
Vol.:(0123456789)

Annals of Data Science (2022) 9:187–212
https://doi.org/10.1007/s40745-020-00253-5

1 3

A Comprehensive Survey of Loss Functions in Machine
Learning

Qi Wang1,2,3 · Yue Ma1,2,3 · Kun Zhao4 · Yingjie Tian2,3,5

Received: 2 March 2020 / Revised: 12 March 2020 / Accepted: 14 March 2020 / Published online: 12 April 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
As one of the important research topics in machine learning, loss function plays an
important role in the construction of machine learning algorithms and the improve-
ment of their performance, which has been concerned and explored by many
researchers. But it still has a big gap to summarize, analyze and compare the classi-
cal loss functions. Therefore, this paper summarizes and analyzes 31 classical loss
functions in machine learning. Specifically, we describe the loss functions from the
aspects of traditional machine learning and deep learning respectively. The former is
divided into classification problem, regression problem and unsupervised learning
according to the task type. The latter is subdivided according to the application sce-
nario, and here we mainly select object detection and face recognition to introduces
their loss functions. In each task or application, in addition to analyzing each loss
function from formula, meaning, image and algorithm, the loss functions under the
same task or application are also summarized and compared to deepen the under-
standing and provide help for the selection and improvement of loss function.

Keywords Loss function · Machine learning · Deep learning · Survey

 * Yingjie Tian
 tyj@ucas.ac.cn

 Qi Wang
 wangqi173@mails.ucas.ac.cn

1 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049,
China

2 Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences,
Beijing 100190, China

3 Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy
of Sciences, Beijing 100190, China

4 School of Logistics, Beijing Wuzi University, Beijing 101149, China
5 School of Economics and Management, University of Chinese Academy of Sciences,

Beijing 100190, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s40745-020-00253-5&domain=pdf

188 Annals of Data Science (2022) 9:187–212

1 3

1 Introduction

With the rapid development of computer technology and the emergence of large
amounts of complex data, machine learning algorithm gradually tends to diversity
to quickly and accurately mine data information. Generally speaking, the machine
learning algorithm comes down to solving the optimization problem—structural risk
minimization (SRM). Its concrete form is

where N is the number of training set samples, the first term is the empirical risk,
L(⋅) is the loss function, � is the parameter vector, the second term R(f) is the regu-
larization item representing the model complexity, � ≥ 0 is the tradeoff to balance
the empirical risk and the model complexity. It can be seen that loss function is the
core part of the empirical risk as well as the important component of the structural
risk function. The selection of inappropriate loss function will affect the effective-
ness of the algorithm to some extent. Therefore, in recent years, loss function has
become one of the hot spots in machine learning, which has profound theoretical
significance and practical value. Recently, most of the researches on loss function
focus on improving or constructing loss function for a specific algorithm or prob-
lem. It still has a big gap to summarize, analyze and compare the classical loss func-
tions. However, the full understanding of classical loss functions in different fields
not only enables us to select appropriate loss functions quickly when designing
algorithms, but also provides directions and ideas for the improvement of loss func-
tions according to the existing problems of algorithms. Therefore, this review paper
proposes a new partition criterion of loss functions, then summarizes 31 important
loss functions from several perspectives according to the partition criterion, such as
formula, image, algorithm and so on. All loss functions in this paper are listed in
Table 1.

In the rest of this paper, the partition criterion of loss functions in this paper will
be introduced in Sect. 2, loss functions in traditional machine learning and in deep
learning will be analyzed systematically respectively in Sects. 3 and 4, and the final
conclusion will be drawn in Sect. 5.

2 Partition Criterion

The loss function corresponds to the machine learning algorithm, so the division of
loss function usually adopts the division of machine learning. Next, we give two dif-
ferent partition methods of machine learning, and then give the partition criterion of
loss function in this paper.

Machine learning can be divided into supervised learning and unsupervised
learning according to whether the samples have label information, and supervised
learning can be further divided into classification problem and regression problem.
Specifically, the labels of classification problem is a finite number of discrete values,

(1)min
f

1

N

N∑

i=1

L�(f (xi)) + �R(f)

189

1 3

Annals of Data Science (2022) 9:187–212

Ta
bl

e
1

 L
os

s f
un

ct
io

ns

C
at

eg
or

y
Ta

sk
/A

pp
lic

at
io

n
Lo

ss
 fu

nc
tio

n

Tr
ad

iti
on

al
 m

ac
hi

ne

le
ar

ni
ng

C
la

ss
ifi

ca
tio

n
pr

ob
le

m
0–

1
lo

ss
, P

er
ce

pt
ro

n
lo

ss
, L

og
ar

ith
m

ic
 lo

ss
, E

xp
on

en
tia

l l
os

s,
Si

gm
oi

d
cr

os
s e

nt
ro

py
 lo

ss
, S

of
tm

ax
 c

ro
ss

en

tro
py

 lo
ss

, H
in

ge
 lo

ss
, R

am
p

lo
ss

, P
in

ba
ll

lo
ss

, T
ru

nc
at

ed
 p

in
ba

ll
lo

ss
, R

es
ca

le
d

hi
ng

e
lo

ss
Re

gr
es

si
on

 p
ro

bl
em

Sq
ua

re
 lo

ss
, A

bs
ol

ut
e

lo
ss

, H
ub

er
 lo

ss
, L

og
-c

os
h

lo
ss

, Q
ua

nt
ile

 lo
ss

, �
-in

se
ns

iti
ve

 lo
ss

U
ns

up
er

vi
se

d
le

ar
ni

ng
Sq

ua
re

 e
rr

or
, D

ist
an

ce
 e

rr
or

, R
ec

on
str

uc
tio

n
er

ro
r,

N
eg

at
iv

e
va

ria
nc

e
D

ee
p

le
ar

ni
ng

O
bj

ec
t d

et
ec

tio
n

Io
U

 lo
ss

, G
en

er
al

iz
ed

 Io
U

 lo
ss

 (G
Io

U
 lo

ss
),

Sm
oo

th
 L

1
lo

ss
, F

oc
al

 lo
ss

Fa
ce

 re
co

gn
iti

on
C

on
tra

sti
ve

 lo
ss

, T
rip

le
t l

os
s,

C
en

te
r l

os
s,

A
ng

ul
ar

 so
ftm

ax
 lo

ss
 (A

-S
of

tm
ax

 lo
ss

),
A

dd
iti

ve
 m

ar
gi

n
so

ftm
ax

 lo
ss

 (A
M

-S
of

tm
ax

 lo
ss

),
A

dd
iti

ve
 a

ng
ul

ar
 m

ar
gi

n
lo

ss
 (A

rc
Fa

ce
 lo

ss
)

190 Annals of Data Science (2022) 9:187–212

1 3

the labels of regression problems are continuous values, unsupervised learning does
not have the label information, which has two main tasks, clustering and dimension
reduction.

According to different feature processing methods, machine learning can be
divided into traditional machine learning and deep learning. In fact, there is no lit-
erature on the definition and division of the two types of machine learning meth-
ods at present. Due to their significant differences in the level of data processing
and the way to construct features, people are used to distinguish different machine
learning algorithms by such terms. The core of traditional machine learning is how
to map the input features to the target space to complete the corresponding tasks.
The process of feature extraction needs to be realized by some other methods (such
as dimension reduction [1, 2], metric learning [3–5]) before using the algorithm to
train the model. The traditional machine learning algorithms include linear regres-
sion [6], decision tree [7], random forest [8], Adaboost [9] and so on. Deep learn-
ing, as an important subclass of machine learning, derives its inspiration from the
working mode of human brain and is a learning process that utilizes deep neural
network to solve the feature expression. Different from traditional machine learning,
deep learning does not need to focus on feature engineering [10], but directly extract
features from data when training deep neural networks. That is, deep learning cuts
down the work of designing feature extractors for each problem. Deep learning has
been widely used in many fields, such as object detection [11–13], face recognition
[14, 15], image segmentation [16, 17], machine translation [18, 19], text classifi-
cation [20, 21], etc. There are significant differences between traditional machine
learning and deep learning in many aspects. We can refer to the article ’Machine
Learning versus Deep Learning’1 for details.

From the above introduction to machine learning partitions, it can be found that
no matter which way to introduce the loss functions is very confusing, so we pro-
pose a new partition criterion in this paper, so that readers can clearly understand
each loss function. That is, we divide loss functions into the loss functions in tra-
ditional machine learning and in deep learning. The former is divided into those in
classification problem, regression problem and unsupervised learning according to
task type. The latter is subdivided according to application scenario, and this paper
mainly selects two application scenarios, object detection and face recognition, to
introduces their loss functions respectively.

In the following sections, {xi}
N
i=1

(xi ∈ Rm) stands for the train-
ing set, {yi}Ni=1(yi ∈ {−1, 1}) stands for the labels in binary classification,
{yi}

N
i=1

(yi ∈ {1, 2,… ,K}) stands for the labels in multi-classification, {yi}Ni=1(yi ∈ R)
stands for the labels in regression.

1 Available at https ://www.dzone .com/artic les/compa rison -betwe en-deep-learn ing-vs-machi ne-learn i.

https://www.dzone.com/articles/comparison-between-deep-learning-vs-machine-learni

191

1 3

Annals of Data Science (2022) 9:187–212

3 Loss Functions in Traditional Machine Learning

This chapter introduces 21 loss functions in traditional machine learning algorithms,
including 11 loss functions for classification problems, 6 loss functions for regres-
sion problems and 4 loss functions for unsupervised learning. The following will be
introduced in detail.

3.1 Loss Functions in Classification

The formulas and corresponding algorithms of common loss functions in classifi-
cation are shown in Tables 2 and 3, and their images are shown in Figs. 1 and 2.
It should be noted that binary classification can be extended to multi-classification
according to one-vs-rest, one-vs-one [26, 27] and so on [28–32]. Therefore, this
chapter mainly introduces the loss functions of binary classification problem. Next,
we will introduce each loss function in detail by combining the formula and the
image, and finally make a comparison and summary from several aspects.

0–1 loss function In the classification problem, the 0–1 loss function means that if
the predicted value of the sample has the same sign with the real label, the loss value
is 0; otherwise, the loss value is 1. This loss function does not consider the error
degree between the predicted value and the real value, that is, when the samples
are misclassified, no matter how much error, the corresponding loss values are the
same, thus the accuracy and efficiency of the model will be affected to some extent.
In addition, it can be seen from the graph of 0–1 loss function that it’s a non-convex
function and there are many shortcomings in the process of solving the model. In
fact, 0–1 loss is usually regarded as a standard in practical application, and the real
loss function is its proxy functions, such as logarithmic loss, exponential loss, hinge
loss, etc.

Perceptron loss function This loss function is also a piecewise function. When the
predicted value of the sample has the same sign with the real label, the loss value
is 0; otherwise, the loss value is the absolute value of the predicted value. From the
perspective of geometric meaning, the former means that there is no loss for cor-
rectly classified samples, while the latter measures the distance from the predicted
samples to the decision boundary f (x) = 0 , and the larger the distance, the greater
the error, so the greater the corresponding loss. Obviously, the idea of perceptron
loss is vivid and easy to understand, and the loss function is continuous and differen-
tiable with respect to variables so that it’s easy to optimize. However, its goal is only
to determine the sample category correctly, that is, the sample meets the require-
ment when it is located in the decision boundary. In this way, the model obtained
has poor generalization performance and is not robust to noise data. What’s more, its
relative algorithm is Perceptron [33], which is a linear classification model of binary
classification. For more information about perceptron, you can refer to [34].

Logarithmic loss function This loss function is a function of the sample prediction
probability value, where the prediction probability value is obtained through the con-
ditional probability distribution (see Table 2). Specifically, the greater the probability

192 Annals of Data Science (2022) 9:187–212

1 3

of the sample being predicted as its label, the smaller the corresponding loss value;
otherwise, the greater the loss value. In the actual calculation, the probability of being
predicted as positive class is expressed as p, while the other probability is 1 − p .
Fig. 1c, d show the change of logarithmic loss of the positive and negative sample
with the probability p, respectively. It can be seen that the value of the logarithmic loss
decreases slowly when the correct prediction probability is close to 1, and increases
rapidly with the decrease of the correct prediction probability. This trend will make

Table 2 Loss functions in classification

0–1 loss
Formula

L(y, f (x)) =

{
1, if yf (x) < 0

0, if yf (x) ≥ 0

Explanation In this table, f (x) = w⊤x + b.
Algorithm –
Perceptron loss
Formula L(y, f (x)) = max{0,−yf (x)}

Explanation
max{a, b} =

{
a, if a ≥ b

b, if a < b

Algorithm Perceptron. The objective function is L = −
∑

xi∈M
yi(w

⊤xi + b) , where, M is
the misclassified sample set.

Logarithmic loss
Formula

L(y, p̃) = − log p̃, where, p̃ =

{
p, if y = 1

1 − p, if y ≠ 1.
Explanation Conditional probability distribution: p = P(y = 1|x) = 1

1+e−f (x)
 ,

1 − p = P(y = −1|x) = 1

1+ef (x)

Algorithm Logistic regression (LR). The objective function is
L = −

1

N

∑N

i=1
log

1

1+e−yi (w
⊤xi+b)

Sigmoid cross entropy loss
Formula

L(y, p̃) = − log p̃, where, p̃ =

{
p, if y = 1

1 − p, if y ≠ 1

Explanation p = �(f (x)) =
1

1+e−f (x)
 , where, �(⋅) is the sigmoid function

Algorithm Neural network (NN). The objective function is the same as LR.
Softmax cross entropy loss
Formula L(y,P(y|x)) = − logP(y|x)
Explanation P(y�x) = efy (x)∑

k e
fk (x)

 , where, fy(x) and fk(x) are the decision functions corre-

sponding to the y and k class respectively
Algorithm Neural network (NN). The objective function is L = −

1

N

∑N

i=1
log

e
w⊤yi

xi+byi

∑
k e

(w⊤
k
xi+bk)

Exponential loss
Formula L(y, f (x)) = e−yf (x)

Explanation –
Algorithm Adaboost. The objective function of the t-th iteration

is L =
∑N

i=1
w̃tie

−yi𝛼g(xi) , where, w̃tican be obtained from the result of itera-
tion t-1, �, g(⋅) are the variables

193

1 3

Annals of Data Science (2022) 9:187–212

the prediction output closer to the label, which is conducive to the convergence of the
algorithm. What’s more, its relative algorithm is logistic regression (LR) [35], which
is a logarithmic linear model. By using the maximum likelihood estimation (MLE)
method to estimate the model parameters, the corresponding objective function and
logarithmic loss can be derived. For the details, you can refer to [36].

Sigmoid cross entropy loss function From the formula of this loss function (see
Table 2), it can be seen that sigmoid cross entropy loss and logarithmic loss are
the same. The reason why the same losses are described by two names is that they
are defined from different sources. The sigmoid cross entropy loss is obtained by
seeing the probability value converted from the predicted value through the sig-
moid activation function as the actual output of cross entropy, and the real label
of the sample as the expected output of cross entropy. Cross entropy describes

Table 3 Loss functions in classification (Table 2 Continued)

Hinge loss
Formula Hs(z) = max{0, s − z} , where, s is a constant
Explanation Specially, in SVM, L(y, f (x)) = H1(yf (x)) = max{0, 1 − yf (x)}

Algorithm Support vector machine (SVM). The objective function is
L =

1

2
‖w‖2 + C

∑N

i=1
max{0, 1 − yi(w

⊤xi + b)}

Ramp loss
Formula Rs(z) = H1(z) − Hs(z) , where, s < 1 is a constant
Explanation Specially, in Ramp loss SVM, Lr(y, f (x)) = H1(yf (x)) − Hs(yf (x))

Algorithm Ramp loss SVM [22]. The objective function is L =
1

2
‖w‖2 + C

∑N

i=1
Lr(yi, f (xi))

Pinball loss
Formula L� (u) = max{u,−�u} , where, � ∈ [0, 1] is a constant
Explanation Specially, in pin-SVM, L� (y, f (x)) = max{1 − yf (x),−�(1 − yf (x))}

Algorithm pin-SVM [23]. The objective function is L =
1

2
‖w‖2 + C

∑N

i=1
L� (yi, f (xi))

Truncated pinball loss
Formula

L𝜏,s(u) =

⎧
⎪
⎨
⎪
⎩

𝜏s, if u ≤ −s

−𝜏u, if − s < u < 0,

u, if u ≥ 0

where, s > 0, 𝜏 ∈ [0, 1]

are the constants
Explanation

Specially, in pin−SVM, L𝜏,s(y, f (x)) =

⎧
⎪
⎨
⎪
⎩

𝜏s, if yf (x) ≥ 1 + s

−𝜏(1 − yf (x)), if 1 < yf (x) < 1 + s

1 − yf (x), if yf (x) ≤ 1

Algorithm pin−SVM [24]. The objective function is L =
1

2
‖w‖2 + C

∑N

i=1
L�,s(yi, f (xi))

Rescaled hinge loss
Formula Lrhinge(z) = �(1 − e−�Hs(z)) , where, 𝜂 > 0 is a scaling constant, � =

1

1−e−�
 is a

normalizing constant
Explanation Specially, in the improved SVM based on this loss function,

Lrhinge(y, f (x)) = �(1 − e−�H1(yf (x)))

Algorithm [25]. The objective function is L =
1

2
‖w‖2 + C

∑N

i=1
Lrhinge(yi, f (xi))

194 Annals of Data Science (2022) 9:187–212

1 3

the distance between the actual output and the expected output. The smaller the
value of cross entropy is, the closer the two probability distributions are. There-
fore, the meaning of sigmoid cross entropy loss is the same as that of logarithmic
loss. What’s more, sigmoid cross entropy loss function is used in neural networks
(NN) [37] to avoid the slow learning rate of neurons in the output layer. Gener-
ally, in deep learning, this loss function is called cross entropy loss, and in logical

Fig. 1 The illustrations of loss functions in classification

195

1 3

Annals of Data Science (2022) 9:187–212

regression, it is called logarithmic loss. Of course, the logistic regression model
can also be derived from the perspective of entropy, for details refer to [38].

Softmax cross entropy loss function The only difference between this loss func-
tion and sigmoid cross entropy loss function is that this loss function replaces the
sigmoid function with the softmax function to solve the multi classification prob-
lem. Of course, we can also explain the expansion from the perspective of prob-
ability distribution, for details refer to [35]. Since many practical problems (such
as semantic segmentation, text mining) are multi classification problems, softmax
cross entropy loss has become the main loss function of deep learning. In many
deep learning literatures, both sigmoid and softmax cross entropy loss are called
cross entropy loss, which can be determined by the problem itself.

Exponential loss function This loss function is an approximation of the 0–1
loss function. For the disadvantages of 0–1 loss, exponential loss has the follow-
ing two improvements. First, exponential loss function is continuous and differ-
entiable, which is conducive to optimization. Secondly, for the misclassified sam-
ples, the penalty degrees of exponential loss are different, which are related to the
error degrees, and there is also a cost to the correctly classified sample. From the

Fig. 2 The illustrations of loss functions in classification (Fig. 1 continued)

196 Annals of Data Science (2022) 9:187–212

1 3

image Fig. 1e, it can be seen that as the error degree increases, the corresponding
loss value increases faster, which is conducive to the convergence of the model;
and as the probability of being predicted correctly increases, the corresponding
loss becomes smaller and smaller, enhancing the generalization performance of
the model. What’s more, the representative algorithm of exponential loss function
is AdaBoost [9], which is a binary classification model proposed by Yoav Freund
and Robert schapire in 1995. One interpretation of Adaboost is that Adaboost is
an addition model learned through a forward step algorithm, in which the optimal
loss function during each iteration is an exponential loss. For the specific conver-
sion process, you can refer to [39].

Hinge loss function In the binary classification problem, hinge loss function
defines the margin (represented by the parameter s) near the decision boundary, and
the correctly classified samples in the middle of the two margin boundaries and all
misclassified samples have the cost. From the image Fig. 1f, compared with percep-
tron loss function, hinge loss function shifts s to the right, which not only requires
the sample to be classified correctly, but also requires the loss to be 0 when the
confidence is high enough (fully classified correctly). In addition, unlike exponential
loss function, hinge loss function does not punish the correct classification samples
of |f (x)| ≥ s . It is considered that such samples have been learned well enough, so
that the model is more focused on the overall classification error. It should be noted
that s is generally set to 1 in applications and improvements of hinge loss function.
What’s more, support vector machines (SVMs) [40] are the first algorithm to use
hinge loss function, which is a linear or nonlinear model to solve the binary clas-
sification task. This model can be formalized as an optimization problem of convex
quadratic programming, and can also be equivalent to minimizing hinge loss with
regularization. For details of this algorithm, you can refer to [41].

Ramp loss function This loss function [22] is an improved function of hinge loss.
From the images of two loss functions (Figs. 1f and 2a), it can be seen that the hinge
loss value of outlier is very large and outliers play a leading role in determining the
decision boundary, so that the model will reduce the accuracy of normal samples
to reduce such loss, and finally reduce the overall classification accuracy, resulting
in low generalization ability of the model. However, ramp loss function limits the
maximum loss value, which limits the influence of outliers to some extent, and the
model is more robust to outliers. In addition, when ramp loss function is applied to
SVM, the number of support vectors can be reduced and the training efficiency can
be improved [42]; but at the same time, the objective becomes a nonconvex func-
tion, which can be solved by CCCP [43].

Pinball loss function This loss function was originally proposed for regression
tasks, in which it is called quantile loss. It was not until 2013 that [23] applied pin-
ball loss to SVM and proposed the pin-SVM classifier, and this loss function began
to be used to solve the classification problem. Pinball loss function has good prop-
erties in solving classification problems. Compared with hinge loss function, pin-
ball loss function penalizes all correctly classified samples, which not only does not
increase the computational complexity and maintains the same classification error
bound, but also makes the model less sensitive to noise near the decision boundary,
have stronger resampling stability and more robust to outliers. However, since the

197

1 3

Annals of Data Science (2022) 9:187–212

sub-gradient of pinball loss is not 0 almost everywhere, pin-SVM loses the sparsity
of the standard SVM.

Truncated pinball loss function In order to make up for the shortcomings of pin-
ball loss, [24] truncates pinball loss and proposes truncated pinball loss function.
This loss function preserves the advantages of pinball loss and reduces the sensi-
tivity to noise near the decision boundary. In addition, the SVM model pin−SVM
based on this loss function preserves the sparseness of the standard SVM, and the
objective function of pin−SVM is also non-convex, which can be solved by CCCP
method.

Rescaled hinge loss function This loss function [25] is the improved loss of hinge
loss function. From the image Fig. 2d, it can be found that rescaled hinge loss and
ramp loss are very similar, both of which enhance the robustness to outliers by
improving the function form of yf (x) < 1 . Since outliers affect the sparsity of SVM,
the SVM model based on rescaled hinge loss also improves the sparsity.

Comparison The above is the specific introduction of 11 loss functions in classi-
fication. Below, we will summarize and compare them briefly from several aspects.
(1) Convexity. Perceptron loss, logarithmic loss (cross entropy loss), exponential
loss, hinge loss, and pinball loss are all convex functions. 0–1 loss, ramp loss, trun-
cated pinball loss, and rescaled hinge loss are all non-convex functions. (2) Robust-
ness. Truncating pinball loss and pinball loss can reduce the sensitivity to noise near
the decision boundary, and ramp loss and rescaled hinge loss are robust to outliers.
(3) Generalization performance. Logarithmic loss (cross entropy loss), exponen-
tial loss and hinge loss are better than perceptron loss. (4) SVM sparsity. The SVM
model based on ramp loss, truncated pinball loss and rescaled hinge loss can pre-
serve or even improve the sparsity of the standard SVM (based on hinge loss).

3.2 Loss Functions in Regression

The formulas and corresponding algorithms or applications of common loss func-
tions in regression are shown in Table 4 and their images are shown in Fig. 3. Next,
we will introduce each loss function in detail by combining the formula and the
image, and finally make a comparison and summary from several aspects.

Square loss function This loss function, one of the most common loss func-
tions in regression problems, measures the square of the error between the true
value y and the predicted value f(x) of the sample x. As can be seen from the
image Fig. 3a, the gradient of square loss is variable, the length of the gradient is
large if the sample has large loss, and the length of the gradient decreases when
the loss value is close to 0. These properties are beneficial to the fast conver-
gence and high accuracy of the model. But square loss is sensitive to outliers.
This is because square loss squares the error e (e = y − f (x)), and when |e| gets
larger, the loss increases faster. Therefore, the loss value of outlier is very large,
which makes the model pay more attention to outliers, and the parameters will
be adjusted constantly so that such loss decreases continuously. But correspond-
ingly, the prediction accuracy of other normal samples will decline, ultimately
reducing the overall prediction performance. What’s more, when solving the

198 Annals of Data Science (2022) 9:187–212

1 3

linear regression model [6], the most commonly used method is the least square
method, and the core of the least square method is square loss. In addition, square
loss can also be used for classification problems, usually measuring the difference
between the sample label and the probability predicted as a certain class.

Absolute loss function This loss function, another common loss function in
regression problems, measures the absolute value of the error between the true
value y and the predicted value f(x) of the sample x. As can be seen from the
image Fig. 3b, absolute loss dose not increase rapidly with the increase of error.
Therefore, absolute loss is more robust than square loss when there are outliers in
the training set, and absolute loss should be selected when outliers are detected
and have an impact on the learning of the model. However, since absolute loss
function is not smooth when the error approaches 0, it is less used than square
loss. In addition, the gradient of absolute loss is fixed and has nothing to do with
the loss value, which will affect the efficiency of solving the model. What’s more,
when solving the linear regression model, the minimum absolute value error can
also be taken as the objective function, which corresponds to absolute loss. But
the most common method is still least squares.

Table 4 Loss functions in regression

Square loss
Formula L(y, f (x)) = (y − f (x))2

Algorithm Linear regression. The objective function is L =
∑N

i=1
(yi − w⊤xi − b)2

Absolute loss
Formula L(y, f (x)) = |y − f (x)|
Algorithm Linear regression. The objective function is L =

∑N

i=1
�yi − w⊤xi − b�

Huber loss
Formula

L𝛿(y, f (x)) =

{
1

2
(y − f (x))2, if |y − f (x)| ≤ 𝛿

𝛿|y − f (x)| − 1

2
𝛿2, otherwise

, where, parameter 𝛿 > 0

Algorithm Robust statistics, additive model, deep learning.
Log-cosh loss
Formula L(y, f (x)) = log(cosh(f (x) − y))

Algorithm XGBoost
Quantile loss
Formula

L𝛾 (y, f (x)) =

{
(𝛾 − 1)(y − f (x)), if y < f (x)

𝛾(y − f (x)), if y ≥ f (x)
, where, 𝛾 ∈ (0, 1) is the given quantile

Algorithm Quantile regression. The objective function is
L =

∑
i∶yi<f (xi)

(𝛾 − 1) ⋅ (yi − f (xi)) +
∑

i∶yi≥f (xi)
𝛾 ⋅ (yi − f (xi))

�-insensitive loss
Formula

L𝜖 (y, f (x)) = max{0, |y − f (x)| − 𝜖} =

{
0, if |y − f (x)| ≤ 𝜖

|y − f (x)| − 𝜖, if |y − f (x)| > 𝜖
, where, parameter 𝜖 > 0

Algorithm Support vector regression (SVR). The objective function is
L =

1

2
‖w‖2 + C

∑N

i=1
L�(yi, f (xi))

199

1 3

Annals of Data Science (2022) 9:187–212

Huber loss function It can be seen from the formula of Huber loss [44] that
this loss is a piecewise function of square loss and absolute loss. Huber loss uses
the parameter � as the boundary to judge whether it is a more singular sample.
The samples within this boundary use square loss, and the samples beyond this
boundary use absolute loss, so as to reduce the weight of the loss of outliers in
the total loss and avoid the model overfitting. In addition, the use of square loss

Fig. 3 The illustrations of loss functions in regression

200 Annals of Data Science (2022) 9:187–212

1 3

within the boundary can prevent the gradient from descending too fast and miss-
ing the optimum. Huber loss effectively combines the advantages of square loss
and absolute loss and is differentiable everywhere. However, while the introduc-
tion of � brings benefits, it also makes the loss function more complex and require
constant iteration to train � . In practice, Huber loss is often used in robust statis-
tics [44], additive model [45]. It is also used in deep learning, such as smooth L1
loss of object detection, which is a special form of Huber loss.

Log-cosh loss function This loss function is the logarithm of the hyperbolic
cosine of the error. When the error is small, the loss is approximately 1

2
(y − f (x))2 ;

when the error is large, the loss is approximately |y − f (x)| − log 2 . From the for-
mula of log-cosh loss function, it can be seen that this loss function is very simi-
lar to Huber loss, so it has all the advantages of Huber loss, that is, it is robust to
outliers and the gradient is variable. In addition, log-cosh loss is quadratic differ-
entiable everywhere. Since many machine learning algorithms, such as XGBoost,
use Newton’s method to solve optimization problems, it is important to be sec-
ond-order differentiable. However, log-cosh loss still has the problem of gradient
and Hessian. For the samples with large error, the gradient and Hessian are also
constant, which affects the efficiency of solution or has other effects, such as the
lack of split points in XGBoost.

Quantile loss function This loss function is actually an extended form of abso-
lute loss, which degenerates to absolute loss when � takes the 50th percentile.
Unlike the previous four loss functions, the regression model based on quantile
loss can provide a reasonable prediction interval, and we get the range of the pre-
dicted value instead of just a predicted value. Quantile loss function adjusts the
weight of each sample according to the selected quantile � . The smaller � , the
more punishment will be given to those samples whose real value is less than
the predicted value (i.e. the overestimated samples); on the contrary, the larger � ,
the more punishment will be given to those samples whose real value is greater
than the predicted value (i.e. the underestimated samples). What’s more, its repre-
sentative application is quantile regression, which is a regression analysis used in
statistics and econometrics. For more information about quantile regression, you
can refer to [46].

�-insensitive loss function This loss function is commonly used in support vec-
tor regression (SVR) [47]. It can be seen from its image Fig. 3f that the differ-
ence with the above losses is that this loss does not punish the samples whose
error does not exceed � , making the model focus on the samples with large pre-
diction error. But �-insensitive loss function contains absolute term, so it is not
differentiable.

Comparison The above is the specific introduction of 6 loss functions in
regression. Below, we will summarize and compare them briefly from several
aspects. (1) Derivative. Absolute loss, quantile loss and �-insensitivity loss are
not smooth, Huber loss is first derivative, and square loss and log-cosh loss are
second derivative. (2) Robustness. Huber loss, log-cosh loss and absolute loss are
robust to outliers.

201

1 3

Annals of Data Science (2022) 9:187–212

3.3 Loss Functions in Unsupervised Learning

The two major learning tasks of unsupervised learning are clustering and dimension
reduction. The objective of clustering is to divide the samples into different clusters
according to the similarity index, so that the similarity within the cluster is high
and the similarity between the clusters is low. Different clustering algorithms only
use different indexes to describe similarity and adopt different strategies. For exam-
ple, hierarchical clustering algorithm measures similarity by distance, while density-
based clustering algorithm measures similarity by density. In this section, we take
K-means, a typical clustering algorithm, as an example to introduce its loss function.
And below, {C1,C2,… ,CK} stands for the cluster partition.

Dimension reduction refers to the transformation of the original high-dimen-
sional attribute space into a low-dimensional subspace through a certain mathemati-
cal transformation, which can compress the data while preserving the data structure
and usefulness. The classical linear dimension reduction methods include principal
component analysis (PCA), and the nonlinear dimension reduction methods include
manifold learning. In this section, we will summarize the loss functions in dimen-
sion reduction into three categories according to the ideas of different dimension
reduction algorithms, and give the corresponding algorithms respectively. And
below, h stands for the projection mapping from the original space Rm to the low-
dimensional space Rd(d ≤ m) , {zi}Ni=1 stands for the low-dimensional representation
of the original samples {xi}Ni=1.

Next, we will introduce 4 loss functions, namely, square error of clustering, dis-
tance error, reconstruction error and negative variance of dimension reduction. The
formulas and corresponding algorithms are shown in Table 5. It should be noted that
these four names are given by ourselves according to the meaning of each loss.

Square error K-means [48] hope to obtain cluster partition by minimizing square
error. Intuitively, square error describes the compactness of samples in the cluster
around the mean vector of the cluster. The smaller the square error, the higher the
similarity of samples within the cluster. There are two sets of variables {rik} and
{�k}(i = 1,… ,N;k = 1,… ,K) , minimizing this loss is a NP hard problem [49], so
k-means adopts greedy strategy and uses iterative optimization to approximate the
solution.

Distance error A classical dimension reduction criterion is that the distance
between samples in the original space is maintained in the low-dimensional
space. Based on this idea, we define the loss function as the distance error. By
minimizing the distance error, the representation {zi}Ni=1 can be obtained. In order
to solve this objective function, the algorithm generally starts from the condition
‖zi − zj‖ = distij(1 ≤ i, j ≤ N) . The most representative dimension reduction algo-
rithm is multiple dimensional scaling (MDS) [50]. Since MDS is used in the iso-
metric mapping (Isomap) [51] of manifold learning, Isomap is also one of the algo-
rithms applying distance error.

Reconstruction error There are two reconstruction ideas in dimension reduction
algorithms. One is that the distance between the original sample and the recon-
structed sample based on the inverse projection mapping is close enough. The other
is to try to keep a certain property of the original space in the low-dimensional

202 Annals of Data Science (2022) 9:187–212

1 3

space, so that the projected sample can be reconstructed with some samples in the
low-dimensional space based on this property. Because the essence of these two
ideas is to reconstruct the samples, we call both as reconstruction error. By opti-
mizing the first reconstruction error, we can get the projection mapping h and the
representation {zi}Ni=1 . Its typical algorithm is principal component analysis (PCA)
[52], which is a linear dimension reduction method. The specific algorithm flow can
be found in [53]. By optimizing the second reconstruction error, we can get the low-
dimensional vectors {zi}Ni=1 . Its typical algorithm is locally linear embedding (LLE)
[1] of manifold learning. In LLE, since the original samples are distributed on a
manifold, they have local linearity, that is, each sample can be reconstructed by lin-
ear combination of its neighborhood samples. LLE hopes that this property can be
maintained in the low-dimensional space, so the shared parameters of two spaces
are the weight coefficients of the linear reconstruction. For more information about
LLE, you can refer to [1].

Negative variance Another dimension reduction criterion is maximum separabil-
ity, that is, all samples after projection are as separate as possible. This criterion can
be measured by maximizing the variance of the samples after projection. Since opti-
mizing loss function is to get the minimum, we name this loss function as negative
variance. By optimizing the negative variance, we can get the projection mapping
h and the low-dimensional vectors {zi}Ni=1 . Its representative algorithm is PCA. The
maximum separability is another interpretation of PCA. Two PCA objective func-
tions based on reconstruction error and negative variance are equivalent.

Table 5 Loss functions in unsupervised learning

Square error
Formula

L =
∑N

i=1

∑K

k=1
rik‖xi − �k‖2 , where, rk =

{
1, if x ∈ Ck

0, otherwise
 ,

∑K

k=1
rk = 1 , �k =

1

∣Ck ∣

∑
x∈Ck

x is the mean vector of the
cluster Ck

Explanation Cluster partition {C1,C2,… ,CK}

Algorithm K-means
Distance error
Formula L =

∑N

i,j=1
(‖zi − zj‖ − distij)

2 , where, distij is the distance
between xi and xj in the original space

Explanation h ∶ Rm
↦ Rd(d ≤ m) , xi ↦ zi(i = 1,… ,N)

Algorithm MDS, Isomap
Reconstruction error
Formula 1. L =

∑N

i=1
‖h−1(zi) − xi‖ 2. L =

∑N

i=1
‖o(zi) − zi‖

Explanation o ∶ Rm
↦ Rm , xi ↦ o(xi)(i = 1,… ,N)

Algorithm 1. PCA 2. LLE
Negative variance
Formula L = −tr(

∑N

i=1
(zi − z̄)(zi − z̄)⊤) , where, z̄ is the mean vector

Explanation tr(⋅) is the trace of matrix
Algorithm PCA

203

1 3

Annals of Data Science (2022) 9:187–212

4 Loss Functions in Deep Learning

This chapter introduces 10 loss functions of deep learning, including 4 loss func-
tions of object detection and 6 loss functions of face recognition. It will be intro-
duced in detail below.

4.1 Loss Functions in Object Detection

As one of the important applications of computer vision, object detection has been
explored for a long time. Especially in recent years, the rapid development of deep
learning has brought many new algorithms and techniques to object detection.
Object detection is a multi-task learning problem, including object classification and
object localization. For example, we not only need to use algorithms to determine
whether the object in the picture is a car, but also mark its position accurately and
circle the car with a bounding box.

Object classification can be a binary classification problem, such as detecting the
cat in the picture, or a multi-classification problem, such as detecting the cat and dog
in the picture respectively. In the object detection algorithms, the input image will
generate thousands of candidate boxes. We need to classify these candidate boxes,
but only a few of them contain real objects, which brings about the problem of class
imbalance. Taking binary classification as an example, the positive samples (fore-
ground samples) are far less than the negative samples (background samples), and
most of the negative samples are useless samples which are easy to be classified. The
total loss of these samples accounts for a large proportion of the total loss. Thus, the
learning direction of the model will change, and the model will only distinguish the
background, not the specific object. Many algorithms (such as OHEM [57]) to solve
class imbalance cannot take into account both foreground-background class imbal-
ance and easy-hard samples imbalance. Therefore, in this section, we introduce a
loss function, focal loss, which can effectively solve two class imbalance problems.

Object localization is a regression problem, which is represented in the algorithm
by measuring the offset between the candidate box and the ground truth box, and
then modifying the bounding box. In fact, the measure is the loss function, and the
modification is the optimization process of minimizing the loss function. In this
section, we introduce several loss functions commonly used in object localization,
including smooth L1 loss, IoU loss, GIoU loss and KL loss.

The formulas and corresponding algorithms of several loss functions are shown
in Table 6. Next, we will combine the formulas to analyze and compare several loss
functions.

Focal loss function This loss function [54] is modified on the basis of sigmoid
cross entropy loss, 𝜏 is to solve the foreground-background class imbalance, and
(1 − p̃)𝛾 is to solve the imbalance of easy-hard samples. From its formula, it can be
seen that the easy sample has the large p̃ and the small loss value, while the hard
sample is just the opposite. Thus, the weights of easy samples are reduced, so that

204 Annals of Data Science (2022) 9:187–212

1 3

the model focuses more on the hard samples. In addition, � is used to adjust the
speed of loss reduction. When � = 0 , focal loss is sigmoid cross entropy loss. The
image of the positive sample is shown in Fig. 4.

Table 6 Loss functions in object detection

Focal loss
Formula

L = −𝜏(1 − p̃)𝛾 log(p̃) , where, 𝜏 =

{
𝜏, if y = 1

1 − 𝜏, otherwise
 , p̃ =

{
p, if y = 1

1 − p, otherwise
 ,

� ∈ [0, 1] and � ≥ 0 are parameters, p ∈ [0, 1] is the probability of being predicted as
the positive class

Algorithm RetinaNet [54]
Explanation –
Smooth L1 loss
Formula

smoothL1 (a) =

{
0.5a2, if |a| < 1

|a| − 0.5, otherwise

Algorithm Fast R-CNN [11], Faster R-CNN [12]. L(Bp,Bg) =
∑

i∈{x,y,w,h} smoothL1 (B
p

i
− B

g

i
) ,

where, Bp is the predicted box, Bg is the ground truth box
Explanation The box is defined as (x, y, w, h), where, (x, y) is its top-left corner, w is its weight, h is

its height
IoU loss
Formula L = − ln(IoU) = − ln

I

U
 , where, I is the intersection area of two boxes, U is the union

area of two boxes.
Algorithm UnitBox [55]. The specific calculation formulas of I and U can be found in [55]
Explanation For each pixel (i, j), the predicted box is Bp = (x

p

t , x
p

b
, x

p

l
, x

p
r) , the ground truth box is

Bg = (x
g

t , x
g

b
, x

g

l
, x

g
r) , where, (t, b, l, r) represent the distance between this pixel and the

top, bottom, left, right bounds of ground truth, respectively
GIoU loss
Formula L = 1 − GIoU , where, GIoU = IoU −

Ac−U

Ac
 , IoU =

I

U
 , Bc is the smallest box enclosing

both boxes, Ac is the area of Bc , I is the intersection area of two boxes, U is the union
area of two boxes

Algorithm [56]. The specific calculation formulas of I, U and Ac can be found in [56]
Explanation The box is defined as (x1, y1, x2, y2) , where, (x1, y1) is its top-left corner, (x2, y2) is its

bottom-right corner

Fig. 4 The illustration of focal
loss function

205

1 3

Annals of Data Science (2022) 9:187–212

Smooth L1 loss function From its formula, we can see that smooth L1 loss is a
Huber loss of � = 1 , so it has all the properties of Huber loss. Square loss, used
in R-CNN [58] and SPP-Net [59], has the problem of gradient explosion during
optimization, so we need to carefully adjust the learning rate. Fast R-CNN [11] and
Faster R-CNN [12] use smooth L1 loss function to effectively eliminate this prob-
lem. However, when using smooth L1 loss to train the regression model, the bound-
ing box is regarded as four independent variables, which is inconsistent with the
actual situation, so it will affect the accuracy of localization.

IoU loss function Intuitively, IoU loss [55] maximizes the coincidence between
the predicted box and the ground truth box. From the formula point of view, when
calculating the area of intersection and union of two boxes, four variables of meas-
uring each box are used at the same time. Therefore, this loss function regards a box
as a whole for training, and can get more accurate predicted box. In addition, regard-
less of the scale of the ground truth, IoU is normalized to [0, 1], which can prevent
the model from focusing too much on large objects and ignoring small ones. [55]
found that the use of IoU loss not only makes the location more accurate, but also
speeds up the convergence rate.

GIoU loss function This loss function [56] is an extension of IoU loss. It not only
retains the property of IoU loss, but also solves the problems of IoU loss effectively.
As can be seen from its formula, by introducing the smallest box enclosing both the
predicted box and the ground truth box, there is also the corresponding loss when
two boxes do not intersect. Meanwhile, when two boxes intersect and there are the
same IoU values under different overlap modes, the better the overlap mode is, the
smaller the GIoU loss value will be. For example, Fig. 5 shows three different over-
lap modes with the same IoU values, i.e. IoU = 0.33 , but different GIoU values,
i.e. from the left to right GIoU = 0.33, 0.24,−0.1 respectively. GIoU value will be
higher for the cases with better aligned orientation.

Comparison Compared with cross entropy loss, focal loss can solve both the
imbalance of positive and negative classes and the imbalance of easy and hard sam-
ples. In the bounding box regression, smoothing L1 loss can eliminate the prob-
lem that square loss is sensitive to outliers. Compared with square loss and smooth
L1 loss, IoU loss solves the influence of object scale, and improves the accuracy of

Fig. 5 Three different ways of overlap between two rectangles with the same IoU values and different
GIoU values [56]

206 Annals of Data Science (2022) 9:187–212

1 3

regression by learning the bounding box as a whole. GIoU loss not only preserves
the property of IoU loss, but also gives the corresponding loss to two disjoint boxes,
and can reflect which way of overlapping of two boxes is better through the GIoU
loss value.

4.2 Loss Functions in Face Recognition

Face recognition is a kind of biometric technology based on facial feature informa-
tion. It has experienced a long period of development, and the emergence of deep
learning methods has further improved the accuracy of face recognition. The data
set of face recognition is rather special. There are many classes (one person repre-
sents one class), but there are not many samples in each class. Only a few classes
participate in the training, that is, the existing samples can not cover all classes, and
the classes of test samples usually do not appear in the training.

Based on the above difficulties, face recognition methods need to extract key
information (that is, learn distinguishing features) from face images, so that the sam-
ples within one class (different images of the same person) are similar, and the sam-
ples between classes (different images of different people) are different. One of the
main challenges of feature learning in large-scale face recognition using deep con-
volutional neural network (DCNN) is to design appropriate loss function to improve
the recognition ability. At present, the loss functions of face recognition can be
roughly divided into two categories. One is to measure the difference between sam-
ples based on Euclidean space distance, and the representative algorithms include
contrastive loss, triplet loss, center loss. The other is to measure the difference
between samples based on angular space, and the representative algorithms include
A-Softmax loss, AM-Softmax loss, ArcFace loss.

The formulas and corresponding algorithms of several loss functions are shown
in Table 7. Since the input of several loss functions is the feature vector of image
mapped to feature space, we use � to represent the feature of image x extracted by
DCNN. Next, we will combine the formula of loss function to analyze and compare
several loss functions.

Contrastive loss function Before using the contrastive loss function [60, 61] to
train the model, we need to reconstruct the training set. The specific methods are as
follows. The samples in the original training set are paired and given labels. When the
two samples are from the same person, the label Y = 1 is given. Otherwise, the label
Y = 0 is given. A new sample set consisting of P tuples (Y , x1, x2) is obtained. From
the formula, it can be seen that the corresponding loss of Y = 1 is LS =

1

2
‖�1 − �

2‖2 ,
and the corresponding loss of Y = 0 is LD =

1

2
(max{m − ‖�1 − �

2‖, 0})2 . For one
thing, the smaller the Euclidean distance of similar samples in the feature space is,
the smaller the loss value is, which ensures the similarity of samples from one per-
son. For another thing, the larger the Euclidean distance of different samples in the
feature space is, the smaller the loss value is, which ensures the difference of sam-
ples from different persons. In addition, the threshold m defines a radius so that there
is a cost if the distance of pair from different persons is within the radius. It makes

207

1 3

Annals of Data Science (2022) 9:187–212

the model pay more attention to the close pairs from different persons. Therefore,
contrastive loss function can achieve the matching degree of pairs well, and also can
be used to train the model of feature extraction effectively. However, the problem of
this loss function is how to select the tuples, due to the extreme imbalance between
negative tuples and positive tuples. How to select the appropriate negative tuples is
the key and difficult point.

Triplet loss function The input of triple loss [62] is a set of triples {(xa
i
, x

p

i
, xn

i
)}P

i=1
 ,

where xa is a randomly selected face image, xp and xa belong to the same class (the
same person), xn and xa belong to different classes (different people). We hope that
the learned features can satisfy ‖�a − �

p‖2 + � ≤ ‖�a − �
n‖2 , where � represents the

Table 7 Loss functions in face recognition

Contrastive loss
Formula L =

1

2

∑P

i=1
Yid

2
i
+ (1 − Yi)(max{m − di, 0})

2 , where, di = ‖�1
i
− �

2
i
‖(i = 1,… ,P) ,

m > 0 is a threshold
Explanation In this table, � represents the feature vector of image x extracted by DCNN. In this

loss, the new sample set {(Yi, x1i , x
2
i
)}P

i=1
 , where, Y = 1 represents that x1 and x2 are

from the same class, Y = 0 represents that x1 and x2 are from the different classes
Algorithm [60, 61]
Triplet loss
Formula L =

∑P

i=1
max{‖�a

i
− �

p

i
‖2 − ‖�a

i
− �

n
i
‖2 + �, 0} , where, � is a margin

Explanation The new sample set {(xa
i
, x

p

i
, xn

i
)}P

i=1
 , where, xa and xp are from the same class, xa and

xn are from the different classes
Algorithm FaceNet [62]
Center loss
Formula LC =

1

2

∑N

i=1
‖�i − cyi‖

2 , where, cyi is the feature center of the yi class
Explanation –
Algorithm [63]
A-Softmax loss
Formula

L =
1

N

∑
i − log

e
‖�i‖ cos(m�yi ,i)

e
‖�i‖ cos(m�yi ,i)+

∑
j≠yi

e
‖�i‖ cos(�j,i)

, where, m ≥ 1 andmis an integer

Explanation In A-Softmax loss, AM-Softmax loss and ArcFace loss, �a,b is the angle between the
weight Wa and the feature �b

Algorithm SphereFace [64, 65]
AM-Softmax loss
Formula

L =
1

N

∑
i − log

e
s(cos(𝜃yi ,i

)−m)

e
s(cos(𝜃yi ,i

)−m)
+
∑

j≠yi
e
s cos(𝜃j,i)

, where, s is the given ‖x‖, m > 0

Explanation –
Algorithm CosFace [66, 67]
ArcFace loss
Formula

L =
1

N

∑
i − log

e
s(cos(𝜃yi ,i

+m))

e
s(cos(𝜃yi ,i

+m))
+
∑

j≠yi
e
s cos(𝜃j,i)

, where, s is the given ‖x‖, m > 0

Explanation –
Algorithm ArcFace [68]

208 Annals of Data Science (2022) 9:187–212

1 3

minimum margin between the distance of samples from the same class and the dis-
tance of samples from different classes. Based on this idea, we get triple loss func-
tion. By optimizing the loss function, we can extract the features, which ensure that
the similar samples are close and the different samples are far away. But the problem
of this loss function is how to select triples. Triples that are easy to satisfy the above
formula are not very helpful for feature extraction, and triples that are difficult to
satisfy the above formula will result in local extremum, and the network may not be
able to converge to the optimal value. [62] proposes a selection method, which can
be consulted by oneself.

Center loss function Since contrastive loss and triplet loss are very sensitive to
the construction and selection of tuples, [63] uses the extracted feature vector as
the input of cross entropy loss to train the model through cross entropy loss. How-
ever, it is found that cross entropy loss can only separate the categories, but cannot
constrain the in-class distance, so samples are scattered relatively sparsely among
the separatable boundaries, and misjudgment will occur when cross entropy loss is
applied to face recognition tasks. Therefore, [63] proposes center loss function to
constrain the distance within a class. And the final loss function is a weighted com-
bination of cross entropy loss and center loss.

A-Softmax loss function [64] uses cross entropy loss to extract and visualize fea-
tures of a small data set, and find that the extracted features have obvious angular
distribution. Thus, the authors thinks that combining cross entropy loss with Euclid-
ean distance is unreasonable. Meanwhile, for the first time, the distance of angular
space is used to describe the difference of features within and between classes, and
A-Softmax loss function is proposed. Next, we take binary classification as an exam-
ple to describe the derivation of A-Softmax loss function. In binary classification,
the decision boundary of cross entropy loss function is (W1 −W2)� + b1 − b2 = 0 .
After constraining ‖W1‖ = ‖W2‖ = 1 and b1 = b2 = 0 , the decision boundary of
modified cross entropy loss is ‖�‖(cos(�1) − cos(�2)) = 0 , where �a,b is the angle
between the weight Wa and the feature �b . Further, in order to make the intra class
features similar and the inter class features different, the condition for class 1
becomes cos(m𝜃1) > cos(𝜃2) from cos(𝜃1) > cos(𝜃2) , and the condition for class 2
becomes cos(m𝜃2) > cos(𝜃1) from cos(𝜃2) > cos(𝜃1) , where m(m ≥ 1) is an integer.
In this way, the decision boundary has changed from one to two, and a certain mar-
gin has been formed between the two decision boundaries, which has achieved the
goal we want. By extending this idea to the multi classification problem, A-Softmax
loss function is obtained. It should be noted that in order to ensure the monotonic
decrease of loss function with angle and the model convergence, the applied A-Soft-
max loss is adjusted on the expression shown in Table 7. For details, please refer to
[64, 65].

AM-Softmax loss function To make the model pay more attention to the angle
information obtained from the data and ignore the value of the feature vector,
[66, 67] fixed ‖�‖ = s and proposed AM-Softmax loss. Considering the binary
classification, according to this loss function, the condition for class 1 becomes
cos(𝜃1) > cos(𝜃2) + m , and the condition for class 2 becomes cos(𝜃2) > cos(𝜃1) + m ,
where m > 0 . Similarly, there are two decision boundaries, and there is a certain
margin between them.

209

1 3

Annals of Data Science (2022) 9:187–212

ArcFace loss function [68] proposed ArcFace loss function to further improve
AM-Softmax loss. In the same case of binary classification, according to this loss
function, the condition for class 1 becomes cos(𝜃1 + m) > cos(𝜃2) , and the condi-
tion for class 2 becomes cos(𝜃2 + m) > cos(𝜃1) + m , where m > 0 . The decision
boundaries become two, and a certain margin is formed between the two decision
boundaries.

Comparison Contrastive loss and triplet loss need to construct tuples, which can
cause combination explosion on large-scale data sets, further result in the increase
of iteration and slow convergence. In addition, the selection of tuples is critical.
Although some strategies can be adopted to select tuples, the computational com-
plexity is also increased significantly. Center loss can only constrain the distance
within one class, and it needs to be used together with cross entropy loss. As the fea-
tures extracted by cross entropy loss show a certain angular distribution, A-Softmax
loss, AM-Softmax loss and ArcFace loss increase different angular margins based
on cross entropy loss. In the case of binary classification, the decision boundaries
formed by the three kinds of losses for class 1 are shown in Table 8. A-Softmax loss
requires some adjustments to ensure monotony of the function and convergence of
the model. AM-softmax loss is easier to achieve, reduces the complex parameter
calculation, simplifies the training process and ensures the convergence. Arcface
loss is not only easy to realize, but also has better geometric properties. It forms a
constant linear angular margin in the whole interval, while A-Softmax loss and AM-
Softmax loss can only form a nonlinear angular margin [68].

5 Conclusion

In this paper, a new partition criterion of loss functions is proposed, and 31 loss
functions are introduced from five aspects: classification, regression, unsupervised
learning of traditional machine learning, object detection, face recognition of deep
learning. These loss functions are commonly used in various fields or tasks. By
analyzing their formulas, corresponding algorithms, images, and comparing their
advantages and disadvantages, we hope to provide help for readers to apply and
improve the loss functions.

Table 8 Decision boundaries
for class 1 under binary
classification case

Loss function Decision boundary

Cross entropy loss (W1 −W2)� + b1 − b2 = 0

Modified cross entropy loss ‖�‖(cos(�1) − cos(�2)) = 0

A-Softmax loss ‖�‖(cos(m�1) − cos(�2)) = 0

AM-Softmax loss s(cos(�1) − m − cos(�2)) = 0

ArcFace loss s(cos(�1 + m) − cos(�2)) = 0

210 Annals of Data Science (2022) 9:187–212

1 3

Acknowledgements This work has been partially supported by Grants from: Science and Technology
Service Network Program of Chinese Academy of Sciences (STS Program, No. KFJ-STS-ZDTP-060),
National Natural Science Foundation of China (Nos. 71731009, 61472390, 71331005, 91546201), and
Beijing Social Science Foundation Project (No.17GLB020).

References

 1. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Sci-
ence 290(5500):2323–2326

 2. Van Der Maaten L, Postma E, Van den Herik J (2009) Dimensionality reduction: a comparative. J
Mach Learn Res 10(66–71):13

 3. Yang L, Jin R (2006) Distance metric learning: a comprehensive survey. Mich State Univ 2(2):4
 4. Bellet A, Habrard A, Sebban M (2013) A survey on metric learning for feature vectors and struc-

tured data. arXiv : 1306.6709
 5. Moutafis P, Leng M, Kakadiaris IA (2016) An overview and empirical comparison of distance met-

ric learning methods. IEEE Trans Cybern 47(3):612–625
 6. Seber GA, Lee AJ (2012) Linear regression analysis, vol 329. Wiley, Hoboken
 7. Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans

Syst Man Cybern 21(3):660–674
 8. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2(3):18–22
 9. Freund Y, Schapire RE (1995) A desicion-theoretic generalization of on-line learning and an appli-

cation to boosting. In: European conference on computational learning theory. Springer, Berlin, Hei-
delberg, pp 23–37

 10. Domingos P (2012) A few useful things to know about machine learning. Commun ACM
55(10):78–87

 11. Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer
vision, pp 1440–1448

 12. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region
proposal networks. In: Advances in neural information processing systems, pp 91–99

 13. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp 2961–2969

 14. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application
to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

 15. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: Proceedings of the British
Machine Vision Conference (BMVC), pp 41.1–41.12

 16. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image seg-
mentation. In: International conference on medical image computing and computer-assisted inter-
vention. Springer, Cham, pp 234–241

 17. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder
architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

 18. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and
translate. arXiv :1409.0473

 19. Wu Y, Schuster M, Chen Z, Le Q V, Norouzi M, Macherey W, Klingner J (2016) Google’s neural
machine translation system: Bridging the gap between human and machine translation. arXiv pre-
print arXiv :1609.08144

 20. Zhang X, Zhao J, LeCun Y (2015) Character-level convolutional networks for text classification. In:
Advances in neural information processing systems, pp 649–657

 21. Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for text classification.
In: Twenty-ninth AAAI conference on artificial intelligence

 22. Collobert R, Sinz F, Weston J, Bottou L (2006) Trading convexity for scalability. In: Proceedings of
the 23rd international conference on machine learning, pp 201–208

 23. Huang X, Shi L, Suykens JA (2013) Support vector machine classifier with pinball loss. IEEE Trans
Pattern Anal Mach Intell 36(5):984–997

http://arxiv.org/abs/1306.6709
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1609.08144

211

1 3

Annals of Data Science (2022) 9:187–212

 24. Shen X, Niu L, Qi Z, Tian Y (2017) Support vector machine classifier with truncated pinball loss.
Pattern Recognit 68:199–210

 25. Xu G, Cao Z, Hu BG, Principe JC (2017) Robust support vector machines based on the rescaled
hinge loss function. Pattern Recognit 63:139–148

 26. Dietterich TG, Bakiri G (1994) Solving multiclass learning problems via error-correcting output
codes. J Artif Intell Res 2:263–286

 27. Allwein EL, Schapire RE, Singer Y (2000) Reducing multiclass to binary: a unifying approach
for margin classifiers. J Mach Learn Res 1(12):113–141

 28. Lee Y, Lin Y, Wahba G (2004) Multicategory support vector machines: theory and application to
the classification of microarray data and satellite radiance data. J Am Stat Assoc 99(465):67–81

 29. Weston J, Watkins C (1999) Support vector machines for multi-class pattern recognition. Esann
99:219–224

 30. Crammer K, Singer Y (2001) On the algorithmic implementation of multiclass kernel-based vec-
tor machines. J Mach Learn Res 2(12):265–292

 31. Liu Y, Yuan M (2011) Reinforced multicategory support vector machines. J Comput Graph Stat
20(4):901–919

 32. Zhang C, Liu Y (2013) Multicategory large-margin unified machines. J Mach Learn Res
14(1):1349–1386

 33. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organiza-
tion in the brain. Psychol Rev 65(6):386

 34. Minsky M, Papert SA (2017) Perceptrons: an introduction to computational geometry. MIT
Press, Cambridge

 35. Kleinbaum DG, Dietz K, Gail M, Klein M, Klein M (2002) Logistic regression. Springer, New
York

 36. Gasso G (2019) Logistic regression
 37. Kohonen T, Barna G, Chrisley R (1988) Statistical pattern recognition with neural networks:

benchmarking studies. In: IEEE International Conference on Neural Networks, vol 1, pp 61–68
 38. Berger AL, Pietra VJD, Pietra SAD (1996) A maximum entropy approach to natural language

processing. Comput Linguist 22(1):39–71
 39. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of

boosting (with discussion and a rejoinder by the authors). Ann Stat 28(2):337–407
 40. Cortes C, Vapnik V (1995) Support vector machine. Mach Learn 20(3):273–297
 41. Deng N, Tian Y, Zhang C (2012) Support vector machines: optimization based theory, algo-

rithms, and extensions. Chapman and Hall/CRC, Boca Raton
 42. Steinwart I (2003) Sparseness of support vector machines. J Mach Learn Res 4(11):1071–1105
 43. Yuille AL, Rangarajan A (2002) The concave-convex procedure (CCCP). In: Advances in neural

information processing systems, pp 1033–1040
 44. Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35(1):73–101
 45. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat pp

1189-1232
 46. Koenker R, Hallock KF (2001) Quantile regression. J Econ Perspect 15(4):143–156
 47. Drucker H, Burges CJ, Kaufman L, Smola AJ, Vapnik V (1997) Support vector regression

machines. In: Advances in neural information processing systems, pp 155–161
 48. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall Inc, Upper Saddle

River
 49. Aloise D, Deshpande A, Hansen P, Popat P (2009) NP-hardness of Euclidean sum-of-squares clus-

tering. Mach Learn 75(2):245–248
 50. Cox TF, Cox MA (2000) Multidimensional scaling. Chapman and Hall/CRC, Boca Raton
 51. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimen-

sionality reduction. Science 290(5500):2319–2323
 52. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst

2(1–3):37–52
 53. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat

2(4):433–459
 54. Lin TY, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: Pro-

ceedings of the IEEE international conference on computer vision, pp 2980–2988
 55. Yu J, Jiang Y, Wang Z, Cao Z, Huang T (2016) Unitbox: An advanced object detection network. In

Proceedings of the 24th ACM international conference on Multimedia, pp 516-520

212 Annals of Data Science (2022) 9:187–212

1 3

 56. Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S (2019) Generalized intersection
over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp 658–666

 57. Shrivastava A, Gupta A, Girshick R (2016) Training region-based object detectors with online hard
example mining. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp 761–769

 58. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 580–587

 59. He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for
visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916

 60. Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively, with applica-
tion to face verification. In: 2005 IEEE computer society conference on computer vision and pattern
recognition (CVPR’05), vol 1. IEEE, pp 539–546

 61. Hadsell R, Chopra S, LeCun Y (2006) Dimensionality reduction by learning an invariant mapping.
In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06),
vol 2. IEEE, pp 1735–1742

 62. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and
clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
815–823

 63. Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative feature learning approach for deep face rec-
ognition. In: European conference on computer vision. Springer, Cham, pp 499–515

 64. Liu W, Wen Y, Yu Z, Li M, Raj B, Song L (2017) Sphereface: deep hypersphere embedding for face
recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
212–220

 65. Liu W, Wen Y, Yu Z, Yang M (2016) Large-margin softmax loss for convolutional neural networks.
In: ICML vol 2(3), p 7

 66. Wang H, Wang Y, Zhou Z, Ji X, Gong D, Zhou J, Liu W (2018) Cosface: Large margin cosine loss
for deep face recognition. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 5265–5274

 67. Wang F, Cheng J, Liu W, Liu H (2018) Additive margin softmax for face verification. IEEE Signal
Process Lett 25(7):926–930

 68. Deng J, Guo J, Xue N, Zafeiriou S (2019) Arcface: Additive angular margin loss for deep face rec-
ognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp
4690–4699

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A Comprehensive Survey of Loss Functions in Machine Learning
	Abstract
	1 Introduction
	2 Partition Criterion
	3 Loss Functions in Traditional Machine Learning
	3.1 Loss Functions in Classification
	3.2 Loss Functions in Regression
	3.3 Loss Functions in Unsupervised Learning

	4 Loss Functions in Deep Learning
	4.1 Loss Functions in Object Detection
	4.2 Loss Functions in Face Recognition

	5 Conclusion
	Acknowledgements
	References

