-measure
Chen&Church 0.2997 (0.0041)
ROCC 0.2909 (0.0131)
EBG 0.4446 (0)

Table 2: The experimental results on the ATIS bigram
data. Each F-measure is the average over five runs. The
numbers in the parentheses are the standard deviations
over the five runs.

Row(s) Column(s)
around, after eleven, six, noon, seven
on, next wednesday, sunday, sat-

urday
discount, business,
coach, first

class

coach, expensive, that,
lowest, cheapest, on

flights, fare, fares

is, serve, have, are,
serves, the

breakfast, dinner, lunch

in phoenix, los, chicago,
dallas, toronto, indi-
anapolis, a, minneapo-
lis, westchester, denver,
las, washington, new,
nashville, san, miami,
milwaukee

american, united, what,
southwest, which

airlines

thursday, monday afternoon, morning, i
from, in, to, via chicago

Table 3: Some examples of the biclusters extracted by
EBG from the word bigram matrix. The words that
correspond to the bicluster exemplars are italicized.

It should be noted that, if biclustering is used as
a sub-routine in grammar induction, the contexts in
which the bigrams occur in the sentences of the corpus
need to be taken into account in generating the biclus-
ters [23]. This requires that each element in the bigram
matrix be a vector that encodes the contexts in which
the bigram appears. In the experiment reported here,
we have omitted the bigram context information in or-
der to be able to use the available implementations of
Chen&Church and ROCC without making the changes
that would be needed to deal with vector-valued ele-
ments in the data matrix. The lack of context informa-
tion partly explains the modest F-measure scores. How-
ever, as Table 3 shows, examination of the biclusters
returned by EBG still reveals many meaningful word
clusters.

5.3 Gene Expression Data. Analysis of gene ex-
pression data presents an instance of the biclustering
problem. In a gene expression data matrix, each row
corresponds to a gene, each column corresponds to a
condition, and each data element contains the expres-
sion level of a genes under a conditions. Biclusters ex-
tracted from a gene expression data matrix can reveal
cellular processes that typically involve only small sub-
sets of genes that are active under subsets of conditions.

In this experiment, we follow the experimental
setup of [20] as described below. We used the yeast
gene expression data matrix from [12], which contains
expression measurements of 2993 yeast genes under 173
conditions. Because the number of produced biclusters
can vary significantly across biclustering algorithms, a
greedy filtering procedure is applied so that no more
than 100 largest biclusters with less than 25% overlap
with each other are selected. The results are evalu-
ated on the basis of the degree to which the biclusters
are enriched with genes that share specific biological
functions (as indicated by Gene Ontology (GO) anno-
tations). More specifically, for each set of genes derived
from the filtered biclustering result, we run the Fun-
cAssociate web service [4] at five different significance
levels to see if there exists a Molecular Function or Bi-
ological Process GO annotation that is overrepresented
in the corresponding gene set; the biclustering result
is assigned a GO enrichment score for each significance
level that corresponds to the percentage of the gene sets
(equivalently, biclusters) that are enriched with respect
to at least one GO annotation.

We compared our greedy algorithm EBG with
Chen&Church and ROCC, and also with the Bimax [20]
algorithm. Bimax does not search for coherent biclus-
ters; instead, it binarizes the data matrix and identi-
fies constant-value biclusters. However, Bimax has been
shown to perform very well on the yeast gene expression
data. With each algorithm we tried several parameter
settings, and the results reported correspond to the best
performing parameter settings. For Chen&Church, we
set the number of biclusters to be 200. After filtering
the biclusters as described earlier, each of the four algo-
rithms has 100 biclusters left (the maximal number of
biclusters allowed by the filter). The resulting biclusters
are compared in Figure 3 based on the GO enrichment
score described above. Clearly, EBG is competitive with
Chen&Church, ROCC and Bimax.

It shall be noted that although we followed the
same evaluation procedure as in [20], the scores of
Chen&Church and Bimax that we report are higher
than the scores for the same algorithms reported in [20].
This is probably because we used a more current version
of the GO enrichment evaluation software with a more
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Figure 3: The experimental results on the yeast gene
expression data. The y-axis is the percentage of gene
clusters that are overrepresented by at least one GO
annotation, with five different significance levels (α).

recent version of the Gene Ontology.

6 Conclusion and Discussion

We have introduced a novel formulation of the bicluster-
ing problem and used it to derive two novel biclustering
algorithms. The first algorithm is based on loopy mes-
sage passing; while the second relies on a greedy strategy
that yields an algorithm that is significantly faster than
the first. A distinguishing feature of these algorithms is
that they identify an exemplar or a prototypical member
of each bicluster. These algorithms are designed to be
robust in terms of performance on sparse data, a setting
in which the performance of several existing algorithms
degrades because of interference from the large fraction
of background (typically zero valued) elements. Our ex-
periments with synthetic as well as real-world datasets
show that the proposed algorithms are competitive with
the current state-of-the-art algorithms for finding coher-
ent biclusters.

There are some interesting directions for future
work. It is of interest to explore ways to improve the
scalability of our message passing algorithm. For exam-
ple, our current message passing schedule incurs sub-
stantial time and space overhead. It would be inter-
esting to experiment with some more efficient alterna-
tives such as the one introduced by Sutton and McCal-
lum [22]. It would also be interesting to study message
passing schedules that are amenable to large-scale par-
allelization. Of particular interest is a hybrid algorithm
that combines aspects of the greedy algorithm with as-
pects of the message passing algorithm to improve the
quality of biclustering relative to that produced by the
greedy algorithm. At any iteration of the message pass-

ing algorithm, we can read out the currently preferred
exemplar(s) of each element by summing up all the in-
coming α messages. We can then initialize the greedy
algorithm with the set of elements that prefer each ex-
emplar. Such a hybrid algorithm might work better
than the purely greedy algorithm, because the message
passing procedure injects global information of the data
matrix (i.e., exemplar preference of all the other ele-
ments) into the exemplar preference of each individ-
ual element. Also of interest are more comprehensive
experiments that further investigate the strengths and
weaknesses of alternative approaches to solving the bi-
clustering problem.
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