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Abstract
We examine the utility of a curriculum (a means of
presenting training samples in a meaningful order)
in unsupervised learning of probabilistic grammars.
We introduce the incremental construction hypoth-
esis that explains the benefits of a curriculum in
learning grammars and offers some useful insights
into the design of curricula as well as learning algo-
rithms. We present results of experiments with (a)
carefully crafted synthetic data that provide support
for our hypothesis and (b) natural language corpus
that demonstrate the utility of curricula in unsuper-
vised learning of probabilistic grammars.

1 Introduction
A grammar consists of a set of rules for forming strings over
an alphabet. The rules of the grammar collectively describe
how to generate sentences that belong to a language (i.e., are
grammatically valid). The grammar can also be used to rec-
ognize whether a given sentence is grammatically valid, and
to derive the parse (grammatical structure) of any valid sen-
tence. A stochastic or probabilistic grammar augments the
grammar rules with conditional probabilities. The probability
of a parse is the product of the probabilities of the rules used
in the parse. Examples of probabilistic grammars include hid-
den Markov models, probabilistic context-free grammars and
probabilistic dependency grammars. They have many appli-
cations including natural language processing, DNA, RNA
and protein sequence analysis, and pattern recognition.

Machine learning offers a potentially powerful approach to
learning unknown grammars from data (a training corpus).
Because of the high cost of manual labeling of parsed sen-
tences, there is substantial interest in unsupervised grammar
learning, which induces a grammar from unannotated sen-
tences. Much of the existing work on unsupervised grammar
learning [Lari and Young, 1990; Klein and Manning, 2004;
Cohen et al., 2008] starts with all the sentences of a train-
ing corpus and tries to learn the whole grammar. In con-
trast, there is a substantial body of evidence that humans
and animals learn much better when the data are not ran-
domly presented but organized into a curriculum that helps
expose the learner to progressively more complex concepts
or grammatical structures. Such a learning strategy has been

termed curriculum learning by Bengio et al. [2009]. There
has been some effect to apply curriculum learning to unsu-
pervised grammar learning. The results of a seminal experi-
mental study by Elman [1993] suggested that grammar induc-
tion using recurrent neural networks can benefit from starting
small, i.e., starting with restrictions on the data or on the ca-
pacity of the learner, and gradually relaxing the restrictions.
However, the experiments of Rohde and Plaut [1999] called
into question the benefits of starting small in language ac-
quisition. A more recent study by Spitkovsky et al. [2010]
offered evidence that is suggestive of the benefits of curric-
ula in probabilistic grammar induction. To explain the ben-
efits of curricula, Bengio et al. [2009] hypothesized that
a well-designed curriculum corresponds to learning starting
with a smoothed objective function and gradually reducing
the degree of smoothing over successive stages of the cur-
riculum, thus guiding the learning to better local minima of
a non-convex objective function. The precise conditions on
the curriculum or the learner that lead to improved learning
outcomes are far from well-understood.

Against this background, we explore an alternative expla-
nation of the benefits of curricula, especially in the context
of unsupervised learning of probabilistic grammars. Our ex-
planation is based on the incremental construction hypothesis
(ICH) which asserts that when the target of learning is a struc-
ture (in our case, a probabilistic grammar) that can be decom-
posed into a set of sub-structures (in our case, grammar rules),
an ideal curriculum gradually emphasizes data samples that
help the learner to successively discover new sub-structures.
This hypothesis, if true, can help guide the design of curricula
as well as learning algorithms. We present results of experi-
ments on synthetic data that provide support for ICH; and we
demonstrate the utility of curricula in unsupervised learning
of grammars from a real-world natural language corpus.

2 Curriculum Learning
As noted by Bengio et al. [2009], at an abstract level a
curriculum can be seen as a sequence of training criteria.
Each training criterion in the sequence is associated with
a different set of weights on the training samples, or more
generally, with a re-weighting of the training distribution.
Thus, we can model a curriculum as a sequence of weight-
ing schemes 〈W1,W2, . . . ,Wn〉. The first weighting scheme
W1 assigns larger weights to “easier” samples, and each sub-



sequent weighting scheme increases the weights assigned to
“harder” samples, until the last weighting scheme Wn that
assigns uniform weights to the training samples. The mea-
sure of “hardness” of training samples depends on the learn-
ing problem and learning algorithm. Ideally, the information
entropy of the weighting schemes increases monotonically,
i.e., ∀i < j,H(Wi) < H(Wj). Given a curriculum, learn-
ing proceeds in an iterative fashion: at iteration i, the learner
is initialized with the model fi−1 learned from the previous
iteration, and is provided with the training data weighted by
the weighting scheme Wi, based on which it generates a new
model fi. The final output of curriculum learning is fn, the
model produced by the last (n-th) iteration.

The baby-step algorithm [Spitkovsky et al., 2010] for un-
supervised grammar learning can be seen as an instance of
learning with a curriculum. The training data consist of a
set of unannotated sentences. The hardness of a sentence is
measured by its length (number of words). The i-th weight-
ing scheme Wi assigns a weight of one to each sentence that
consists of no more than i words and a weight of zero to
any of the other sentences (thus specifying a subset of train-
ing sentences). At iteration i of learning, the expectation-
maximization algorithm [Lari and Young, 1990] is run to con-
vergence on the subset of training data specified by Wi, and
the resulting grammar Gi is then used to initialize iteration
i + 1. This curriculum introduces increasingly longer sen-
tences into the training data seen by the learner, with the en-
tire training corpus being provided to the learner at the last
iteration, which produces the final output grammar.

3 The Incremental Construction Hypothesis
of Curriculum Learning

We explore the incremental construction hypothesis (ICH) as
a possible explanation of curriculum learning, in the con-
text of learning probabilistic grammars. The hypothesis as-
serts that an ideal curriculum gradually emphasizes data sam-
ples that help the learner to successively discover new sub-
structures (i.e., grammar rules) of the target grammar, which
facilitates the learning. Formally, we define an ideal curricu-
lum for grammar learning suggested in ICH as follows.

Definition 1 A curriculum 〈W1,W2, . . . ,Wn〉 for learning a
probabilistic grammarG of a pre-specified class of grammars
C is said to satisfy incremental construction if the following
three conditions are met.

1. for any weighting schemeWi, the weighted training data
corresponds to a sentence distribution defined by a prob-
abilistic grammar Gi ∈ C;

2. if Ri and Rj denote the sets of rules of the probabilistic
grammars Gi and Gj respectively, then for any i, j s.t.
1 ≤ i < j ≤ n, we have Ri ⊆ Rj;

3. for any i, j s.t. 1 ≤ i, j ≤ n, and for any two grammar
rules r1, r2 with the same rule condition (left-hand side)
that appear in both Gi and Gj , we have

P (r1|Gi)

P (r2|Gi)
=
P (r1|Gj)

P (r2|Gj)

In order words, an ideal curriculum that satisfies incremen-
tal construction specifies a sequence of intermediate target
grammars 〈G1, G2, . . . , Gn〉, and each intermediate gram-
mar Gi is a sub-grammar of the next intermediate grammar
Gi+1. Note that curriculum learning requires the last weight-
ing scheme Wn to be uniform, so given enough training data,
the last grammarGn in the sequence should be weakly equiv-
alent to the target grammar G, i.e., they define the same dis-
tribution of sentences.

The third of the three conditions in Definition 1 implies
that for a grammar rule that appears in two consecutive gram-
mars, its probability either remains unchanged or, if one or
more new rules that share the same left-hand side of the rule
are introduced in the second grammar, is renormalized to a
smaller value that preserves the probability ratios of this rule
to other rules that share the same left-hand side. However,
since the training data is usually sparse and sometimes noisy
in practice, it would be almost impossible to find a curricu-
lum that exactly satisfies the third condition. Therefore we
can relax this condition as follows.

3b. for any i, j s.t. 1 ≤ i < j ≤ n, and for any gram-
mar rule r that appears in both Gi and Gj , we have
P (r|Gi) ≥ P (r|Gj)

In order to be able to meaningfully assess the benefits of
curricula in grammar learning, we need some measures of
distance between two probabilistic grammars. There are two
commonly used measures. The first is the distance between
the parameter vectors (i.e., the vectors of rule probabilities) of
the two grammars. For each rule condition p in grammar Gi,
the probabilities of the grammar rules with condition p con-
stitute a multinomial vector (in the case that Gi contains no
such rule, we add a dummy rule p→εwith probability 1). Let
the parameter vector θi of a grammarGi be the concatenation
of the multinomial vectors of all the rule conditions. To make
the parameter vectors of different grammars comparable, the
elements of different parameter vectors are aligned such that
a given rule occupies the same position in the parameter vec-
tor of each of the grammars G1 . . . Gn. The second distance
measure is the distance between the distributions of grammat-
ical structures (parses) defined by the two grammars. We can
use the total variation distance of two distributions (defined
as one half of the L1 distance between them) for this purpose.

Now we can express the advantages of an ICH-based ideal
curriculum (Definition 1) in the form of the following theo-
rem.

Theorem 1 If a curriculum 〈W1,W2, . . . ,Wn〉 satisfies in-
cremental construction (with either condition 3 or 3b), then
for any i, j, k s.t. 1 ≤ i < j < k ≤ n, we have

d1(θi, θk) ≥ d1(θj , θk)

dTV (Gi, Gk) ≥ dTV (Gj , Gk)

where d1(·, ·) denotes the L1 distance; dTV (Gi, Gj) repre-
sents the total variation distance between the two distribu-
tions of grammatical structures defined by Gi and Gj .

The proof of the theorem exploits the fact that both the L1

norm of the parameter vector and the sum of probabilities
over all grammatical structures are constant regardless of the



values of i, j and k. We give the detailed proof in [Tu and
Honavar, 2011]. This theorem shows that for any i < j < k,
Gj is a better approximation of Gk than Gi. Therefore, it
follows that each stage of curriculum learning tries to induce
a grammar that provides a better initialization for the next
stage of learning than any of the previous grammars, and the
sequence of grammars 〈G1, G2, . . . , Gn〉 offers a guided se-
quence of intermediate learning targets culminating in Gn.

In the case of some curricula that have been used in prac-
tice (e.g., the length-based curriculum in [Spitkovsky et al.,
2010]), condition 3b appears to be still too strong. As will
be shown in Section 5, a curriculum may gradually introduce
a new grammar rule to the learner across multiple stages. In
this case, the probability of the new rule in the sequence of
intermediate target grammars does not instantly jump from 0
to its actual value, but instead increases from 0 to its actual
value through a series of small changes over several stages.
We can prove a theorem similar to Theorem 1 in this setting:
Theorem 2 If a curriculum 〈W1,W2, . . . ,Wn〉 satisfies the
first two conditions in Definition 1 as well as a further relaxed
version of the third condition:
3c. for any grammar rules r, P (r|Gi) first monotonically

increases with i and then monotonically decreases with
i.

then for any i, j, k s.t. 1 ≤ i < j < k ≤ n, we have

d1(θi, θk) ≥ d1(θj , θk)
The proof is similar to that of Theorem 1 and is given in [Tu
and Honavar, 2011]. However, under condition 3c, the sec-
ond inequality for the total variation distance of grammars in
Theorem 1 no longer holds.

3.1 Guidelines for Curriculum Design and
Algorithm Design

ICH offers some guidance on how to design effective curric-
ula. First, an effective curriculum should approximately sat-
isfy the three conditions discussed above. Second, it should
effectively break down the target grammar to be learned into
as many chunks as possible, so that at each stage of learn-
ing the set of new rules introduced by the curriculum can
be small and hence easy to learn. Quantitatively, this makes
the distance between any two consecutive grammars Gi and
Gi+1 in the sequence G1 . . . Gn as small as possible. Third,
at each iteration an effective curriculum should introduce the
new rule that results in the largest number of new sentences
being added into the training data seen by the learner. This en-
sures that the learner has as many training sentences as possi-
ble for learning the new rule. From a theoretical perspective,
since each new rule introduced into a grammar leads to some
new grammatical structures that were previously invalid (i.e.,
had zero probabilities in the absence of the new rule), ideally
at each iteration the curriculum should introduce the rule that
leads to a set of new grammatical structures with the highest
sum of probabilities. The third guideline entails two special
cases. First, if there are dependencies between rules (i.e., one
rule is required for the other rule to be used), then the cur-
riculum should conform to the the partial order defined by
the dependencies. Second, among rules that share the same

left-hand side, the curriculum should introduce rules in the
descending order of their probabilities in the target grammar.

ICH also offers some guidance on designing learning al-
gorithms. Because the learning target at each stage of the
curriculum is a partial grammar, it is especially important for
the learning algorithm to avoid the over-fitting to this partial
grammar that hinders the acquisition of new grammar rules in
later stages. Indeed, from our experiments (see the next two
sections), we find that if adequate care is not exercised to min-
imize over-fitting, the results of learning with a curriculum
can be worse than the results of learning without curriculum.

4 Experiments on Synthetic Data
To explore the validity of ICH, we designed a set of exper-
iments using synthetic data generated from a known target
grammar. With the target grammar known, we were able to
construct the ideal curricula suggested by ICH. We used a
grammar formalism called the dependency model with va-
lence (DMV) [Klein and Manning, 2004], which has been
shown to be amenable to unsupervised learning. We used
the dependency treebank grammar of WSJ30 (the set of sen-
tences no longer than 30 in the Wall Street Journal corpus
of the Penn Treebank) as our target grammar, and generated
a corpus of 500 sentences using this grammar. Expectation-
maximization (EM) was used as the base learning algorithm.
To deal with the problem of over-fitting mentioned in Sec-
tion 3.1, we used a dynamic smoothing factor that is set to
a large value initially when the effective training set seen by
the learner is small; and is decreased as the learner is exposed
to more training data. Five-fold cross-validation was used
for evaluation: each time 100 sentences were used for train-
ing and the rest were used for evaluation. The results reported
correspond to averages over the 5 cross-validation runs. Since
we knew the correct parses of all the sentences, we used the
standard PARSEVAL measures [Manning and Schütze, 1999]
to evaluate the learned grammars.

We compared the performance of the learning algorithm
when trained with seven different types of curricula as well
as without a curriculum. In each curriculum, we used weights
of either zero or one in the weighting schemes, which is tan-
tamount to selecting a subset of the training corpus at each
stage of the curriculum.
IDEAL CURRICULA that satisfy all the ICH-based guide-

lines of curriculum design. We construct a curriculum
as follows. Given the target grammar and the training
set, at each stage of the curriculum we add to the par-
tial grammar the smallest number of new rules of the
target grammar that lead to the largest number of new
sentences being added to the training set seen by the
learner. We assign weight one to each of the training
sentences that can be generated by the partial grammar.
When there is a tie between two sets of new rules, we
randomly select one.

SUB-IDEAL CURRICULA that satisfy the first two guide-
lines of curriculum design. At each stage, we randomly
add a new rule to the partial grammar and assign weight
one to each of the sentences in the training corpus that
can be generated by the partial grammar.
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Figure 1: Comparison of the PARSEVAL F-scores of plain
EM and learning with seven types of curricula. For each of
the six types of curricula that involve nondeterministic con-
struction, ten different curricula were constructed and tested
and the mean F-score and standard deviation is shown.

RANDOM CURRICULA that add new training sentences at
random to the training set at each stage of the curricula.
We set the number of stages to be the same as that of
IDEAL CURRICULA to ensure a fair comparison.

IDEAL10, SUB-IDEAL10 and RANDOM10 curricula that
are variants of IDEAL, SUB-IDEAL and RANDOM cur-
ricula respectively except that each stage in the curricula
introduces at least 10 new training sentences. Therefore
these curricula contain fewer stages.

LENGTH-BASED CURRICULUM that introduces new train-
ing sentences ordered by their lengths, such that the
learner is exposed to shorter sentences before it encoun-
ters longer sentences, as described in Section 2.

Figure 1 shows the mean PARSEVAL F-score from cross-
validation for each type of curricula as well as learning with-
out curriculum (labeled as PLAINEM). The construction pro-
cedure of the first six types of curricula is nondeterministic,
so we present the mean F-score and standard deviation ob-
tained from experiments with ten curricula of each type.

The results of these experiments show that learning with
any of the seven types of curricula, including the random
ones, leads to better performance than learning without a
curriculum. A possible explanation for the observed gains
from the two types of random curricula could be that the tar-
get grammar used in this experiment tends to use a rather
different set of rules to generate each sentence in the cor-
pus, which would imply that with a small training corpus
like ours, even a random partition of the sentences is likely
to yield a curriculum that satisfies incremental construction
to some extent. The results obtained using the four types
of ideal and sub-ideal curricula are significantly better than
those obtained using the random curricula. This is consis-
tent with ICH (i.e., the first guideline of curriculum design).
Each of the two types of ideal curricula has a slightly better
mean F-score and a smaller standard deviation than the cor-
responding sub-ideal curricula, which suggests that the third
guideline of curriculum design also helps facilitate learning.

LENGTH-
BASED vs
IDEAL

SUB-IDEAL
vs IDEAL

RANDOM vs
IDEAL

Kendall 0.7641 0.4125 0.0306
Spearman 0.9055 0.5672 0.0442

Table 1: Average correlations of three types of curricula with
the IDEAL curricula. Two types of rank correlation, Kendall’s
and Spearman’s correlation, are shown.

However, to the contrary of the second guideline, IDEAL and
SUB-IDEAL have slightly worse performance than IDEAL10
and SUB-IDEAL10. We speculate that it is because curricula
with more stages are more prone to the over-fitting problem
discussed in Section 3.1.

Interestingly, LENGTH-BASED CURRICULUM shows per-
formance that is comparable to the four types of ideal and
sub-ideal curricula. To explore why this might be the case,
we measured how similar the LENGTH-BASED curriculum is
to the IDEAL curricula. Since in this set of experiments, each
curriculum corresponds to an ordering of the sentences in the
training corpus, we can compute the correlation between the
orderings to measure the similarity of different curricula. We
used two types of rank correlation, Kendall’s correlation and
Spearman’s correlation, for this purpose. Table 1 shows the
correlation between LENGTH-BASED and IDEAL, along with
the correlations of SUB-IDEAL and RANDOM with IDEAL
for comparison. Because our experiments used ten different
IDEAL, SUB-IDEAL and RANDOM curricula, we report the
average values of the correlations between curricula of differ-
ent types. It can be seen that the LENGTH-BASED curriculum
is very similar to the IDEAL curricula in the case of the train-
ing corpus and target grammar used in this experiment.

5 Experiments on Real Data
5.1 Analysis of Length-based Curriculum
In practice, since little is known about the target grammar
when doing unsupervised learning, it is very difficult, if not
impossible, to construct an ideal curriculum suggested by
ICH. Hence, curricula that can be constructed without knowl-
edge of the target grammar are preferred. The length-based
curriculum offers an example of such curricula. In Section
4, we have shown that on the synthetic data generated from a
real-world treebank grammar, the length-based curriculum is
a good approximation of an ideal curriculum. In this subsec-
tion, we offer some evidence that this may still be true in the
case of a real-world natural language corpus.

We use the WSJ30 corpus (the set of sentences no longer
than 30 in the Wall Street Journal corpus of the Penn Tree-
bank) to learn a DMV grammar. Since we know the correct
parse of each sentence in WSJ30, we can find the grammar
rules that are used in generating each sentence. For a gram-
mar rule r, let Sr be the set of sentences in which r is used,
and let lr be the length of the shortest sentence in Sr. Some
statistics of grammar rule usage in WSJ30 are shown in Fig-
ure 2(a) and 2(b). The histogram in Figure 2(a) in fact shows
the distribution of the stages at which the grammar rules are
introduced in the length-based curriculum. It can be seen that
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VBD−>RB
VBD−>VBN
VBD−>JJ
VBD−>VB
VBD−>NNS
VBD−>PRP
VBD−>CD
VBD−>NN
VBD−>TO
VBD−>IN
VBD−>VBD
VBD−>VBG

(c) The change of probabilities of VBD-
headed rules with the stages of the length-
based curriculum in the treebank grammars
(best viewed in color). Rules with probabili-
ties always below 0.025 are omitted.

Figure 2: Analysis of the length-based curriculum in WSJ30

the introduction of grammar rules is spread throughout the
entire curriculum, as required by ICH (although more rules
are introduced in the early stages). From the overlay plot in
Figure 2(a) we can also see that rules that are used more fre-
quently tend to be introduced earlier in the curriculum, which
is consistent with the third guideline of curriculum design in
Section 3.1. In Figure 2(b), most rules fall within a contin-
uum that ranges from intermediate mean and high standard
deviation to high mean and low standard deviation. This sug-
gests that for any grammar rule r, in most cases, the lengths
of the sentences in Sr distribute relatively evenly in the inter-
val of [lr, 30] (where 30 is the length of the longest sentence
in WSJ30). So in the length-based curriculum, rules learned
in earlier stages can help parse the sentences introduced in
later stages of the curriculum, thus facilitating the acquisition
of new rules in later stages. This is also consistent with the
third guideline of curriculum design.

With the correct parses being known for all the sentences
in WSJ30, we can further construct the treebank grammar, in
which the rule probabilities are computed from the number of
times each rule is used in the parsed corpus. Since each stage
of the length-based curriculum specifies a subset of the train-
ing sentences, we can construct a sequence of such treebank
grammars, one for each stage in the curriculum. Each such
grammar is the maximal likelihood grammar of the correct
parses of the corresponding sub-corpus, so we can assume
that condition 1 in Definition 1 is satisfied. Since each stage
of the length-based curriculum adds new sentences to the sub-
corpus that is available to the learner, it is easy to see that in
this sequence of treebank grammars, once a rule is learned its
probability can never drop to zero. This ensures that condi-
tion 2 in Definition 1 is also satisfied. How about condition
3? Figure 2(c) shows, for grammar rules that are conditioned
on the VBD (past tense verb) head and the right dependency,
how the rule probabilities change over the sequence of tree-
bank grammars. We note that most rule probabilities shown

in the figure first increase over multiple stages (implying that
the rules are being gradually introduced), and then monoton-
ically decrease (due to renormalization of the probabilities as
other rules are being introduced). We find that other gram-
mar rules also behave similarly in relation to the sequence
of treebank grammars. Therefore, the original condition 3 in
Definition 1 is clearly violated, but its relaxed version, condi-
tion 3c in Theorem 2, is approximately satisfied. Therefore,
the theoretical guarantee of Theorem 2 is likely to hold for
the length-based curriculum for the WSJ30 corpus.

Furthermore, from Figure 2(c) we can see that rules are in-
troduced in a specific order. Among the first rules to be intro-
duced are those that produce RB, VBN, JJ and VB (as adver-
bials, predicatives, etc.); followed by rules that produce NNS,
PRP and CD (as objects, etc.); followed by rules that pro-
duce NN (as objects) and TO (to head preposition phrases);
and ending with rules that produce IN, VBD and VBG (for
preposition phrases and clauses). This confirms that rules are
introduced incrementally in the length-based curriculum.

5.2 Learning Results
We tested curriculum learning of DMV grammars from the
unannotated WSJ30 corpus. Following the standard proce-
dure for evaluating natural language parsers, section 2-21 of
WSJ30 were used for training, section 22 was used for de-
velopment, and section 23 was used for testing. We used
expectation-maximization (EM) as the base learning algo-
rithm, with an initialization of the grammar as described in
[Klein and Manning, 2004]. To minimize the over-fitting
problem discussed in Section 3.1, at each stage of the curricu-
lum we terminated training when the likelihood of the devel-
opment set stopped increasing. In addition, we set the maxi-
mal number of iterations at each stage (except the last stage)
of the curriculum to a relatively small value, which further
alleviates over-fitting while also speeding up the algorithm.

In addition to plain EM and the length-based curriculum,
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Figure 3: The change of F-scores with the EM itera-
tions. “len” denotes length-based curriculum; “lh” denotes
likelihood-based curriculum; “0/1” denotes that weights are
set to be either zero or one; “cont” denotes that a continuous-
valued weighting function is used in the weighting schemes.

we tested a novel curriculum based on the likelihood of sen-
tences. Because the use of EM as the base learning algo-
rithm guarantees that at any time of the learning we have a
complete grammar, we can use the negative log likelihood of
a sentence given this grammar as a measure of the relative
hardness of the sentence. With this likelihood-based hard-
ness measure, we can construct a new curriculum similar to
the length-based curriculum, i.e., sentences with higher likeli-
hood receive larger weights at earlier stages in the curriculum.
However, because the grammar used to estimate the hardness
of a sentence is continuously updated as a result of learning,
so is the hardness measure, making the resulting curriculum
an “active” curriculum. We repeated the analysis described in
Section 5.1 on this new curriculum, and found the results sim-
ilar to those reported for the length-based curriculum (data
not shown).

In the curricula discussed in Section 4, the weights are
set to either zero or one in the weighting schemes, and the
set of sentences with weight one expands over successive
stages of the curriculum. Here we also tested a different
method: a continuous-valued weighting function is used to
assign greater weights to easier sentences and less weights
to harder sentences, and the weighting function becomes in-
creasingly uniform over successive stages of the curriculum.

We evaluated all the intermediate grammars produced in
the course of learning as well as the grammars that was out-
put at the end, using the PARSEVAL metric [Manning and
Schütze, 1999]. Figure 3 shows how the F-score changes with
the EM iterations when learning with each of four different
curricula as well as in the no-curriculum baseline. It can be
seen that learning with a curriculum consistently converges to
a grammar with a better F-score than the no-curriculum base-
line. Also, during the early stages of learning, the use of cur-
ricula results in faster improvements in F-score as compared
to the no-curriculum baseline. The four curricula behave
similarly, with the length-based curriculum using zero/one
weights performing slightly better than the others.

We also plotted the change of rule probabilities during
learning with a curriculum (data not shown; see [Tu and

Honavar, 2011]). The overall trends are very similar to those
seen in Figure 2(c): the probability of each rule first rises and
then drops, and rules are learned in a specific order.

6 Conclusion
We have provided an explanation of the benefits of curric-
ula in the context of unsupervised learning of probabilistic
grammars. Our explanation is based on the incremental con-
struction hypothesis which asserts that an ideal curriculum
gradually emphasizes data samples that help the learner to
successively discover new sub-structures of the target gram-
mar. The hypothesis offers some guidance on the design of
curricula as well as learning algorithms. We have presented
results of experiments on synthetic data that provide support
for the incremental construction hypothesis; we have further
demonstrated the utility of curricula in unsupervised learning
of grammars from a real-world natural language corpus.
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