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Abstract— Sleep quality impacts virtually all aspects of life, 
including health, mood, emotions, cognition, memory, 
behavior, and performance. Actigraphy offers   a   lower-cost 
alternative    to conventional polysomnography (PSG), the gold 
standard for measuring sleep quality. Effective use of 
actigraphy for assessing sleep quality requires reliable methods 
for detecting sleep/wake states from actigraphy measurements. 
Machine learning offers a promising approach to building 
sleep/wake state detectors from actigraphy data. However, 
current machine learning approaches rely on expert labeled 
training data that can be expensive and laborious to acquire. 
In this work, we introduce a novel approach for integrating 
unsupervised learning algorithms and domain knowledge 
heuristics, based on statistical properties of clustered sleep and 
wake epochs, to develop reliable sleep/wake state prediction 
models using unlabeled wrist actigraphy data. Experimental 
results using a dataset of 37 participants and covering 282 
sleeping periods demonstrate the viability of the proposed 
approach on developing sleep/wake state detection models 
from unlabeled actigraphy data with a predictive performance 
that is comparable with the performance of models developed 
using some state-of-the-art supervised learning algorithms 
applied to labeled actigraphy data. Our results lay the 
groundwork for developing fully automated machine learning 
models for sleep/wake state prediction and sleep parameters 
estimations by eliminating the need for costly and labor-
intensive expert annotations of PSG recordings for labeling 
actigraphy data. 
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I.  INTRODUCTION  
Polysomnography (PSG), the gold standard for 

measuring sleep [1], uses multiple sensing devices to 
measure physiologic parameters of sleep including brain 
dynamics of electroencephalography (EEG), eye movements 
(EOG), muscle activity (EMG), heart physiology (ECG), and 
respiratory function [1, 2].  Many sleep specialists use PSG 
in conjunction with clinical assessments as a sleep diagnostic 
tool. This technique suffers from several drawbacks [3]: i) 
Because of the limited portability of the PSG device, the 
participant needs to sleep in a laboratory for the recording  to 
be done or ambulatory equipment can be used for unattended 
recording with the participant at home; ii) PSG recordings 
are expensive and rarely obtained for more than a night or 
two participant. iii) PSG recordings are typically manually 
examined and scored on an epoch-per-epoch basis, often by 

registered polysomnographic technologists. These 
restrictions can limit the applicability of this technique to 
large-scale, population-level sleep research studies for more 
than a night or two [2]. 

Portable techniques for measuring sleep parameters 
(e.g., wearable accelerometry devices, perhaps with 
additional sensors [4]) would allow for recording to be done 
in the home, decrease the cost and inconvenience, improve 
the evaluation by observing subjects in their natural settings 
[5], and facilitate large-scale research studies conducted 
over large number of participants and for extended time 
periods [2]. Unfortunately, algorithms for detecting 
sleep/wake state detection from actigraphy data suffer from 
poor sensitivity (i.e., wake state detection rates) [6, 7].  To 
address this limitation, a number of machine learning based 
models have been proposed for automatic detection of 
sleep/wake state (e.g., [8, 9]). However, these models are 
often developed using supervised machine learning 
algorithms, which require labeled training data (i.e., 
actigraphy data in which each epoch is assigned a 
sleep/wake label using PSG gold standard). Obtaining such 
labeled data is cumbersome, time-consuming, and expensive 
because it requires participants to have simultaneous PSG 
and actigraphy recordings. Moreover, the learned models 
are more likely to be dataset specific and might not 
generalize well on test data from other studies [7].  

In this study, we propose a novel unsupervised machine 
learning approach for constructing sleep/wake state detection 
models from unlabeled actigraphy data. The approach uses 
unsupervised learning algorithms for clustering training data 
into two groups and then leverages some statistical properties 
of clustered sleep and wake epochs in order to determine the 
appropriate label of each cluster. This research enables the 
development of reliable sleep/wake state predictors using 
unlabeled actigraphy data only and advances the process of 
generating fully automated models by eliminating the need 
for PSG data in the model training phase. This approach 
could be adapted for physical activity recognition tasks from 
accelerometer data [10] and generally opens up the 
possibility for further developing individualized models from 
unlabeled data. 

II. CLASSIFICATION VIA CLUSTERING 
Given a training dataset consisting of 𝑛 labeled samples, 

{< 𝑥! , 𝑓(𝑥!) >}!!!!  where 𝑥! ∈ 𝑅! is a feature vector in the 
d-dimensional space and its class label, 𝑓 𝑥! , is assigned 



using an unknown function 𝑓: 𝑅! → 𝐶 , where  𝐶 =
{𝐶!,… ,𝐶!}  is the set of class labels. Classification via 
clustering (CVC) [11, 12], as the name suggests,  offers an 
approach to building a classifier using clustering. CVC first 
clusters a set of instances 𝑈 = {𝑥!}!!!! , into k clusters where 
k≥ 𝑚. Then the resulting set of clusters is mapped to a set of 
class labels. When the class labels for the training data are 
available, a simple way to associate clusters with class labels 
is to assign to each cluster, the label that represents the 
majority of the instances assigned to that cluster. An 
unlabeled sample to be classified is first assigned to one of 
the clusters, and the class label associated with the cluster is 
returned as the predicted label for the sample. Algorithm 1 
describes a meta classifier for CVC available in the WEKA 
machine learning workbench [13]. Note that although the 
clustering is carried out in unsupervised fashion on the 
unlabeled training data, CVC relies on the labels of the 
training data in associating the resulting clusters with classes. 
In the next section, we propose a novel unsupervised CVC 
algorithm (UCVC) that eliminates the need for labeled 
training data. 

III. MATERIALS AND METHODS 

A. Datasets 
Actigraphy and PSG data were retrieved for 37 

participants from the following studies: insomnia [14]; 
baseline sleep in healthy participants from a pilot study and 
published studies [15-17]; older adults [2]; and sleep 
restriction in healthy participants [18] such that each subject 
has recordings for at least 3 sleeping periods. Detailed 
experimental settings of these studies including conditions of 
the study, characteristics of actigraphy devices, temporal 
alignment of actigraphy and PSG clocks, and PSG scoring 
are summarized in [2]. In this data, the number of recordings 
per subject varies between 3 to 11 recordings. To split the 
data into training and test sets, we categorized the subjects 
by their number of recordings and split them equally into 
train and test sets.  This data partitioning procedure aims at 
eliminating bias by equally distributing subjects from 
different studies into training and test sets and by ensuring 
that data from each subject is either in training or test set. 
The final training dataset is composed of recordings for 19 
subjects including 145 sleeping periods with 90,060 and 
19,653 sleep and wake 30 second epochs, respectively. 
Similarly, the final test dataset is composed of recordings for 
18 subjects including 137 sleeping periods with 97,205 and 
22,572 sleep and wake 30 second epochs, respectively. 

B. Feature Extraction 
We represent each 30-second epoch using its contextual 
information in the form of activity counts of the target epoch 
as well as 10 epochs preceding and 10 epochs following the 
target epoch. In other words, each training instance consists 
of a contiguous window of 21 epochs, labeled with a binary 
(sleep/wake) label that indicates whether the target center 
epoch corresponds to the sleep state or the wake state as 
determined by the annotated PSG data. 
 

Algorithm 1: Training CVC 
Input: labeled data 𝐿 = {< 𝑥! , 𝑦! >}!!!! , Clustering 
algorithm 𝐴, Number of clusters 𝑘, set of class labels 
𝐶 =  𝐶!,… ,𝐶!  

1. Let 𝑈 = {𝑥!}!!!!  and apply 𝐴 to cluster 𝑈 into 𝑘 
groups 

2. Associate each cluster with a class label that 
represents the majority of instances in the 
cluster  

 
We experimented with the following data representations 

of each 21-epoch window: i) Binarized activity counts 
(BAC) corresponding to the 21 activity counts in each 
window after binarizing them using a cutoff of 15 (i.e., 
activity counts greater than 15 map to 1 (wake) and activity 
counts less than 15 map to 0 (sleep)); [2]; ii) Normalized 
activity counts (NAC) corresponding to the 21 activity 
counts in each window after normalizing activity counts in 
the entire sleeping period to fall  within the interval [0,1]; iii) 
Normalized activity counts plus summary statistics (NAC+), 
a total of 30 numeric features obtained by concatenating 
NAC and 9 summary statistics features based on three 
statistics, mean, lag-one autocorrelation, and number of non-
zero epochs, extracted from the entire 21-epoch window, left 
side of the window (epochs 1 to 11), and right side of the 
window (epochs 11 to 21). 

C. Proposed Method 
We propose a novel unsupervised CVC algorithm 

(UCVC) for training a CVC model using unlabeled data. The 
basic idea is to use domain knowledge heuristics (e.g., some 
statistical property that discriminates clusters of sleep epochs 
from clusters of wake epochs) to associate a class label with 
each of the clusters. In this work, we experimented with 
three heuristics, based on simple observations regarding the 
number of sleep and wake samples in the data and the fact 
that wake samples often have higher activity counts, for 
assigning sleep/wake labels to clusters: 

• H1: assign ‘wake’ label to the cluster with smaller 
number of instances. 

• H2: assign ‘wake’ label to the cluster including 
samples with higher average accelerometer activity. 
Accelerometer activity of a sample is determined by 
the activity score of the central epoch (i.e., epoch 11 
in each 21-epoch window).  

• H3: assign ‘wake’ label to the cluster including 
samples with higher average accelerometer activity. 
Accelerometer activity of a sample is determined as 
the sum of its 21-epoch activity scores.  

We implemented and tested UCVC (Algorithm 2) using 
four clustering methods, namely, k-means (KM) [19, 20], 
fuzzy c-means (FCM) [21], Gaussian mixture [22] using full 
covariance matrix (GMF),  and Gaussian mixture using 
diagonal covariance matrix (GMD). We will refer to the 
models constructed using Algorithm 2 and any of these  

 



Algorithm 2: Training ClassificationViaClustering from 
unlabeled actigraphy data 
Input: unlabeled data 𝑈 = {𝑥!}!!!! , Clustering algorithm 
𝐴 , Number of clusters 𝑘 = 2 , set of class labels 
𝐶 =  𝑠𝑙𝑒𝑒𝑝,𝑤𝑎𝑘𝑒  

1. Apply 𝐴 to cluster 𝑈 into 𝑘 groups 
2. Associate each cluster with the class label 

determined by applying heuristic H1, H2, or H3  
 

clustering methods as UCVC_KM, UCVC_FCM, 
UCVC_GMF, and UCVC_GMD. 

D. Supervised Learning Models 
We compared the UCVC sleep/wake state predictors 

trained on unlabeled actigraphy data with sleep/wake state 
predictors trained using supervised learning algorithms on 
labeled actigraphy data where the labels were obtained using 
expert scored PSG data.  We considered four commonly 
used supervised machine learning algorithms: Gaussian 
Naïve Bayes (GNB) [23], Logistic Regression (LR) [24]; 
Random Forest (RF) [25] with 100 decision trees; and 
Extreme Gradient Boosting (XGB) [26] with 100 trees. 

E. Performance Evaluation Metrics 
We assessed the performance of different models for 

predicting sleep/wake state using four widely used threshold-
dependent metrics, namely sensitivity (Sn), specificity (Sp), 
accuracy (ACC), and Matthew's correlation coefficient 
(MCC) [27]. These four metrics depend on the classification 
threshold used to convert predicted class probabilities into 
binary class labels. In our experiments, the optimal threshold 
was determined (for each classifier) such that MCC on 
training data is maximized. For comparing predictors using 
all possible thresholds, we reported the area under Receiver 
Operating Characteristic (ROC) curve [28]. 

F. Sleep Parameter Estimation 
Accurate estimation of sleep parameters (e.g., sleep 

efficiency) could provide significant information about 
health conditions [29]. Here, we assess the performance of 
UCVC and supervised learning models in estimating five 
standard sleep parameters: i) Total Sleep Time (TST), which 
is the amount of actual sleep time (in minutes) in a sleep 
period; ii) Sleep Onset Latency (SOL), defined as the length 
of time (in minutes) that it takes to accomplish the transition 
from full wakefulness to sleep; iii) Sleep Efficiency (SE), 
defined as the ratio between actual sleep time and time spent 
in bed;  iv) Wake After Sleep Onset (WASO), which 
determine the amount of time (in minutes) a person spends 
awake, starting from when they first fell asleep to when they 
become fully awake and do not attempt to go back to sleep; 
v) Number of Awakenings (NA), NA is the number of 
transitions from sleep to wakefulness lasting more than 15 
seconds (given PSG-determined sleep stage). 

IV. RESULTS AND DISCUSSIONS 

A. UCVC vs. Supervised Learning  Models 
Table 1 reports the performance of four UCVC models 

estimated using the independent test set. Using BAC data 
representation, both k-means based methods, UCVC_KM 
and UCVC_FCM, outperform Gaussian Mixture (GM) based 
methods, UCVC_GMF and UCVC_GMD, in terms of ACC, 
Sp, MCC, and AUC. Using NAC representation, GM based 
models have slight improvements in AUC as well as ACC 
and Sp. On the other hand, the performance of UCVC_KM 
predictor substantially drops compared to its performance 
using BAC representation. Interestingly, concatenating 
statistical and NAC features (NAC+ representation) allows 
UCVC_KM classifier to reach the highest observed 
performance in terms of AUC and MCC. Thus, our results 
suggest that using k-means clustering on the NAC+ 
representation yield the best performing UCVC model. 

Table 2 reports predictive performance estimates of four 
supervised models on the independent test set. We note that, 
like UCVC models, supervised models prefer NAC+ data 
representation. For all supervised models the highest AUC is 
observed using NAC+ data representation. Switching from 
NAC to NAC+ representation yields an increase in AUC in 
the range 0.0-0.03. The zero improvement is reported using 
XGB whereas the 0.03 improvements are obtained using 
GNB.  

B. Estimation of Sleep Parameters using Machine Learning 
Models 
We report the mean summary statistics of five standard 

sleep parameters determined for each sleeping period in our 
test data using PSG and predicted sleep/wake state by the 
eight machine learning models considered in this study.  

Due to space limitation, we omit the results obtained 
using BAC and NAC features and report only the results 
obtained using NAC+, the best performing data 
representation, in Table 3. The first row in Table 3 shows 
the PSG ground truth estimates of the five sleep parameters. 
The remaining rows report the sleep parameters estimated 
using our UCVC and supervised learning models. We note 
that there is no single model that comes closest to all five 
gold standard estimates. Gaussian Naive Bayes (GNB) 
supervised learning model yields the best estimates of TST, 
SE, and WASO. In the case of average SOL, we observe 
that all models under-estimate it and the closest estimate is 
obtained using UCVC_GMF. In the case of mean NA, the 
closest estimates are obtained using RF and XGB 
predictors. 

Figure 1 shows the scatter plot for SE (left) and WASO 
(right) estimates of top two performing UCVC and 
supervised learning models, respectively. The lines show a 
linear best fit for the four models and the line of identity. In 
both cases, the best linear fit lines are close to each other. 
The visualized results show that for SE estimates, the four 
models tend to over-estimate the true SE values. For WASO 
estimates, the four models tend to underestimate the true 
WASO scores (except for sleeping periods with true WASO 
scores less than 40 minutes). 



TABLE 1: PERFORMANCE COMPARISONS OF UCVC MODELS FOR PREDICTING SLEEP/WAKE STATE USING UNLABELED ACTIGRAPHY DATA. EXACT RESULTS 
ARE OBTAINED USING ANY OF THE THREE HEURISTICS. 

Representation Method ACC Sn Sp MCC AUC 

BAC 

UCVC_KM 0.85 0.30 0.98 0.42 0.78 
UCVC_FCM 0.84 0.43 0.93 0.41 0.78 
UCVC_GMF 0.67 0.76 0.64 0.32 0.71 
UCVC_GMD 0.69 0.73 0.69 0.33 0.72 

NAC 

UCVC_KM 0.75 0.41 0.83 0.22 0.71 
UCVC_FCM 0.77 0.52 0.86 0.35 0.79 
UCVC_GMF 0.74 0.54 0.78 0.29 0.73 
UCVC_GMD 0.73 0.54 0.78 0.29 0.74 

NAC+ 

UCVC_KM 0.85 0.39 0.96 0.44 0.80 
UCVC_FCM 0.85 0.38 0.96 0.44 0.76 
UCVC_GMF 0.66 0.74 0.64 0.30 0.72 
UCVC_GMD 0.63 0.70 0.61 0.24 0.69 

	

TABLE 2: PERFORMANCE COMPARISONS OF SUPERVISED LEARNING MODELS FOR PREDICTING SLEEP/WAKE STATE USING LABELED ACTIGRAPHY DATA.  

Representation Method ACC Sn Sp MCC AUC 

BAC 

GNB 0.83 0.48 0.92 0.42 0.78 
LR 0.85 0.40 0.96 0.45 0.79 
RF 0.85 0.26 0.98 0.39 0.76 

XGB 0.85 0.37 0.97 0.45 0.79 

NAC 

GNB 0.81 0.42 0.90 0.34 0.76 
LR 0.83 0.40 0.94 0.39 0.78 
RF 0.84 0.29 0.96 0.36 0.77 

XGB 0.85 0.39 0.96 0.45 0.81 

NAC+ 

GNB 0.83 0.43 0.93 0.40 0.79 
LR 0.84 0.39 0.95 0.41 0.79 
RF 0.84 0.30 0.97 0.39 0.78 

XGB 0.85 0.42 0.96 0.46 0.81 
 
In summary, our results show that the UCVC_KM 

predictor has predictive performance that is comparable to 
the best performing supervised learning models and can 
provide accurate estimates of three standard sleep 
parameters: TST, SE, and WASO. 

V. CONCLUSIONS 
We presented a novel approach for developing 

sleep/wake state detectors using unlabeled actigraphy data. 
Specifically, we introduced a variant of the classification via 
clustering (CVC) algorithm [13] that can be used for 
unsupervised training of sleep/wake state detectors from 
unlabeled data.  

Our results demonstrate that the UCVC models using k-
means clustering have predictive performance that is 
comparable with the performance of the machine learning 
models trained using supervised machine learning algorithms 
and labeled actigraphy data. By eliminating the need for 
costly and cumbersome expert-annotated PSG recordings for 
labeling actigraphy data for developing sleep/wake state 
detectors and estimating sleep parameters, our results make it 
possible to conduct large-scale sleep research studies in 
naturalistic settings and over extended time periods. The 
resulting unsupervised classification via clustering 
framework is broadly applicable in scenarios where labeled 
data are cumbersome or costly to obtain but cluster 
properties and domain knowledge can be used to devise  



 

TABLE 3: PERFORMANCE COMPARISONS OF UCVC AND SUPERVISED MODELS (USING NAC+ REPRESENTATION) IN TERMS OF AVERAGE SLEEP PARAMETER. 
PSG REPRESENTS THE GOLD STANDARD ESTIMATES. HIGHLIGHTED SCORES REPRESENT CLOSEST ESTIMATES TO THE GOLD STANDARD 

Method 
Total Sleep Time 

(TST;min) 

Sleep Onset 
Latency (SOL; 

min) 

Sleep 
Efficiency 
(SE; %) 

Wake After 
Sleep Onset 

(WASO; 
min) 

Number of 
Awakenings 

(NA) 
PSG 355.02 18.17 80.55 53.94 21.56 

Actigraphy-derived estimates 
UCVC_KM 390.65 9.04 87.75 41.13 8.42 

UCVC_GMD 243.04 13.98 54.96 181.10 44.84 
UCVC_GMF 250.16 17.59 56.42 167.50 48.19 
UCVC_FCM 393.79 8.87 88.43 38.17 8.36 

GNB 376.25 8.40 84.51 56.98 15.88 
LR 388.20 6.98 87.06 46.77 31.34 
RF 404.07 6.05 90.54 31.80 19.21 

XGB 387.26 7.93 86.90 46.53 23.95 
 

 
effective heuristics for associating clusters with class labels. 
Work in progress is aimed at: developing personalized 
sleep/wake state predictors and sleep parameter estimators 
that better account for variability across individuals; 
developing variants of the proposed unsupervised 
classification via clustering method for predicting sleep 
stages [30] and recognizing physical activity from 
accelerometer and other wearable sensor data [10]. 
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Figure 1: Comparisons of SE (left) and WASO (right) ground truth estimates and actigraphy based estimates derived using UCVC_KM, UCVC_FCM, 
LR, and XGB models for 137 test sleeping periods. The lines show a linear best fit for the four models and the line of identity. 
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