
A Tool for Collaborative Construction of Large Biological Ontologies

Jie Baoa, Zhiliang Hub, Doina Carageaa, James Reecyb, Vasant G Honavara

aArtificial Intelligence Research Laboratory, Department of Computer Science
aCenter for Computational Intelligence, Learning, and Discovery

bDepartment of Animal Science, Iowa State University, Ames, IA 50011, USA
Email: {baojie, zhu, dcaragea, jreecy, honavar}@iastate.edu

Abstract

In order for ontologies to be broadly useful to the sci-
entific community, they need to capture knowledge and ex-
pertise of multiple experts and research groups. Conse-
quently, the construction of such ontologies necessarily re-
quires collaboration among individual experts or research
groups. Support for such collaboration is largely lacking in
existing ontology development environments. We describe
some initial steps towards the development of a collabora-
tive ontology development environment. Specifically, we de-
scribe an ontology editing tool COB Editor which exploits
the notion of modular ontologies (or ontology packages) to
support sharing, reuse, and collaborative editing of partial
order (i.e., DAG-structured) ontologies. COB Editor can
engage diverse and relatively autonomous communities of
biologists in the process of creating the ontologies needed
for annotating, integrating, and analyzing diverse sources
of ’omics’ data.

1 Introduction

The transformation of biology from a data-poor science
into increasingly data-rich science has led to a prolifera-
tion of repositories of biological data. For example, Discala
et.al. [3] reports that there are in excess of 500 databases
of interest to molecular biologists alone. In order for shar-
ing, integration, and use of such data among individuals
and research groups to be possible, it is necessary for each
data source to be annotated using controlled vocabularies
or more generally ontologies that correspond to conceptu-
alizations of objects, attributes, and relationships among at-
tributes, within the respective domains of interest. Conse-
quently, there are many efforts directed at the development
of such ontologies e.g., Gene Ontology (GO)1.

Ontologies that are intended to be useful to specific sci-
entific communities often consist of thousands of terms. For
example, the Gene Ontology contains2×105 terms and the
Gramineae Taxonomy contains7×105 terms. Furthermore,
such ontologies have to capture the collective knowledge

1http://www.geneontology.org/

and expertise of multiple experts and research groups. An
unavoidable consequence of the increasing size and com-
plexity of ontologies is the need forcollaborationamong
multiple experts or research groups. Such collaboration can
be either direct (as in collaborative creation of an ontol-
ogy), or indirect (through the reuse of previously published,
autonomously developed ontologies). In such a setting, a
large ontology is built and curated by a community, with
each of its members contributing only a small part of the
ontology. For example, the GO consortium involves more
than a dozen research groups and hundreds of contributors.
With the rapid proliferation of biological ontologies, there
is an increasing need for tools that enable reuse of fragments
of independently developed ontologies to assemble domain,
context, user or community-specific customized ontologies.

Unfortunately, existing ontology editing tools such as the
DAG-Edit [2] and OBO-Edit [8] offer only limited support
for such collaborative development. Consequently, there is
an urgent need for tools for creating and processing increas-
ingly large, collaboratively developed ontologies, with lim-
ited time and space resources. To address this need, we
have developed extensions to ontology languages and soft-
ware tools forcollaborative ontology building(COB). Our
approach builds on recent advances in modular ontologies
[1] to facilitate the creation of large biological ontologies
within a distributed curator model.

2 Desiderata of COB in Biology

The process of constructing a small-scale ontology is
typically non-collaborative, which means that it involves
only a single curator (see Fig.1). Such an ontology is usu-
ally stored in one or several files. When editing the ontology
with an available tool (e.g., Protege, DAG-Edit), the curator
needs to make a local copy of this ontology. After editing,
the initial ontology is completely replaced with the new ver-
sion that is the result of the editing process.

In contrast, as noted earlier, the process of construct-
ing large-scale biological ontologies is necessarilycollab-
orative. Animal Trait Ontology (ATO), an ontology being
developed to serve as a controlled vocabulary for descrip-
tion of animal traits (i.e., phenotypes, such asmeat quality,

1



Download

Ontology
 Local Editing


Upload

Ontology


(
single curator)


Figure 1. Non-collaborative Ontology Build-
ing

health, external appearance, reproduction, etc.) at the de-
sired level of detail. ATO is intended to support: meaningful
crossboard trait comparisons in genetics and genomics stud-
ies; annotating the genome; and cross-species comparisons.
We draw on our experience with the construction of ATO to
articulate some of the requirements of a COB environment.

2.1 Requirement of COB Environments

A COB environment needs to offer support for several
tasks:

Knowledge Integration: The target ontology typically
requires integration of ontology fragments contributed by
multiple participants. For example, ATO needs to integrate
contributions from individuals or research groups with ex-
pertise with regard to specific species.

Concurrence Management: Different curators need to
be able to work on different parts of the ontology simulta-
neously. Suppose that curator A downloads the current ver-
sion of ATO and performs local editing on “PigMeatQual-
ity”; before A submits the modified version of ATO, another
curator B may submit changes on “PigHealth”. Therefore,
COB environment must ensure that when A submits his or
her locally edited copy, the version updated by B is not in-
advertently overwritten.

Consistency Maintenance: Components of the same
ontology developed by different curators may be inconsis-
tent since an ontology usually reflects the local point of
view of each curator. For example, “PigLoinWeight” may
be taken as a sub-trait of “PigMeatQuality” by one expert,
but as a “PigProduction” trait by another expert. Hence,
ensuring the semantic consistency of the resulting ontology
requires reconciliation of different points of view.

Privilege Management: In order to ensure the accuracy
of the ontology, the COB curator community needs to in-
clude individuals with different levels of privileges, based
on their expertise, authority, and responsibility. For in-
stance, a curator A may be responsible for all pig traits (all
terms under “SusScrofa”), while a curator B may be respon-
sible only for pig health traits (all terms under “PigHealth”).

History Maintenance: COB environments should have
mechanisms to recover from wrong, unintended or even ma-
licious changes to an ontology. Therefore, changes to an
ontology must be recorded in order to be able to track the
authorship of a change and to prevent loss of important in-
formation.

Scalability: Many ontologies consist of tens of thou-
sands of terms. Consequently, the COB process has to be
scalable to large ontologies.

2.2 CVS-based Collaboration and its Lim-
itations

There is a growing awareness in the biological ontology
community about the need for collaboration in the construc-
tion of large biological ontologies. Consequently, there is a
growing interest in the development of COB environments
and tools. The Gene Ontology consortium represents one
of the most successful collaborative efforts aimed at cre-
ating biological ontologies. The GO collaborative building
process [5] is based on a concurrent versions system (CVS),
a request tracking system hosted on SourceForge, and natu-
ral language communications among GO users and curators
(facilitated by several email lists). This process consists of
the following major steps (Fig.2):

Get GO CVS

Account


Get Source

Forge Account


Set Up CVS

Access


Submit Change

Request


Track the

Request


User submit change suggestion

(in natural language)


Get Source

Forge Account


Take a Change

Request


Curator


Download Whole

GO Flat File


Local Editing


Make Local

Log File


Save GO Flat

File


Version

Control


Commit Whole New

Ontology to CVS


Figure 2. Collaborative Ontology Building
with CVS: Gene Ontology

1. A user submits a change request on SourceForge.
2. One of the GO curators claims the request.
3. The curator downloads the GO flat file from CVS.
4. (optional) The curator declares “ownership” of the GO

terms in a file (GOnumbers) in the CVS.
5. (optional) The curator sends emails to other curators to

avoid conflicting.
6. The curator edits the flat file downloaded (e.g., with

DAG-edit) and saves the modified file.
7. The curator compares the local flat file with the current

version in the CVS repository and merges all changes
made by other curators after his or her last download.

8. The curator uploads the modified ontology to CVS.

CVS and email list based collaboration approach, while
useful, fails to satisfactorily address the key requirements
of COB environments enumerated above because of the fol-
lowing drawbacks:

Unprincipled Authorization and Organization : There
is no principled mechanism to ensure curator privilege as-
signments, nor clear organizational division of the whole
ontology into smaller manageable units.

2



Risk of Inconsistency: There is no principled way to
avoid unintended couplings and over-writing. The valid-
ity and consistency of the ontology are dependent almost
entirely on the discipline exercised by the human curators
(e.g., the habit of checking differences between versions
before submission) and good community communications
(e.g., via email lists). Hence it is not surprising that there
are many inconsistencies in GO [10].

Lack of Support for Editing or Reuse of Parts of the
Ontology: A curator has to download theentire ontology,
before editing, and submit theentiremodified ontology, af-
ter editing, although a small part of the ontology may ac-
tually be affected by the changes. Similarly, a user cannot
download and reuse only a selected subset of GO, e.g., the
part of GO that is concerned with description of Kinases.

Expensive History Maintenance: In CVS version con-
trol, even a minor edit of the ontology, e.g., editing of a
single term, relationship or property, causes the ontology
file to be replicated in its entirety. In addition, tracing the
changing history of a term requires processing the entire
ontology text file for comparisons. As a consequence, re-
trieving the relevant information about editing history of a
relevant ontology fragment is rather expensive.

Limited Participation : In the absence of a principled
way to grant different levels of privileges to different types
of users (e.g., core curators versus normal curators), and
a handy tool to accept/deny/modify/revertlocal changes
made by other curators, the curator community has to be
limited to a small number of trusted curators. This limits
the participation of the broader scientific community in the
ontology building process and results in a bottleneck that
slows down the rate at which ontology can change in re-
sponse to community input.

Therefore, success of the CVS-based approach to COB
relies heavily on the implicit community commitment and
cooperation, and on the self-discipline of the involved par-
ticipant as opposed to mechanisms that are designed specif-
ically to support collaboration. Hence, there is an urgent
need for knowledge representation formalisms, as well as
systems and and software for COB. In what follows, we de-
scribe an approach based on an organization of a complex
ontology into ontology modules or packages [1].

3 COB: An Approach Based on Modular On-
tology Packages

Many of the drawbacks of current approaches to COB
arise from lack of support for localizing the interactions
among different parts of a large ontology. The primary
source of this difficulty is the lack of an organizational
structure which forces us to treat an ontology in its entirety.
In other words, the current state of knowledge representa-
tion languages for ontologies is reminiscent of the early pro-
gramming languages which lacked support for organizing

programs into coherent units (e.g., subroutines).

3.1 Organizing Ontologies into Packages

We observe that an ontology that results from collabo-
ration among multiple experts or research groups can be
viewed as consisting of smaller modules, calledpackages
[1]. Each such package encapsulates a closely related set
of terms and relations between terms. Together, these terms
and relations represent the ontological commitments of an
individual expert or a research group (or a sub-community)
regarding a small, coherent part of the universe of discourse
(e.g., traits of interest to the livestock community).

Definition 1 (Package) LetS be the set of all terms andR
be the set of all relations of an ontologyO = (S,R). A
packageP = (SP , RP ) of the ontologyO is a fragment of
O, such thatSP ⊆ S and RP ⊆ R. A term or relation
t ∈ SP ∪RP is said to be amemberof P , i.e.,t ∈ P . P is
called thehome packageof t.

For example, ATO is an ontology,Pig is a package in
ATO, “LoinEyeArea” and “MeatQuality” are terms inPig;
subclassOf(“LoinEyeArea”, “MeatQuality”) is a relation in
Pig; “LoinEyeArea” is a member ofPig and Pig is the
home package of “LoinEyeArea”.

Note that the relations in an ontology package specify its
semantic structure. However, COB calls for recognition of
theorganizational structureof an ontology.

The package-based ontology language [1] offers lan-
guage constructs that allow an ontology package to be de-
clared as asub packageof another package. Suchorganiza-
tional relations among packages allow specification of the
organizational structure of an ontology in terms of hierar-
chical nesting of packages.

Definition 2 (Package Nesting)A package P1 can be
nested in one and only one other packageP2. This is de-
noted byP1 ∈N P2. P1 is said to be asub packageof
P2 and P2 is the super packageof P1. The collection of
all package nesting relations in an ontology constitutes the
organizational hierarchyof the ontology.

For example, the packagePig can contain smaller pack-
ages, such asPigMeatQuality and PigHealth. Pig-
MeatQuality (the sub package) is nested inPig (the super
package).

Modular structure of ontologies can be exploited in COB
in several ways:

Division of Labor : A package consists of a set of closely
related terms and relations in a smaller sub domain (e.g.,
pig traits) of a main domain. Therefore, a package can be
assigned to curators or experts with the best knowledge of
the relevant sub-domain. The package hierarchy helps orga-
nize and manage interactions among collaborating groups
of sub-domain experts with different degrees and scopes of
expertise.

3



Scalability: When the ontology has a modular struc-
ture, a curator is not required to work with the entire on-
tology. Instead, the curator can download and edit one or
more packages that fall within his or her (sub) domain of
expertise, while other packages are being edited by other
curators. Because the effects of edits arelocalized, dif-
ferent curators can independently work on packages e.g.,
PigMeatQuality and PigHealth, that belong to different
parts of the organizational hierarchy. This simplifies the
task of propagating the effect of changes within individ-
ual packages through the rest of the ontology. The result
is significant reduction in communication overhead, com-
putational cost (e.g., parsing, consistency check), memory
requirements, as well as the cost of history tracking in col-
laborative editing of very large ontologies.

Partial Reuse: Ontologies with modular structure can
be partially reused. For example, a user interested in pig
traits would only need to download packages about pig
(e.g.,Pig andPigMeatQuality), and avoid having to deal
with ontology packages such asCattle andHorse which
are no interest to the user.

Broadened Participation: One of the reasons behind
the success of the world-wide web is the network effect: A
large number of users were able to contribute modules (web
pages) that make up the world-wide web. The power of
the network effect is confirmed by experience with DMOZ
and Wikipedia projects. Effective COB environments can
enable broader participation of the scientific community in
ontology building efforts without sacrificing the quality of
the resulting ontology. Specifically, a user with the appro-
priate privileges can make a change to thePigMeatQuality
package (as opposed to just proposing such a change for
consideration via an email list); this change could be ap-
proved or denied by a curator with higher privileges.

3.2 The COB Editor

Based on our package-based ontology framework, we
have developed ATO Editor2, a modular ontology editor for
building and deploying large animal trait ontologies. ATO
Editor is a customized version of COB Editor, a collabo-
rative ontology building environment for partial order on-
tologies. The editor allows ontology developers to create
a community-shared ontology server with remote database
storage and support for concurrent browsing and editing of
an ontology. Specifically, the current implementation of the
COB Editor offers support for:

Modular Ontologies: A large ontology is organized into
packages with nested scope. This helps localize the effects
of changes to an ontology in a setting where multiple ex-
perts collaborate in developing a large ontology.

Database Storage for Ontologies: The ontology is
stored on a relational database server (e.g., Postgres); a user

2http://www.animalgenome.org/bioinfo/projects/ATO/

can connect to the server and check out one or more pack-
ages, edit them, and check them back in the database (when
finished with editing). Database storage allows retrieval of
only the relevant parts of an ontology (as opposed to the
entire ontology).

Concurrent Editing : Multiple users can concurrently
edit an ontology, through appropriate locking mechanisms,
without a user inadvertently overwriting the work of others.
Thus, different modules of an ontology can be developed by
different authors. A user can edit an ontology by editing one
or more packages. The packages being edited are locked
for writing and unlocked when a the user submits the edited
version(s) of the checked out package(s)

Change Tracking: When a user submits an updated ver-
sion of an ontology module, the ontology server automati-
cally creates the change log for affected terms and relations
in the package. This feature can be used to track the history
and if necessary, to revert a term or a relation to its previous
version.

User Privilege Management: Authors of the ontology
can have different levels of privileges (such as ontology ad-
ministrator, and package administrator) over modules in an
ontology. The author of a package can authorize other users
the access to certain terms, therefore controlling the exten-
sibility of that package.

Graphical User Interface (GUI): Users can browse and
edit DAG-structured ontologies using a GUI.

Import and Export of Ontologies in Multiple For-
mats: Users can import and export ontologies in several
standard formats, such as OBO (Open Biomedical Ontolo-
gies) and OWL into and out of the COB Editor.

Furthermore, using COB Editor, users can create an on-
tology that consists of bothis-a as well aspart-of hierar-
chies, with some terms being shared by both hierarchies (if
necessary). Such ontologies are quite common in life sci-
ences.

The editing process in COB Editor is summarized in Fig.
3.

Get Ontology

Account


Check out a

package


Curator

Create new


package


or
 Lock Package


Edit the

Package


Commit the

Package


(Auto) Server

Change Log


Figure 3. Collaborative Ontology Building
with Package-extended Ontology

4 Related Work
With the growing need for ontologies, several research

groups have tried to develop ontology editors [6]. How-
ever, most of the existing ontology editors, including the

4



most widely used ontology editors, such as Protege3 and
DAG-Edit [2], provide at best extremely limited support for
collaborativeontology development. Support for collab-
orative ontology development has begun to receive some
attention, for example in systems such as CODE [7], On-
toEdit 4, Ontolingua [4], and WebODE [9]. Most of them
provide concurrent access control with transaction oriented
locking, and in some cases, even rollback. However, to the
best of our knowledge, none of the existing ontology editors
offer support for a modular ontology representation - a fea-
ture that is critical for collaborative development of large
ontologies by communities of users. Many of the current
ontology editors use file-based centralized storage - that is,
the entire ontology is stored in a large file. Consequently,
parsing, editing, consistency checking, and change track-
ing processes do not scale to large ontologies. Even the
systems that provide database storage for ontologies (e.g.,
Protege-OWL) use in-memory models of the whole ontol-
ogy for editing and reasoning. In contrast, the COB tools
proposed in this paper complement existing ontology de-
velopment tools in areas where there is a need for active
collaboration among experts in developing ontologies in do-
mains where the complete ontology can be naturally viewed
as consisting of many loosely coupled modules.

5 Summary and Discussion

Ontologies that identify and define the entities and re-
lationships in specific domains of interest offer a powerful
approach for annotating biological data in a form that allows
users and software tools to retrieve, inter-relate, and extract
biological knowledge from such data. With the rapid pro-
liferation of data sources, services, and ontologies, there is
an urgent need for software tools for collaborative devel-
opment of ontologies, as well as sharing and integration of
independently developed ontology fragments.

Although there are several existing tools for developing
ontologies, there are few that support collaborative develop-
ment of large biological ontologies. The COB Editor aims
to provide a tool for active collaboration among a commu-
nity of experts in developing a large ontology. The ATO
Editor, a version of the COB Editor, designed for use by the
Animal Genomics Community, offers a proof of concept of
a software tool based on our approach to development of
language constructs that allow specification of an organiza-
tional structure of a complex ontology into a hierarchy of
modules, system features (database storage, use privilege
management, change tracking, etc).

Work in progress is aimed at:
• Promoting collaborative development and use of ATO

by engaging a community of users with expertise in the rel-
evant (sub) domains

3http://protege.stanford.edu/
4http://www.ontoknowledge.org/tools/ontoedit.shtml

• Further development of COB tools to allow collabo-
rative development of other ontologies (e.g., OBO - Open
Biomedical Ontologies) including ontologies that are more
expressive than partial order ontologies that are currently
supported by COB Editor• Accommodation of existing on-
tologies (such as GO) within the COB environment through
appropriate partitioning of such ontologies into packages
organized into a coherent organizational hierarchy
• Inference mechanisms to ensure the consistency of on-

tology packages.
• Support for semantic integration of semantically het-

erogeneous ontologies via inter-ontology mappings
AcknowledgmentThis research is supported in part by

grants from the NSF (IIS 0219699), the NIH (GM 066387)
to Vasant Honavar and the USDA NAGRP Bioinformatics
Coordination Project to James Reecy and research assis-
tantship support for Jie Bao from the Center for Integrative
Animal Genomics (CIAG), Iowa State University.

References

[1] J. Bao, D. Caragea, and V. Honavar. Towards collaborative
environments for ontology construction and sharing. InIn-
ternational Symposium on Collaborative Technologies and
Systems (CTS 2006), pages 99–108. IEEE Press, 2006.

[2] J. Day-Richter. Dag-edit: A controlled vocabulary editor. In
http://www.godatabase.org/dev/java/dagedit/docs/. 2004.

[3] C. Discala, X. Benigni, E. Barillot, and G. Vaysseix. Db-
cat: a catalog of 500 biological databases.Nucleic Acids
Research, 28(1):8–9, 2000.

[4] A. Farquhar, R. Fikes, W. Pratt, and J. Rice. Collaborative
ontology construction for information integration. InTech-
nique Reports of Knowledge Systems Laboratory, Depart-
ment of Computer Science, KSL-95-63. 1995.

[5] Gene Ontology Consortium. Go editor guides. In
http://www.geneontology.org/GO.contents.curator.guides.shtml.
2005.

[6] A. Gomez-Perez, J. Angele, M. Fernandez-Lopez,
V. Christophides, A. Stutt, and Y. Sure. On-
toweb deliverable 1.3: A survey on ontology tools,
http://ontoweb.org/about/deliverables/d13v1-0.zip/. 2002.

[7] P. Hayes, R. Saavedra, and T. Reichherzer. A collabora-
tion development environment for ontologies. InProceed-
ings of the Semantic Integration Workshop, Sanibel Island,
Florida,. 2003.

[8] C. Mungall. Integrated ontologies for biological annotation:
The national center for biomedical ontologies. InThe First
International Biocurator Meeting. Pacific Grove, CA, De-
cember 8-11, 2005. 2005.

[9] J. C. A. Vega, Ó. Corcho, M. Fernández-López, and
A. Gómez-Pérez. Webode: a scalable workbench for on-
tological engineering. InK-CAP, pages 6–13. 2001.

[10] I. Yeh, P. D. Karp, N. F. Noy, and R. B. Altman. Knowledge
acquisition, consistency checking and concurrency control
for gene ontology (go). Bioinformatics, 19(2):241–248,
2003.

5


	Introduction
	Desiderata of COB in Biology
	Requirement of COB Environments
	CVS-based Collaboration and its Limitations

	COB: An Approach Based on Modular Ontology Packages
	Organizing Ontologies into Packages
	The COB Editor

	Related Work
	Summary and Discussion

