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Abstract

Many semantic web applications require support for
mappings between roles (or properties) defined in mul-
tiple independently developed ontology modules. Dis-
tributed Description Logics (DDL) and Package-based
Description Logics (P-DL) offer alternative logical for-
malisms that support such mappings. We prove that (a)
variants of DDL that allow negated roles or cardinality
restrictions in bridge rules or inverse bridge rules that
connect ALC ontologies are undecidable; (b) a variant
of P-DL ALCHIO(¬)P that support role mappings
between ontology modules inALCHIO(¬) (an exten-
sion ofALC that allows general role inclusions, inverse
roles, nominals and negated roles) is decidable.

Introduction
Ontologies play a central role in current efforts aimed at

developing a semantic web by enriching the web with ma-
chine interpretable content and interoperable resources and
services. In such a setting, instead of a single, centralized
ontology, it is much more realistic to have multiple, indepen-
dently developed, distributed ontology modules that cover
different, perhaps partially overlapping, domains of exper-
tise. However, many application scenarios require selec-
tive, and perhaps context-sensitive use of knowledge from
multiple ontology modules with the help of ontology map-
pings. For example, consider two ontology modules O1 and
O2 describing monarchies and people respectively. Suppose
O1 contains the concept King and a role (binary relation be-
tween individuals) marriedTo; and O2 contains the concept
Male and a role knows. We may want to assert mappings
like “any individual who is a King (as defined in O1) is a
Male (as defined in O2)”, and “any pair of individuals that
belongs the marriedTo relation (as defined in O1) is also a
member of the knows relation (as defined in O2)”.

Against this background, several frameworks for map-
pings between ontology modules have been explored in
the literature. Typically such a framework is expressed
in some decidable family of description logics (DL) aug-
mented with constructs that allow some way of connecting
symbols across ontology modules . Examples include dis-
tributed description logics (DDL)(Borgida & Serafini 2002;
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Ghidini & Serafini 2006), E-Connections (Grau, Parsia, &
Sirin 2004), package-based description logics (P-DL) (Bao,
Slutzki, & Honavar 2007) and semantic binding (Zhao et al.
2007). Among those proposals, DDL and P-DL currently
provide the ability for mappings between roles.

The focus of this paper is on variants of modular on-
tologies that support mappings (e.g., inter-module inclusion
relationships) between roles defined in different ontology
modules. In particular, we explore the decidability of a
network of ontology modules interconnected via role map-
pings, as decidability is a necessary prerequisite for auto-
mated reasoning. Recent work has explored several decid-
able fragments of DDL (Ghidini & Serafini 2006) and P-DL
(Bao, Slutzki, & Honavar 2007). However, little is known
about the the precise conditions under which a collection of
ontology modules (each expressed in a decidable fragment
of DL) linked by role mappings between ontology modules
is decidable. Against this background, in this paper we ex-
plore the decidability of several variants of DDL wherein
each of the individual ontology modules is expressible in
ALC, a useful, decidable fragment of DL. We show that
if role mappings are combined with some otherwise useful
features including negated roles, cardinality restrictions in
bridge rules, or inverse bridge rules, they yield an undecid-
able DDL. We also establish the decidability of P-DL with
unrestricted role inclusion between ontology modules when
each module is in ALCHIO(¬), a language that extends
ALC with general role inclusions, inverse roles, nominals
and negated roles.

Preliminaries: DDL and P-DL
In this section, we briefly introduce the syntax and seman-

tics of DDL and P-DL.

DDL
Given a non empty set I of indices, a DDL distributed

TBox is of the form 〈{Ti}, {Bij}i 6=j〉, where each Ti is a DL
TBox, and each Bij is the collection of bridge rules from
Ti to Tj . In (Ghidini & Serafini 2006), each module Ti is
assumed to be in SHIQ. A bridge rule from i to j is an
expression in either one of the two forms:

• (into bridge rule) i : X
v−→ j : Y

• (onto bridge rule) i : X
w−→ j : Y



where i : X is a concept of Ti, j : Y is a concept of Tj , or
i : X is a role of Ti, j : Y is a role of Tj .

For example, a role mapping in DDL could be i :
marriedTo

v−→ j : knows to indicate that every pair in the
relation marriedTo is also in the relation knows. The two
roles marriedTo and knows are in different ontologies.

The semantics of DDL assigns to each Ti a local inter-
pretation domain ∆Ii . A domain relation rij is a subset
of ∆Ii × ∆Ij . For d ∈ ∆Ii , we use rij(d) to denote
{d′ ∈ ∆Ij |〈d, d′〉 ∈ rij}. For any subset D of ∆Ii , we
use rij(D) to denote

⋃
d∈D rij(d). For any R ∈ ∆Ii×∆Ii ,

we use rij(R) to denote
⋃
〈d,d′〉∈R rij(d)× rij(d′). For any

x, y, if y ∈ rij(x), we say that x is a preimage of y and y is
an image of x.

The domain relation rij satisfies a bridge rule in Bij ac-
cording to the following rules:

• i : X
v−→ j : Y : if rij(XIi) ⊆ Y Ij

• i : X
w−→ j : Y : if rij(XIi) ⊇ Y Ij

A distributed interpretation J = 〈{Ii}i∈I , {rij}i 6=j〉 sat-
isfies a DDL distributed TBox Σ = 〈{Ti}, {Bij}i 6=j〉, de-
noted J ² Σ, if, for every i, Ii ² Ti and for every i 6= j,
rij satisfies all bridge rules in Bij . Concept i : C is satisfi-
able with respect to Σ if there is a J such that J ² Σ, and
CIi 6= ∅.

For convenience, we introduce the naming system of DDL
languages. For each DDL language, its name is the con-
catenation of a DL language, of which each local TBox is
a subset, followed by the letter D. In particular, we use DC
to denote DDLs that allow bridge rules between concepts
and DCR to denote DDLs that allow bridge rules between
concepts and between roles. For example, ALCDCR stands
for a DDL language that supports bridge rules between con-
cepts and between roles, and each module of which is in a
language weaker or equivalent to the DL ALC.

Reductions from SHIQDC and SHIQDCR to SHIQ
have been given in (Borgida & Serafini 2002) and (Ghidini
& Serafini 2006), respectively. The decidability of SHIQ,
combined with these reductions, immediately implies
Proposition 1 The DDLs SHIQDC and SHIQDCR are
decidable.

P-DL
P-DL allows role mappings by using a semantic importing

approach. A P-DL ontology is a set {Pi}, where each Pi is
a package. The signature of each package Pi is divided into
two disjoint sets: its local signature Loc(Pi) and its external
signature Ext(Pi). If a name X ∈ Loc(Pi) ∩ Ext(Pj), we
say that Pj imports (X from) Pi. Pi’s importing transitive
closure, including itself, is denoted as P ∗i .

Each package may contain a set of concept inclusions and
a set of role inclusions. Concepts and roles in each pack-
age may be constructed starting from atomic concepts and
atomic roles in the usual recursive way. The major differ-
ence from ordinary DL is that, for a P-DL package Pi, the
top concept (>) and negation (¬) are replaced by a contextu-
alized top >i and a contextualized negation ¬i. A package

Pi may use >k and ¬k in constructing its concept expres-
sions only if Pi imports Pk.

Role mappings are supported by P-DL with unrestricted
role inclusions and role importing. For example, suppose
package Pj imports the role i : marriedTo from package
Pi. Then a role mapping can be represented as a local role
inclusion i : marriedTo v j : knows in Pj .

The naming of P-DL languages is similar to that of DDL.
We use P to denote the package extension. For example,
ALCOP is a P-DL language that allows the importing of
concept, role and nominal names between ALCO modules.

For a P-DL ontology Σ = {Ti}, an interpretation of Σ is
a pair I = 〈{Ii}, {rij}Pi∈P∗j 〉. Each of the local interpreta-
tions Ii = 〈∆Ii , ·Ii〉 interprets each concept expression in
Pi starting from assigned interpretations of atomic (concept,
role and nominal) names. For example, concept negation
and existential restriction are interpreted as

(¬jC)Ii = rji(∆Ij )\CIi

(∃R.C)Ii = {x ∈ rki(∆Ii)|∃y ∈ ∆Ii , (x, y) ∈ RIi

∧ y ∈ CIi},
where R is a k-role and C is a concept.

An interpretation I is a model of Σ = {Pi} if
⋃

i ∆Ii 6= ∅
and the following conditions are satisfied.

1. For all i, j, such that Pi ∈ P ∗j , rij is one-to-one;
2. Compositional Consistency: For all i, j, k, Pi ∈ P ∗k and

Pk ∈ P ∗j , we have ρij = rij = rkj ◦ rik, where ρij is
the projection on ∆Ii × ∆Ij of the equivalence relation
on

⋃
i ∆Ii generated by

⋃
i∈P∗j

rij ;

3. For every name X ∈ Loc(Pi) ∩ Ext(Pj), rij(XIi) =
XIj ;

4. Cardinality Preservation: For every role name R ∈
Loc(Pi) ∩ Ext(Pj) and every (x, x′) ∈ rij , we have
(x, y) ∈ RIi iff (x′, rij(y)) ∈ RIj ;

5. Ii ² Pi, for every i.

A concept C is satisfiable as witnessed by Pw if there is a
model of P ∗w, such that CIw 6= ∅.

In (Bao, Slutzki, & Honavar 2007), a P-DL SHOIQP
was presented, which allows both role importing and role
inclusions. However, the decidability proof of SHOIQP
relies on a reduction to the DL SHOIQ, which is only pos-
sible when imported roles do not appear in role inclusions.
We will denote this restricted version of SHOIQP , i.e., in
which role inclusion may be applied only between two local
role names (or their inverses), as SH−OIQP . The reduc-
tion presented in (Bao, Slutzki, & Honavar 2007) shows that

Proposition 2 P-DL SH−OIQP is decidable.

However, the decidability of P-DLs that support unre-
stricted role inclusion (“H”) is still an open problem.

Undecidable Extensions of DDL
In this section, we will investigate the decidability of sev-

eral useful extensions of DDL. Each extension is obtained
by alternatively considering each of the following features:



• Role negation (denoted as (¬)): Allows negated roles to
be used in local TBoxes and bridge rules. A negated role
¬R in a TBox Ti is interpreted as (∆Ii ×∆Ii)\RIi .

• Inverse bridge rules (denoted as DI): Allow bridge rules
in both directions. An into inverse bridge rule i : X

v←−
j : Y has the semantics XIi ⊆ r−ij(Y

Ij ), and an onto

inverse bridge rule i : X
w←− j : Y has the semantics

XIi ⊇ r−ij(Y
Ij ).

• Cardinality restrictions on domain relations (denoted as
DN ): Allow bridge rules of the form ./n−−→ G (where
./∈ {≤,≥,=}) in Bij to indicate that for any x ∈ GIj ,
|r−ij(x)| ./ n.

We show thatALC(¬)DCR, ALCDCRN andALCDCRI
are all undecidable. All proofs are by a reduction of the un-
decidable domino tiling problem (Berger 1966) to a concept
satisfiability problem in DDL.

Definition 1 (Domino System) A domino system D =
(D, H, V ) consists of a non-empty set of domino types D =
{D1, ..., Dn}, a horizontal matching condition H ⊆ D×D
and a vertical matching condition V ⊆ D × D. The prob-
lem is to determine if, for a given D, there exists a tiling
of the infinite N × N grid, such that each of its points is
covered with a domino type in D and all horizontally and
vertically adjacent pairs of domino types are in H and in
V , respectively. In other words, a solution to the problem
is a mapping t : N × N → D, such that, for all m,n ∈ N,
〈t(m,n), t(m+1, n)〉 ∈ H and 〈t(m,n), t(m,n+1)〉 ∈ V .

Undecidability of ALC(¬)DCR
We first show that the DDL ALC(¬)DCR, i.e., ALCDCR

extended with role negations, is undecidable. The reduc-
tion is accomplished by the construction of anALC(¬)DCR
ontology Σ1, such that a solution to the domino system
can be constructed from a model of Σ1 and vice versa.
Let D = (D, H, V ) be a domino system. Construct an
ALC(¬)DCR ontology Σ1 = 〈{T1, T2}, {B12,B21}〉, where
the local signature of Tk consists of a role name vk and a
concept name Dk

i for each Di ∈ D, k = 1, 2. Tk consists of
the following concept inclusions:

>k v t
1≤i≤n

(
Dk

i u ( u
j 6=i
¬Dk

j )
)

(1)

Dk
i v ∃vk.>k u ∀vk. t

(Di,Dj)∈V
Dk

j , ∀i (2)

Bk,3−k contains bridge rules:

¬( t
(Di,Dj)∈H

Dk
j

) v−→ ¬D3−k
i ∀i (3)

vk
w−→ v3−k (4)

¬vk
v−→ ¬v3−k (5)

Intuitively, Σ1 contains subsumptions and bridge rules
that ensure that each of its models encodes a grid structure
corresponding to a solution of the tiling problem D. The
structure (see Figure 1) has alternating columns that belong

to the local domains of T1 and T2, respectively. All vertical
edges represent interpretations of local roles (v1 and v2) and
all horizontal edges represent domain relations (r12 and r21).
More precisely, Axiom (1) states that, in each local domain,
every individual belongs to one and only one type. Axiom
(2) ensures that every individual has a vertical successor and
all vertical successor relations satisfy the vertical matching
condition V . Axiom (3) enforces the horizontal matching
condition H . Axiom (4) ensures that every individual has
a horizontal successor. Finally, Axiom (5) puts a finishing
touch to the grid by closing some gaps.

Lemma 1 D has a solution iff >1 is satisfiable in Σ1.

Proof sketch: Clearly, if D has a solution, it corresponds
to a model of Σ1 with >I1

1 6= ∅. We only need to show the
other direction. Suppose there is a model of Σ1 such that
>I1

1 6= ∅ (see Figure 1). Let x0,0 ∈ >I1
1 . Then, according

to Σ1, x0,0 belongs to one and only one type D1
0,0 (Axiom

1) and has a v1 (vertical) successor x0,1 (Axiom 2), which
belongs to one and only one type D1

0,1 (Axiom 1), and
(D0,0, D0,1) ∈ V , i.e., the vertical matching condition is
satisfied (Axiom 2). According to Axiom 4, there must
be a pair 〈x1,0, x1,1〉 ∈ vI2

2 in domain ∆I2 , such that
〈x1,0, x0,0〉, 〈x1,1, x0,1〉 ∈ r21. Let D2

1,0 be the type of
x1,0. Then, according to Axiom 3, (D0,0, D1,0) ∈ H ,
i.e., the horizontal matching condition is satisfied. By a
similar analysis, it is easy to see that all edges in the grid
structure satisfy the vertical and the horizontal matching
conditions. According to Axiom 1, x0,1 has a v1 successor
x0,2, and 〈x0,1, x0,2〉 has a preimage 〈x′1,1, x1,2〉 ∈ vI2

2 .
Note that x′1,1 and x1,1 are not required to be same. Let us
assume that 〈x1,1, x1,2〉 6∈ vI2

2 , i.e., 〈x1,1, x1,2〉 ∈ (¬v2)I2 .
Then, according to Axiom 5, 〈x0,1, x0,2〉 ∈ (¬v1)I1 ,
which contradicts that 〈x0,1, x0,2〉 ∈ vI1

1 . Therefore,
〈x1,1, x1,2〉 ∈ vI2

2 . Thus, the second square in the grid is
finished. By similar constructions along both the vertical
and the horizontal direction, we can extract from a model of
Σ1, with >I1

1 6= ∅, a grid that corresponds to a solution of
D. Q.E.D.

An immediate consequence of Lemma 1 is that:

Theorem 1 The DDL ALC(¬)DCR is undecidable.

Undecidability of ALCDCRI
Inverse bridge rules are useful when backward propaga-

tion of knowledge between ontology modules is needed.
They may also help in avoiding several modeling problems
related to the fact that, in (·)DCR, domain relations can be
empty sets and, hence, do not transfer information (Stucken-
schmidt, Serafini, & Wache 2006). For example, an inverse
bridge rule >i

v←− >j requires that every individual in the
local domain i has at least one image in the local domain j.

However, we show that extending the DDL ALCDCR
with inverse bridge rules between roles also leads to unde-
cidability. The proof is based on a similar reduction from the



Figure 1: Undecidability of Several DDL Extensions

domino tiling problem D to the concept satisfiability prob-
lem in an ALCDCRI ontology. In fact, such an ontology
Σ2 = 〈{T1, T2}, {B12,B21}〉 is constructed using Axioms
(1)-(4) together with the following two inverse bridge rules
that help enforce the grid structure (for k = 1, 2):

vk
w←− v3−k (6)

Intuitively, Axiom (6) requires that every preimage of an
instance of vk be an instance of v3−k.

Lemma 2 D has a solution iff >1 is satisfiable in Σ2.

Proof sketch: It is easy to see that a solution of D cor-
responds to a model of Σ2 with >I1

1 6= ∅. For the other
direction, we only need to show that Axiom (6) indeed
enforces the grid structure. This can be done by a sim-
ilar construction to that used for ALC(¬)DCR. In Fig-
ure 1, suppose that the boxes (x0,0, x0,1, x1,0, x1,1) and
(x0,1, x0,2, x

′
1,1, x1,2) have already been constructed. Then,

according to Axiom (6), 〈x1,1, x1,2〉 ∈ vI2
2 , which com-

pletes the box (x0,1, x0,2, x1,1, x1,2). Employing a similar
argument, we can complete the tiling of the entire plane us-
ing the given model of Σ2. Q.E.D.

Thus, by Lemma 1, we obtain

Theorem 2 The DDL ALCDCRI is undecidable.

Undecidability of ALCDCRN
Cardinality restrictions on domain relations have been

proposed as a useful feature by several authors. In (Serafini,
Borgida, & Tamilin 2005), introduction of bridge rules of
the form

≤1−−→ G has been proposed to avoid the problem
of incomplete modeling by enforcing the partial injectivity
of domain relations relative to the concept G. Cardinality
restrictions on inter-domain relations are also provided by
E-Connections (Grau, Parsia, & Sirin 2004), another modu-
lar ontology language, to express number restrictions, such
as “1 : DogOwner (a concept in ontology 1) owns at least
one 2 : Dog (another concept in ontology 2)”. Unfortu-
nately, extending ALCDCR with cardinality restrictions on
domain relations, thus forming ALCDCRN , again results in
undecidability.

The undecidability proof for ALCDCRN is also by a re-
duction of the domino tiling problem. Let D = (D, H, V )
be a domino system. An ALCDCRN ontology Σ3 =
〈{T1, T2}, {B12,B21}〉 contains Axioms (1)-(4) together
with the following bridge rule in B3−k,k (for k = 1, 2):

≤1−−→ >k (7)

Axiom (7) means that every individual in the local domain
∆Ik has at most one preimage in the local domain ∆I3−k .
This axiom ensures that a model of Σ3 contains an encoding
of a grid structure, resulting in a tiling of the plane.

Lemma 3 D has a solution iff >1 is satisfiable in Σ3.

Proof sketch: We use again Figure 1 to illustrate the
proof. The main difference from the previous two proofs
lies in relying on the inverse functionality of domain rela-
tions to complete the grid. For example, if x0,1 has two
preimages x1,1 and x′1,1, then, according to Axiom (7), they
must be the same individual. Hence, the edge 〈x1,1, x1,2〉 =
〈x′1,1, x1,2〉 ∈ vI2

2 . Thus, we can tile an infinite plane using
a grid construction in this way. Q.E.D.

This lemma, together with the undecidability of the
domino tiling problem, yields

Theorem 3 The DDL ALCDCRN is undecidable.

Decidable P-DL Family ALCHIO(¬)P
The P-DL Family ALCHIO(¬)P

In this section, we show that the two P-DLs
ALCHIO(¬)CRP and ALCHIO(¬)RP , constitut-
ing the family ALCHIO(¬)P , extending the P-DL ALCP
with role importing, general role inclusions (thus, sup-
porting role mappings between ontologies), inverse roles,
nominals, nominal importing, and negation on roles are
decidable. The syntax of both P-DLs in ALCHIO(¬)P
can be obtained from ALCHIOP with (contextualized)
negations on roles. Thus, roles of a package Pj in both
P-DLs in ALCHIO(¬)P are defined inductively by the
following grammar:

R := p|R−|¬kR

where p is a local or imported role name, and Pj imports
Pk. A role of the form ¬kR is called a k-negated role.
The semantics of role negation is given by (¬kR)Ij =
(rkj(∆Ik)× rkj(∆Ik))\RIj .

Depending on whether negated roles can be used or
not in concept inclusions, the two members of the family
ALCHIO(¬)P are given by:

• ALCHIO(¬)CRP: negated roles can be used in both
concept and role inclusions. If an i-role name P is im-
ported by Pj , we require that the cardinality preservation
condition holds for both P and ¬iP .

• ALCHIO(¬)RP: negated roles can only be used in role
inclusions. In this variant, we only require cardinality
preservation for imported role names but not their nega-
tions.



Consideration of these two P-DLs and the respective con-
ditions imposed in each case are motivated by the desire to
achieve transitive reusability of knowledge using a minimal
set of restrictions on domain relations between local models.

The decidability proofs of the P-DLs in ALCHIO(¬)P
use a reduction to the decidable DL ALBO (Schmidt &
Tishkovsky 2007). The logic ALBO extends ALC with
boolean role operators, role inclusions, inverses of roles, do-
main and range restriction operators and nominals.

In ALBO, roles are defined inductively by the following
grammar:

R := p|R uR|R−|¬R|(R º C)|(R » C)

where p is a role name and C is a concept. The semantics
of ALBO is defined as an extension of that of ALCHIO
with the following additional constraints on interpretations
(where ∆I is the interpretation domain):

(¬R)I = (∆I ×∆I)\RI
(R u S)I = RI ∩ SI

(R º C)I = RI ∩ (∆I × CI)

(R » C)I = RI ∩ (CI ×∆I)

We use the abbreviation R l C = (R º C) » C.

Decidability of P-DL ALCHIO(¬)CRP
A reduction < from an ALCHIO(¬)CRP KB Σd =

{Pi} to an ALBO KB Σ can be established based on the
reduction of P-DL SHOIQP to SHOIQ, as presented in
(Bao et al. 2008), with a couple of modifications to han-
dle role inclusions: #j() is also applied to roles and that a
negated local domain and a negated local range axiom for
roles are added to the ALBO KB Σ.

• The signature of Σ is the union of the local signatures of
the component packages together with a global top >, a
global bottom ⊥ and local top concepts >i, for all i, i.e.,
Sig(Σ) =

⋃
i Loc(Pi) ∪ {>i} ∪ {>,⊥}.

• For all i, j, k such that Pi ∈ P ∗k , Pk ∈ P ∗j , >iu>j v >k

is added to Σ.

• For each GCI or role inclusion X v Y in Pj , #j(X) v
#j(Y ) is added to Σ. The mapping #j() is defined be-
low.

• For each i-concept name or i-nominal name C in Pi, i :
C v >i is added to Σ.

• For each i-role name R in Pi, its domain and range is >i,
i.e., > v ∀R−.>i and > v ∀R.>i are added to Σ.

• For each i-role name R in Pj , the following axioms are
added to Σ:
− ∃R.>j v >j ; (local domain)
− ∃R−.>j v >j ; (local range)
− ∃((¬R) l >i).>j v >j ; (negated local domain)
− ∃((¬R) l >i)−.>j v >j ; (negated local range)

For a formula X used in Pj , #j(X) is:

• X , for a j-(concept, role or nominal) name.

• X u >j , for an i-concept name or an i-nominal name X .
• X l >j , for an i-role name.
• #j(Y )−, for a role X = Y −.
• ¬#j(X) u >i u >j , for ¬iX , where X is a concept.
• ¬#j(Y ) l (>i u >j), for a role X = ¬iY .
• (#j(X1)⊕#j(X2))u>j , for a concept X = X1 ⊕X2,

where ⊕ = u or ⊕ = t.
• (⊕#j(R).#j(X ′)) u >i u >j , for a concept X =

(⊕R.X ′), where ⊕ ∈ {∃,∀} and R is an i-role or an
i-negated role.

The following lemma shows that the consistency problem
inALCHIO(¬)P can be reduced to the concept satisfiabil-
ity problem in ALBO:

Lemma 4 AnALCHIO(¬)CRP KB Σ is consistent as wit-
nessed by a package Pw if and only if >w is satisfiable with
respect to <(P ∗w).

Proof sketch: The proof is similar to the proof of Theo-
rem 1 in (Bao et al. 2008). The main modification concerns
the reduction of role inclusion axioms. The basic idea is that,
given a distributed model of Σ, we can construct an ordinary
model of <(P ∗w) by “merging” individuals connected by do-
main relations. Given a model of <(P ∗w), we can construct a
distributed model of Σ by “copying shared individuals” into
local interpretation domains.

For the “if” direction, if >w is satisfiable with respect to
<(P ∗w), then <(P ∗w) has at least one model I = 〈∆I , ·I〉,
such that >Iw 6= ∅. Our goal is to construct a model of P ∗w
from I, such that ∆Iw 6= ∅. For each package Pi, a local
interpretation Ii is constructed in the following way:
• ∆Ii = >Ii .

• For every concept name C in Pi, CIi = CI ∩ >Ii .

• For every role name R in Pi, RIi = RI ∩ (>Ii ×>Ii ).

• For every nominal name o that appears in Pi, oIi = oI .
For every pair i, j, such that Pi ∈ P ∗j , we define

rij = {(x, x)|x ∈ ∆Ii ∩∆Ij}.
Clearly, we have ∆Iw = >Iw 6= ∅. So it suffices to

show that 〈{Ii}, {rij}Pi∈P∗j 〉 is a model of P ∗w. The proof
is similar to (Bao et al. 2008). We will only show that if
#j(X) v #j(Y ) is satisfied by I, then X v Y is satisfied
by Ij . To accomplish this, it suffices to show that for any
role X in the signature of Pj , #j(X)I = XIj :

• If X is a j-role name, #j(X)I = XIj by definition.

• If X is a i-role name, i 6= j, #j(X)I = (X l >j)I =
XI ∩ (∆Ij ×∆Ij ) = XIj .

• If X = Y − and #j(Y )I = Y Ij , then #j(X)I =
(#j(Y )−)I = (#j(Y )I)− = (Y Ij )− = (Y −)Ij =
XIj .

• If X = ¬iY and #j(Y )I = Y Ij , then #j(X)I =
(¬#j(Y ) l (>i u >j))I = ((∆Ii ∩ ∆Ij ) × (∆Ii ∩
∆Ij ))\Y Ij = (¬iY )Ij = XIj .



For the “only if” direction, suppose that Σ is consis-
tent as witnessed by Pw. Thus, Σ has a distributed model
〈{Ii}, {rij}Pi∈P∗j 〉, such that ∆Iw 6= ∅. We construct a
model I of <(P ∗w) by merging individuals that are related
via chains of image domain relations or their inverses. More
precisely, for every element x in the distributed model, we
define its equivalence class x = {y|(x, y) ∈ ρ}, where ρ is
the symmetric and transitive closure of the set

⋃
Pi∈P∗j

rij .

For a set S, we define S = {x̄|x ∈ S} and, for a binary
relation R, we define R = {(x, y)|(x, y) ∈ R}.

Now, let I = 〈∆I , ·I〉 be defined as follows:

• ∆I =
⋃

i ∆Ii .

• For every i-name X , XI := XIi .

• For every i, >Ii = ∆Ii .
We denote by x|i the element (if it exists) in ∆Ii that

belongs to x, i.e., x|i ∈ ∆Ii ∩ x.
The proof that I is a model of <(P ∗w), with >Iw 6= ∅, is

also similar to that of (Bao et al. 2008). We only show that
for every role inclusion X v Y ∈ Pj , we have that I sat-
isfies #j(X) v #j(Y ). We prove this by showing that, for
any role R the appears in Pj , RIj = #j(R)I , again using
induction on the structure of R. Due to space limitations, we
only show the case for negated roles, other cases (local roles,
imported roles and inverse roles) can be handled similarly.
When R = ¬iS and SIj = #j(S)I , we have that RIj =
(¬iS)Ij = (rij(∆Ii)× rij(∆Ii))\SIj = ((>i u >j)I ×
(>i u >j)I)\SIj = (¬#j(S) l (>i u >j))I = #j(R)I .
Q.E.D.

Decidability of P-DL ALCHIO(¬)RP
The decidability proof of ALCHIO(¬)RP is almost the

same as that of ALCHIO(¬)CRP and uses a reduction
to ALBO. Since negated roles appear only in role inclu-
sions and cardinality preservation is not required for negated
roles, in the reduction from an ALCHIO(¬)RP ontology
to an ALBO ontology, the negated local domain and the
negated local range axioms are not needed. Note that, in
ALCHIO(¬)CRP , if Pj imports a role from Pi, then, due
to cardinality preservation on both role names and negated
roles, rij has to be either empty or a total function. In
ALCHIO(¬)RP , on the other hand, there is no such a re-
quirement. This allows some increased flexibility in role
mappings while, at the same time, maintaining the auton-
omy of ontology modules.

From the above reductions from ALCHIO(¬)CRP and
ALCHIO(¬)RP to ALBO and the fact that the com-
plexity of ALBO is NExpTime-complete (Schmidt &
Tishkovsky 2007) we obtain the following decidability and
complexity result.
Theorem 4 ALCHIO(¬)CRP and ALCHIO(¬)RP are
in NEXPTIME.

Conclusions
We have explored the decidability of modular ontology

languages (specifically, variants of DDL and P-DL). We

have shown that if role mappings between ontology mod-
ules that are expressible in ALC are combined with some
otherwise useful features such as negated roles, cardinality
restrictions in bridge rules, or inverse bridge rules, they yield
an undecidable DDL. We also established the decidability
of P-DLs (ALCHIO(¬)CRP and ALCHIO(¬)RP) with
unrestricted role inclusion between ontology modules when
each module is in ALCHIO(¬), a language that extends
ALC with general role inclusions, inverse roles, nominals
and negated roles. The fact the restriction that the do-
main relations in P-DL be one-to-one and compositionally
consistent (Bao, Slutzki, & Honavar 2007) (as opposed to
DDL which imposes no such restrictions (Ghidini & Ser-
afini 2006)) turns out to be critical to the decidability of P-
DLs ALCHIO(¬)CRP and ALCHIO(¬)RP . Ongoing
work is focused on further exploring the decidability fron-
tier of DDL and P-DL, e.g., by investigating the decidability
of the DDLALCODCR (with support for nominals), and of
the P-DL SHQP (i.e., with support for transitive roles and
number restrictions).
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