
Assembling Composite Web Services
from Autonomous Components

Jyotishman PATHAK, Samik BASU and Vasant HONAVAR

Department of Computer Science
Iowa State University

Ames, IA 50011-1040, USA
{jpathak, sbasu, honavar}@cs.iastate.edu

Abstract.
Web services are fast emerging as the technology of choice to build distributed

information systems in multiple domains including e-Business and e-Science. An
important challenge is to develop methodologies and tools that enable (semi-) auto-
matic composition of services by taking into account the functional, non-functional
and behavioral requirements of the service developer. This paper presents the fun-
damental concepts and issues related to service composition and provides a repre-
sentative sample of existing work proposed by the AI planning and formal meth-
ods communities to address some of the challenges in service composition. It also
provides a brief introduction to an iterative and incremental technique for modeling
composite Web services proposed by the authors.

Keywords. Web Services, Composition, AI Planning, Formal Methods

1. Introduction

Recent advances in networks, information and computation grids, and the World Wide
Web has led to the emergence of a new approach to build highly distributed information
systems using Web-based services1 [1]. They hold the promise to enable development
of rich and flexible applications in multiple domains including e-Business and e-Science
owing to their loosely coupled and interoperable nature. Consequently, there has been
a significant interest in recent years to build Service-Oriented Architectures [2,3] that
support the creation and deployment of complex Web services to accomplish different
tasks. In particular, the ability to discover and integrate existing services into a compos-
ite service (a.k.a. Web Service Composition) has received a lot of attention from both
academia and industry, and many techniques based on formal methods, AI planning and
logic theory have been proposed. The main objective of these approaches is to allow
service developers to flexibly locate the component services needed, compose them and
orchestrate their execution to achieve the desired requirements, which otherwise cannot
be fulfilled by a single (available) service.

1In this paper, we use the terms “Web services” and “services” interchangeably.

However, developing tools and techniques for service composition is non-trivial due
to many inherent challenges. These include: How to search for the most suitable set of
services that when composed appropriately will satisfy the desired requirements? How
to model expressive description languages for representing services and service com-
positions? How to validate and verify the behavioral and executional properties of the
composite service? How to enable execution monitoring, repair and adaptation of service
compositions? How to build user-friendly and intuitive tools for modeling real-world
complex services? In other words, automatic composition of Web services require ad-
dressing various challenges related to Web service discovery, integration, orchestration,
verification and execution monitoring. In addition, to ensure that the proposed techniques
can be applied in practical settings, their efficiency, scalability and usability is of great
significance.

Against this background, in this paper we discuss few representative approaches to
Web service composition that attempt to address some of the challenges outlined above.
In particular, we focus on approaches that rely on techniques developed primarily by
the AI planning and formal methods communities (Section 2). Even though the specific
research topics addressed by these two areas may vary, we have noticed a strong paral-
lelism between the Web service composition techniques based on them. Consequently,
we have explored such a synergy to propose a novel framework for iterative and incre-
mental modeling composite Web services which we discuss briefly in this paper (Sec-
tion 3). Finally, we conclude the paper by outlining some of the open research problems
(Section 4) that we believe have to be addressed effectively for development of robust,
efficient and practical tools and techniques for Web service composition.

2. State-of-the-art in Web Service Composition: A Short Survey

2.1. What is Web Service Composition?

Web services are software system designed to support interoperable machine-to-machine
interaction over a network [4]. Typically, they have an interface described in a machine-
processable format which specify their functionalities that can be invoked by other sys-
tems through message-based interactions. However, in certain cases a desired functional
(and/or non-functional) requirement cannot be met by a single Web service in its entirety,
but could be possibly met by appropriately integrating and composing a set of available
services. Informally, given a user (goal) requirement G and a set of available Web ser-
vices W = {W1, W2, . . . , Wn}, Web service composition amounts to: (i) generating a
new composite Web service WG (Figure 1(a)) by suitably combining a subset of avail-
able services, Wi . . . ⊗ . . . W j . . . ⊗ . . . Wk , where ⊗ is the composition operator, or (ii)
establishing a linkage structure L = {L i j , L ik , . . .} (Figure 1(b)) between the partici-
pating services, Wi , . . . W j , . . . , Wk , that will allow them to communicate directly via
message exchanges. The former approach, commonly referred to as the mediator-based
composition, results in developing a mediator which will enable communication between
the client (either a human being or a software agent) and the participating services. Each
and every message exchange between the client and the services is channeled through the
mediator. Whereas, for the latter approach, commonly referred to as the choreography-
based composition, the message exchange channels or links are established between the

(a) (b)

Figure 1. Two different types of composition [8]: (a) Mediator-based (b) Choreography-based

participating services themselves. Thus, the client communicates directly with the re-
spective services.

Many techniques have been proposed in the literature (see [5,6,7] for surveys) for
both the approaches in the recent years. In particular, there has been a significant interest
from the researchers in the AI planning and formal methods communities to develop
techniques for service composition that leverage and build on the existing work. We
discuss a representative sample of such approaches in the following sections.

2.2. AI Planning for Web Service Composition

In general, AI planning can be regarded as an area of study that is concerned with au-
tomatic generation of plans that will be able to solve a problem within a particular do-
main. Typically, a plan consists of sequence of actions, such that given an initial state
or a condition, a planner will suitably select a set of actions which, when executed ac-
cording to the generated plan, will satisfy certain goal conditions. In the context of Web
services, a planning domain can be represented by a sextuplet (W, S, A, −→, s0, sG),
where W is the set of available Web services, S is the set of all possible states of these
services (world), A is the set of actions/functions provided by the services that the plan-
ner can perform in attempting to change the state from one to another in the world,
−→⊆ S × A × S is the set of state transitions which denote the precondition and effects
for execution of each action, and finally s0 ∈ S and sG ∈ S are the initial and goal states,
respectively, specified in the requirement of the Web service requesters to indicate that
the plan initiates its execution starting from state s0 and terminates at state sG . Given
this domain, researchers have proposed multiple approaches using a variety of planning
techniques that will generate a plan for realizing the goal requirements.

PDDL [9] (Planning Domain Definition Language) is one of the very widely known
description languages in the planning domain and has influenced the development of
Web service description languages such as OWL-S [10] (Web Ontology Language for
Services). McDermott [11] extended PDDL by introducing the notion of “value of the
action”, essentially representing certain information that is created or learned as a conse-
quence of executing a particular action. The main intention of introducing this extension
was to have the ability to capture the information and the content of messages that are
exchanged between the services. The work demonstrates how this extended language can
be used with estimated regression planners to create conditional plans that achieve the
desired goal. Medjahed et al. [12] applied a rule-based planning technique for finding

feasible compositions and introduced a declarative language for describing the goal re-
quirements. The core of the approach comprised of developing composability rules that
consider and analyze syntactic and semantic properties of the Web services to devise a
plan. Such rules, for example, might specify that two Web services W1 and W2 are com-
posable only if the output messages of W1 are compatible with the input messages of W2.
Sycara et al. [13] proposed an approach for automatic discovery, interaction and compo-
sition of semantic Web services using HTN (Hierarchical Task Network) planning. Their
technique represents services using DAML-S [14] (Darpa Agent Markup Language for
Services, the predecessor of OWL-S), and provides multiple “degree of match” criteria
to determine whether the service provider capabilities conform to the requirements of
the requester. Another approach which relied on using the HTN planner for automatic
composition of services described in OWL-S was proposed in [15]. The authors provide
an algorithm for translating OWL-S service descriptions into SHOP2 (an HTN planner)
domain and prove the correctness of their approach by showing the correspondence to
the situation calculus semantics of OWL-S. SEMAPLAN [16] attempts to leverage tra-
ditional AI planning and information retrieval techniques for building a semi-automated
service composition tool. The technique relies on domain-dependent/independent on-
tologies [17] for calculating semantic similarity scores between the concepts/terms in
service descriptions, and applies this score to guide the searching process of the plan-
ning algorithm. The experimental results demonstrate that SEMAPLAN performs supe-
rior compared to the traditional planning based techniques. A similar approach is also
proposed in [18] which attempts at combining traditional AI planning techniques with
semantics-based approaches.

2.3. Formal Methods for Web Service Composition

Formal Methods is an area of study that provides a language for describing a software
artifact (e.g., specifications, design, source code) such that formal proofs are possible, in
principle, about properties of artifact so expressed. In the context of Web service compo-
sition, typically the property proved is that an implementation is functionally correct, that
is, it fulfills a particular specification. In the recent past, many research efforts for service
composition have adopted formal methods techniques to leverage its mathematically-
precise foundation for providing theoretically sound and correct formalisms. We discuss
a few of those approaches in the following paragraphs.

Pistore et al. [19,20] represent Web services using transition systems [21] that com-
municate via exchanging messages. Their approach relies on symbolic model checking
techniques to determine a parallel composition of all the available services, and then gen-
erate a controller to control the composed services such that it satisfies the user-specified
requirements. Informally, if W = {W1, W2, . . . Wn} is the set of available services, ρ is
the user-specified requirement (i.e., ρ describes the goal G), and || is the composition
operator, the aim is to find a “controller” W c, such that: Wc B (W1|| . . . ||Wn) |H ρ.
Similarly the Colombo framework [8] models Web services using labeled transition sys-
tems. However, this approach relies on specifying linkages to establish communication
channels between services that have identical signatures, and exploits them to determine
a feasible composition that satisfies the goal requirements by reducing the composition
problem to satisfiability of a suitable deterministic propositional dynamic logic formula.
On a slightly different note, Gwen Salaün et al. [22] apply Process Algebra [23] (PA)

to model Web services in at least two different ways: (i) at design time, PA can be used
to describe an abstract specification of the system to be developed, which can be vali-
dated and used as a reference for implementation; (ii) by applying reverse engineering,
existing Web service interface descriptions can be translated to PAs. Specifically, this
work adopted CCS [21] as the PA and demonstrated techniques for translating BPEL
[24] (Business Process Execution Language) processes into CCS, which can then be
verified to reason about properties specified in temporal logic. Hamadi and Benatallah
[25] apply a petri net-based algebra to model the control flow and capture semantics of
complex Web service compositions. Their framework provides various control flow con-
structs such as sequence, alternative, iterative and arbitrary, and the authors show these
constructs can be used to determine and verify a composition. However, it is unclear
whether the composition is done (semi-) automatically or manually. SELF-SERVE [26]
extended this work by providing the ability for dynamically composing and executing
Web services represented as state charts. One of the key features of SELF-SERVE is to
adopt a peer-to-peer (P2P) computing environment for executing the (composite) ser-
vices, which in practice has multiple advantages (in terms of scalability, fault-tolerance
etc.) compared to centralized architectures.

3. The MoSCoE Approach

3.1. Problems with Existing Web Service Composition Techniques

In the previous sections, we have outlined some of the representative approaches that ap-
ply AI planning and formal methods techniques for building (semi-) automated solutions
to Web service composition. Nevertheless, these approaches have several drawbacks that
limit their practical viability and wide-scale adoption. These limitations include:

• Complexity of Modeling Composite Services: For specifying functional require-
ments, the current techniques for service composition require the service devel-
oper to provide a specification of the desired behavior of the composite service
(goal) in its entirety. Consequently, the developer has to deal with the cognitive
burden of handling the entire composition graph (comprising appropriate data and
control flows) which becomes hard to manage with the increasing complexity of
the goal service. Instead, it will be more practical to allow developers to begin
with an abstract, and possibly incomplete, specification that can be incrementally
modified and updated until a feasible composition is realized.

• Inability to Analyze Failure of Composition: The existing techniques for service
composition adopt a ‘single-step request-response’ paradigm for modeling com-
posite services. That is, if the goal specification provided by the service developer
cannot be realized by the composition analyzer (using the set of available compo-
nent services), the entire process fails. As opposed to this, there is a requirement
for developing approaches that will help identify the cause(s) for failure of com-
position and guide the developer in applying that information for appropriate re-
formulation of the goal specification in an iterative manner. This requirement is of
particular importance in light of the previous limitation because in many cases the
failure to realize a goal service using a set of component services can be attributed
to incompleteness of the goal specification.

• Inconsideration of Non-Functional Characteristics: Barring a few approaches,
most of the techniques for service composition focus only on the functional as-
pects of the composition. In practice, since there might be multiple (available)
services that can provide the same functionality, it is of interest to explore the
non-functional properties of the components to reduce the search space for deter-
mining compositions efficiently.

• Inability to Handle Differences in Service Semantics: Individual Web services
needed for realizing a desired functionality are often developed by autonomous
groups or organizations. Consequently, semantic gaps, arising from different
choices of vocabulary or ontologies for specifying the behavior of the services, are
inevitable. This requires frameworks for assembling complex Web services from
independently developed component services to provide support for bridging the
semantic gaps.

To overcome some of these limitations, we are working towards developing a novel
Web service composition and execution framework called MoSCoE2 [27,28,29] (Mod-
eling Web Service Composition and Execution) that is based on three basic principles
namely abstraction, composition and reformulation. By abstraction, we refer to the abil-
ity of MoSCoE that allows the users (i.e., service developers) to specify an abstract and
possibly incomplete specification of the (goal) service. This specification is used to se-
lect a set of suitable component services such that their composition realizes the desired
goal in terms of both functional and non-functional requirements. In the event that such
a composition is unrealizable, the cause for the failure of composition is determined and
is communicated to the user thereby enabling further reformulation of the goal specifica-
tion. This process can be iterated until a feasible composition is identified or the user de-
cides to abort. We discuss further details about the MoSCoE framework and the system
architecture in the following section.

3.2. MoSCoE Framework

Figure 2 shows the architectural diagram of the MoSCoE framework illustrated above.
As mentioned, the system accepts from the user, an abstract (high-level and possibly in-
complete) specification of the goal service. In our current implementation, the goal ser-
vice specification takes the form of an state machine that provides a formal, yet intu-
itive specification of the desired goal functionality. This goal service and the available
component services (published by multiple service providers) are represented using la-
beled transition systems augmented with state variables, guards and functions on transi-
tions, namely, Symbolic Transition Systems3 (STS), where states are abstraction of the
service configuration and transitions represent the way in which such configurations are
updated. In addition, the STSs are semantically annotated using appropriate domain on-
tologies from a repository by importing OWL ontologies into the state machine model
[32]. MoSCoE assumes that these ontologies (and mappings between them) are speci-
fied by a domain expert using existing tools such as INDUS [33]. The user also provides
non-functional requirements (e.g., cost,reliability) that need to be satisfied by
the goal service.

2http://www.moscoe.org
3The STS specifications for component services can be obtained from service descriptions provided in high-

level languages such as BPEL or OWL-S by applying translators similar to those proposed in [30,31].

Figure 2. MoSCoE Architectural Diagram

MoSCoE manipulates these input data (user-provided service specification and pub-
lished component service descriptions) and automatically identifies a composition that
realizes the goal service. However, in the event that a composition cannot be realized,
the system identifies the cause(s) for the failure and provides that information to the
developer for appropriate reformulation of the goal specification. The system architec-
ture comprises of two main modules: composition management module and execution
management module. The former identifies feasible compositions (if any) that realize the
goal, while the latter deals with the execution of the composite service. We describe these
modules in the following paragraphs.

Composition Management Module. Given the STS representations of a set of N com-
ponent services {WST S1 ,WST S2, . . . ,WST SN } and a desired goal WST SG , service compo-
sition in MoSCoE amounts to identifying a subset of component services, which when
composed with a mediator (to be generated) WST SM , realize the goal service WST SG . The
role of the mediator is to replicate input/output actions of the user as specified by the
goal and to act as a message-passing interface between the components and between
the component(s) and the client. It is not capable of providing any functionality (e.g.,
credit card processing) on its own; these are provided only by the component services.
The algorithms for generating such a mediator are discussed in [28,27] and they tech-
niques essentially identify whether WST SM realizes WST SG using the notion of simulation
and bisimulation equivalence. Informally, simulation equivalence ensures that every be-
havioral pattern in the goal is present in the composed mediator, whereas bisimulation

equivalence is a symmetric relation which ensures that the composition offers exactly the
same behavior as specified in the goal, and nothing more.

However, the algorithms proposed in [28,27] suffer from the state-space explosion
problem since the number to ways the component services can be composed is expo-
nential to the number of component service states. This becomes a challenge with the
increasing size of the search space of available component services. Hence, to address
this limitation, we consider non-functional aspects (e.g., Quality of Service) to winnow
components (thereby reducing the search space) and compositions that are functionally
equivalent to the goal, but violate the non-functional requirements desired by the user
[29,34]. The non-functional requirements are quantified using thresholds, where a com-
position is said to conform to a non-functional requirement if it is below or above the
corresponding threshold, as the case may be. For example, for a non-functional require-
ment involving the cost of a service composition, the threshold may provide an upper-
bound (maximum allowable cost) while for requirements involving reliability,
the threshold usually describes a lower-bound (minimum tolerable reliability). If
more than one “feasible composition” meets the goal specifications (both functional and
non-functional requirements), our algorithm generates all such compositions and ranks
them. It is then left to the user’s discretion to select the best composition according to the
requirements.

In the event that a composition as outlined above cannot be realized using the avail-
able component services, the composition management module provides feedback to the
user regarding the cause(s) of the failure. The feedback may contain information about
the function names and/or pre-/post-conditions required by the desired service that are
not supplied by any of the component services. Such information can help to identify
specific states in the state machine description of the goal service. In essence, the mod-
ule identifies all un-matched transitions along with the corresponding goal STS states.
Additionally, the failure of composition could be also due to non-compliance of non-
functional requirements specified by the user. When such a situation arises, the system
identifies those requirements that cannot be satisfied using the available components, and
provides this information to the service developer for appropriate reformulation of the
goal specification. This process can be iterated until a realizable composition is obtained
or the developer decides to abort.

Execution Management Module. The result from the composition management module
is a set of feasible compositions each defining a mediator that will enable interaction be-
tween the client and the component services. The execution management module consid-
ers non-functional requirements (e.g., performance, cost) of the goal (provided
by the user) and analyzes each feasible composition. It selects a composition that meets
all the non-functional requirements of the goal, generates executable BPEL code, and
invokes the MoSCoE execution engine. This engine is also responsible for monitoring
the execution, recording violation of any requirement of the goal service at runtime. In
the event a violation occurs, the engine tries to select an alternate feasible composition.
Furthermore, during execution, the engine refers to the pre-defined set of inter-ontology
mappings to carry out various data and control flow transformations [35].

4. Open Research Directions

In the following, we outline several research challenges that we believe have to be ad-
dressed by the research community to make existing solutions for automatic Web service
composition (including MoSCoE) better and useful in practice. These issues include:

Composition Efficiency: The practical feasibility of approaches to automated service
composition is ultimately limited by the computational complexity of the service com-
position algorithms. However, the existing composition techniques run into exponential
complexities and become impractical in real-world situations comprising of hundreds, if
not thousands, of services. Hence, intelligent approaches and heuristics for reducing the
number of candidate compositions that need to be examined are urgently needed in order
to scale up service composition techniques sufficiently to make them useful in practice.

Execution Models: Most of the existing implementations for composite Web service ex-
ecution adopt a centralized architecture, that is, there exists an orchestrator (represent-
ing the composite service) in a centralized location that is responsible for coordinating
and forwarding the intermediate results during the execution. Such a design has its lim-
itation in terms of scalability, failure resiliency, and network bottlenecks. Towards this
end, we believe that decentralized [36] or Peer-to-Peer (P2P) based architectures such as
SELF-SERVE [26] will prove to be more beneficial in practical settings.

Failure Handling and Fault Tolerance: Web services are by nature autonomous and have
an unpredictable behavior. For example, it is possible for a particular Web service Wi

that is part of a composition to become inaccessible or updated (furnishing additional
functions and/or removing existing ones, thereby altering its original behavior). Conse-
quently, an existing integrated system (or a composite service) which comprises of mul-
tiple services including Wi , will require appropriate update in the form of replacing Wi .
However, very limited research [37,38] has been carried out to address this issue which
needs further investigation. The problem becomes even more non-trivial when the re-
placement of the faulty service has to be carried out, while the composite service is being
executed, in such a way that it is transparent to the client.

Security: Addressing security concerns is important for any Web-based system and var-
ious researchers have proposed mechanisms for ensuring security in Web services (see
[39] for a survey). However, most of techniques build a trust-based framework or assume
the existence of an environment, where once a service is identified to be “good” (loosely
speaking) based on its security policy etc., it is considered to be trustworthy. However,
in certain cases, even though a particular service is trustworthy, it might delegate a part
of its functionality to another service which cannot be trusted. For example, an online
air ticket reservation service Wx might delegate the process of verifying authenticity of
payment methods (e.g., credit card) required to purchase the air tickets to a third-party
service provider Wy (in a manner transparent to the client), which may not follow the
same security policy as Wx causing a potential security threat. Unfortunately, it is hard
to detect such vulnerabilities. Furthermore, even if Wx claims to be “good”, it may not
strictly adhere to its own security policy, which makes it even harder to detect whether the
integrity of client information has been compromised. We believe addressing these two
issues is a significant and important research challenge for the Web services community.

Tool Support: An important component of making techniques for automatic Web service
composition useful for masses is to develop user-friendly tools and platforms that will
allow non-experts to model complex services. Towards this end, model-driven based
approaches [40] has shown some promise, although a lot of research has to be carried
out, in particular by leveraging techniques from human-computer interaction.

Experimental Benchmark: At present, due to lack of a benchmark (dataset) of Web ser-
vices, there is no uniform way of comparing, for example, an existing service compo-
sition algorithm with another. We believe that developing a comprehensive benchmark
and testbed of Web services will act as a quick aid for testing and ease of prototyping
to evaluate different techniques. Such a benchmark should comprise of various hardware
platforms and a variety of synthetic and real-world Web services. To the best of our
knowledge, WSBen [41] is one of the preliminary efforts in this direction.

5. Concluding Remarks

We have briefly surveyed some of the existing techniques for (semi-) automatic compo-
sition of Web services that are based on AI planning and formal methods and discussed
some of the limitations of these techniques. The paper demonstrates how our framework
(called MoSCoE) attempts to address some of these limitations and envisions to pro-
vide a user-friendly technique for developing complex Web services. Furthermore, we
have outlined potential research issues that need to be addressed by blending techniques
from artificial intelligence, software engineering, networks and distributed systems in or-
der develop solutions for Web service composition that are of practical significance and
value.

Acknowledgments

This research is supported in part by the ISU Center for Computational Intelli-
gence, Learning & Discovery (http://www.cild.iastate.edu), NSF-ITR grant
0219699 to Vasant Honavar and NSF grant 0509340 to Samik Basu.

References

[1] G. Alonso, F. Casati, H. Kuna, and V. Machiraju. Web Services: Concepts, Architectures and Applica-
tions. Springer-Verlag, 2004.

[2] T. Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and Web Services. Prentice
Hall, New Jersey, 2004.

[3] D. Ferguson and M. Stockton. Service-Oriented Architecture: Programming Model and Product Archi-
tecture. IBM Systems Journal 44(4):753–780, 2005.

[4] D. Booth, H. Haas, F. McCabe, and et al. Web Services Architecture, W3C Working Group Note 11.
http://www.w3.org/TR/ws-arch/, 2004.

[5] S. Dustdar and W. Schreiner. A Survey on Web Services Composition. International Journal on Web
and Grid Services 1(1):1–30, 2005.

[6] R. Hull and J. Su. Tools for Composite Web Services: A Short Overview. SIGMOD Record 34(2):86–95,
2005.

[7] J. Rao and X. Su. A Survey of Automated Web Service Composition Methods. 1st Intl. Workshop on
Semantic Web Services and Web Process Composition, pp. 43–54, 2004.

[8] D. Berardi, D. Calvanese, D. G. Giuseppe, R. Hull, and M. Mecella. Automatic Composition of
Transition-based Semantic Web Services with Messaging. 31st International Conference on Very Large
Databases, pp. 613–624, 2005.

[9] A. Gerevini and D. Long. Preferences and Soft Constraints in PDDL3. ICAPS Workshop on Preferences
and Soft Constraints in Planning, 2006.

[10] D. Martin, M. Burstein, J. Hobbs, and et al. OWL-S: Semantic Markup for Web Services, Version 1.1.
http://www.daml.org/services/owl-s, 2004.

[11] D. V. McDermott. Estimated-Regression Planning for Interactions with Web Services. 6th Intl. Confer-
ence on Artificial Intelligence Planning Systems, pp. 204–211, 2002.

[12] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing Web services on the Semantic Web.
The Very Large Databases Journal 12(4):333–351, 2003.

[13] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated Discovery, Interaction and Com-
position of Semantic Web Services. Journal of Web Semantics 1(1):27–46, 2003.

[14] A. Ankolekar, M. Burstein, J. R. Hobbs, and et al. DAML-S: Semantic Markup for Web Services.
International Semantic Web Workshop, 2001.

[15] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN Planning for Web Service Composition using
SHOP. Journal of Web Semantics 1(4):377–396, 2004.

[16] R. Akkiraju, B. Srivastava, A.-A. Ivan, R. Goodwin, and T. F. Syeda-Mahmood. SEMAPLAN: Com-
bining Planning with Semantic Matching to Achieve Web Service Composition. 4th IEEE International
Conference on Web Services, pp. 37–44. IEEE CS Press, 2006.

[17] T. Gruber. Ontolingua: A Mechanism to Support Portable Ontologies. Technical Report, KSL-91-66,
Stanford University, Knowledge Systems Laboratory, 1992.

[18] V. Agarwal, K. Dasgupta, and et al. A Service Creation Environment Based on End to End Composition
of Web Services. 14th International Conference on World Wide Web, pp. 128–137. ACM Press, 2005.

[19] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Automated Composition of Web Services by Plan-
ning at the Knowledge Level. 19th Intl. Joint Conferences on Artificial Intelligence, pp. 1252–1259,
2005.

[20] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated Synthesis of Composite BPEL4WS Web
Services. 3rd Intl. Conference on Web Services, pp. 293–301. IEEE Press, 2005.

[21] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., 1982.
[22] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Services using Process

Algebra. 2nd IEEE International Conference on Web Services, pp. 43–50. IEEE Computer Society,
2004.

[23] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[24] T. Andrews, F. Curbera, and et al. Business Process Execution Language for Web Services, Version 1.1.

http://www.ibm.com/developerworks/library/ws-bpel/, 2003.
[25] R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service Composition. 14th Australasian

Database Conference, pp. 191–200. Australian Computer Society, Inc., 2003.
[26] B. Benatallah, Q. Sheng, and M. Dumas. The Self-Serv Environment for Web Services Composition.

IEEE Internet Computing 7(1):40–48, 2003.
[27] J. Pathak, S. Basu, R. Lutz, and V. Honavar. Selecting and Composing Web Services through Iterative

Reformulation of Functional Specifications. 18th IEEE International Conference on Tools with Artificial
Intelligence, pp. 445–454. IEEE CS Press, 2006.

[28] J. Pathak, S. Basu, R. Lutz, and V. Honavar. Parallel Web Service Composition in MoSCoE: A
Choreography-based Approach. 4th IEEE European Conference on Web Services, pp. 3–12. IEEE CS
Press, 2006.

[29] J. Pathak, S. Basu, and V. Honavar. Modeling Web Services by Iterative Reformulation of Functional
and Non-Functional Requirements. 4th International Conference on Service Oriented Computing, pp.
314–326. LNCS 4294, Springer-Verlag, 2006.

[30] M. Pistore, P. Traverso, and P. Bertoli. Automated Composition of Web Services by Planning in Asyn-
chronous Domains. 15th Intl. Conference on Automated Planning and Scheduling, pp. 2–11, 2005.

[31] P. Traverso and M. Pistore. Automated Composition of Semantic Web Services into Executable Pro-
cesses. 3rd International Semantic Web Conference, pp. 380–394. Springer-Verlag, 2004.

[32] D. Duric. MDA-based Ontology Infrastructure. Computer Science and Information Systems 1(1):91–
116, 2004.

[33] D. Caragea, J. Pathak, J. Bao, A. Silvescu, C. Andorf, D. Dobbs, and V. Honavar. Information Inte-

gration and Knowledge Acquisition from Semantically Heterogeneous Biological Data Sources. 2nd
International Workshop on Data Integration in Life Sciences, pp. 175–190. Springer-Verlag, 2005.

[34] J. Pathak, N. Koul, D. Caragea, and V. Honavar. A Framework for Semantic Web Services Discovery.
7th ACM Intl. Workshop on Web Information and Data Management, pp. 45–50. ACM press, 2005.

[35] J. Pathak, D. Caragea, and V. Honavar. Ontology-Extended Component-Based Workflows-A Framework
for Constructing Complex Workflows from Semantically Heterogeneous Software Components. 2nd
International Workshop on Semantic Web and Databases, pp. 41–56. LNCS 3372, Springer-Verlag,
2004.

[36] W. Binder, I. Constantinescu, and B. Faltings. Decentralized Orchestration of Composite Web Services.
4th IEEE International Conference on Web Services, pp. 869–876. IEEE Computer Society, 2006.

[37] B. Benatallah, F. Casati, and F. Toumani. Representing, Analysing and Managing Web Service Proto-
cols. Data and Knowledge Engineering 58(3):327–357, 2006.

[38] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two Web Services Compatible? 5th
International Workshop on Technologies for E-Services, pp. 15–28. LNCS 3324, Springer-Verlag, 2004.

[39] C. Gutiérrez, E. Fernández-Medina, and M. Piattini. A Survey of Web Services Security. International
Conference on Computational Science and Its Applications, pp. 968–977. LNCS 3043, Springer-Verlag,
2004.

[40] K. Pfadenhauer, S. Dustdar, and B. Kittl. Challenges and Solutions for Model Driven Web Service
Composition. 14th IEEE Intl. Workshop on Enabling Technologies: Infrastructures for Collaborative
Enterprises, pp. 126–131. IEEE Press, 2005.

[41] S.-C. Oh, H. Kil, D. Lee, and S. R. T. Kumara. WSBen: A Web Services Discovery and Composition
Benchmark. 4th International Conference on Web Services, pp. 239–246. IEEE Press, 2006.

