
Locality-Sensitive Hashing for Finding Nearest Neighbors

[lecture NOTES]
Malcolm Slaney

and Michael Casey

1053-5888/08/$20.00©2008IEEEIEEE SIGNAL PROCESSING MAGAZINE [128] MARCH 2008

T
he Internet has brought us a
wealth of data, all now avail-
able at our fingertips. We
can easily carry in our pock-
ets thousands of songs, hun-

dreds of thousands of images, and
hundreds of hours of video. But even
with the rapid growth of computer per-
formance, we don’t have the processing
power to search this amount of data by
brute force.

This lecture note describes a tech-
nique known as locality-sensitive hashing
(LSH) that allows one to quickly find sim-
ilar entries in large databases. This
approach belongs to a novel and interest-
ing class of algorithms that are known as
randomized algorithms. A randomized
algorithm does not guarantee an exact
answer but instead provides a high proba-
bility guarantee that it will return the cor-
rect answer or one close to it. By investing
additional computational effort, the prob-
ability can be pushed as high as desired.

RELEVANCE
There are numerous problems that
involve finding similar items. These
problems are often solved by finding the
nearest neighbor to an object in some
metric space. This is an easy problem to
state, but when the database is large and
the objects are complicated, the process-
ing time grows linearly with the number
of items and the complexity of the
object. For very large databases of high-
dimensional items, LSH is a particularly
valuable technique for retrieving items
that are similar to a query item. In these
searches it can drastically reduce the
computational time, at the cost of a
small probability of failing to find the
absolute closest match.

PREREQUISITES
This lecture note is based on simple geo-
metric reasoning. Some knowledge of
probabilities and a comfort with the
mathematics of high-dimensional spaces
are useful.

PROBLEM STATEMENT
Given a query point, we wish to find the
points in a large database that are closest
to the query. We wish to guarantee with
a high probability equal to 1 − δ that we
return the nearest neighbor for any
query point.

Conceptually, this problem is easily
solved by iterating through each point in
the database and calculating the distance
to the query object. However, our database
may contain billions of objects—each
object described by a vector that contains
hundreds of dimensions. Therefore, it is
important that we find a solution that does
not depend on a linear search of the data-
base. Existing methods to accomplish this
search include trees and hashes.

TREES
By building a tree of objects, we can start
at the top node when given a query, ask if
our query object is to the left or to the
right of the current node, and then
recursively descend the tree. If the tree is
properly constructed, this solves the
query problem in O(log N) time, where
N is the number of objects. In a one-
dimensional space, this is a binary
search. In a multidimensional space, this
idea becomes the k-d tree algorithm [1].
The problem with multidimensional
algorithms such as k-d trees is that they
break down when the dimensionality of
the search space is greater than a few
dimensions—we end up testing nearly
all the nodes in the data set and the com-
putational complexity grows to O(N).

HASHES
By building a hash table, i.e., a data
structure that allows us to quickly map
between a symbol (i.e., a string) and a
value, when given a query we can calcu-
late an arbitrary, pseudorandom func-
tion of the symbol that maps the
symbol into an integer that indexes a
table. Thus a symbol with dozens of
characters, and perhaps hundreds of
bits of data, is mapped to a relatively
small index into the table. A collision
occurs when two points hash to the
same value and there are special provi-
sions to allow more than one symbol
per hash value.

A well-designed hash table allows a
symbol lookup in O(1) time with
O(N) memory, where N is the number
of entries in the table. Also a well-
designed hash function separates two
symbols that are close together into
different buckets. This makes a hash
table a good means of finding exact
matches. To find approximate (near)
matches efficiently we use a locality-
sensitive hash.

SOLUTION
LSH is based on the simple idea that, if
two points are close together, then after a
“projection” operation these two points
will remain close together.

This idea can be easily understood
using the examples shown in Figure 1.
Two points that are close together on
the sphere are also close together when
the sphere is projected onto the two-
dimensional page. This is true no mat-
ter how we rotate the sphere. Two
other points on the sphere that are far
apart will, for some orientations, be
close together on the page, but it is
more likely that the points will remain
far apart. We will describe a different

1053-5888/08/$25.00©2008IEEE

Digital Object Identifier 10.1109/MSP.2007.914237

IEEE SIGNAL PROCESSING MAGAZINE [129] MARCH 2008

type of projection operator, but think-
ing about rendering a multidimension-
al sphere onto a two-dimensional page
is a good metaphor.

To further expand this basic idea, we
start with a random projection opera-
tion that maps a data point from a
high-dimensional point to a low-dimen-
sional subspace. First, we note which
points are close to our query points.
Second, we create projections from a
number of different directions and keep
track of the nearby points. We keep a
list of these found points and note the
points that appear close to each other
in more than one projection.

Part of the art of solving this problem
is defining a projection, defining the
notion of “nearby” (similarity test) so
that we keep track of a manageable num-
ber of points, finding a good hash imple-
mentation, and analyzing the hash
performance.

RANDOM PROJECTIONS:
THE DOT PRODUCT
At the core of LSH is the scalar projec-
tion (or dot product), given by
h(

−→v) = −→v · −→x , where −→v is a query
point in a high-dimensional space, and−→x is a vector with components that are
selected at random from a Gaussian dis-
tribution, for example N (0, 1) . This
scalar projection is then quantized into a
set of hash bins, with the intention that
nearby items in the original space will
fall into the same bin. The resulting full
hash function is given by

h x,b(
−→v) =

⌊−→x · −→v + b
w

⌋
(1)

where �·� is the floor operation, w is the
width of each quantization bin, and b is a
random variable uniformly distributed
between 0 and w that makes the quanti-
zation error easier to analyze, with no
loss in performance.

For the projection operator to serve
our purposes, it must project nearby
points to positions that are close togeth-
er. This requires that:

■ for any points p and q in Rd that
are close to each other, there is a high

probability P1 that they fall into the
same bucket

PH [h(p) = h(q)]

≥P1 for ||p− q || ≤ R1 (2)

■ for any points p and q in Rd that
are far apart, there is a low probability
P2 < P1 that they fall into the same
bucket

PH [h(p) = h(q)]

≤ P2 for ||p− q ||
≥ cR1 = R2. (3)

In (2) and (3), || · || is the L2 vector norm
and R2 > R1. Note that, due to the lin-
earity of the dot product, the difference
between two image points
||h(p) − h(q)|| has a magnitude whose
distribution is proportional to
||p− q ||—therefore, P1 > P2.

RANDOM PROJECTIONS:
THE K DOT PRODUCTS
We can further magnify the difference
between P1 and P2, by performing k dot
products in parallel. This increases the
ratio of the probabilities (given above)
that points at different separations will
fall into the same quantization bin,
since (P1/P2)

k > (P1/P2). The result-
ing projection, is obtained by perform-
ing the k independent dot products to

transform the query point −→v into k real
numbers. As with the scalar (dot prod-
uct) projection, we quantize the k inner
products per (1) with the intention that
similar points will fall in the same buck-
et in all dimensions.

Increasing the quantization bucket
width w will increase the number of
points that fall into each bucket. To
obtain our final nearest neighbor result
we will have to perform a linear search
through all the points that fall into the
same bucket as the query, so varying w
effects a trade-off between a larger table
with a smaller final linear search, or a
more compact table with more points to
consider in the final search.

Within each set of k dot products,
we achieve success if the query and the
nearest neighbor are in the same bin in
all k dot products. This occurs with
probability Pk

1 , which decreases as we
include more dot products. To reduce
the impact of an “unlucky” quantiza-
tion in any one projection, we form L
independent projections and pool the
neighbors from all of these. This is
motivated by the fact that a true near
neighbor will be unlikely to be unlucky
in all the projections. By increasing L
we can find the true nearest neighbor
with arbitrarily high probability. Our
cover-song experiments [2] used 7–14
dot products per hash (k) and more
than 150 projections (L).

[FIG1] Two examples showing projections of two close (circles) and two distant (squares)
points onto the printed page.

(a) (b)

[lecture NOTES] continued

IEEE SIGNAL PROCESSING MAGAZINE [130] MARCH 2008

HASH IMPLEMENTATION
This process of projection and quantiza-
tion places each data point in a hash
bucket described by k integer indices.
Since this k-dimensional space is sparse,
we can use conventional (exact) hashing
methods to efficiently find when points
fall into common buckets. For illustration
we describe the approach used by E2 LSH
[3], but more sophisticated approaches
have also been proposed [4], [5].

A naïve search to find reference
points in the same bucket as the query
point could easily take O(log N) opera-
tions, but we reduce this to O(1) by
using a pair of conventional hash func-
tions. First, we use a conventional hash
to map the k-dimensional quantized pro-
jection into a single linear index by
computing

T1 =
(∑

i

Hiki

)
mod P1 (4)

where Hi are integer weights and P1 is
the hash table size (a large prime num-
ber). The goal of this hash table is to
put each distinct point in the k-dimen-
sional space into a separate one of the
P1 table entries, i.e., to avoid “colli-
sions” in which unrelated points hash
to the same value. Although a well-
constructed hash will distribute entries
quite uniformly, as the table gets
smaller (perhaps to allow it to fit in
memory) the risk of unrelated points
colliding naturally increases.

To accommodate this problem, we
use a second hash T2 of the k-dimen-
sional points to check that points
retrieved from the hash table do indeed
match our query. T2 has the same form
as T1 but uses different weights and
size. We store the values from the sec-
ond hash (which we call fingerprints) in
the bins chosen by the first hash, then
on retrieval we can compare the finger-
prints of items retrieved from the
matching bin to identify the true
matches, if they exist. Since these fin-
gerprints are short (for instance, 16 bit
values) their comparison is much faster
than comparing the full k-dimensional
original points (for which the computa-
tional expenses and memory require-

ments grow as k increases). Moreover,
the chances of simultaneous collisions
under both T1 and T2 can quickly be
made vanishingly small, even for a rela-
tively small hash table.

PERFORMANCE ANALYSIS

ACCURACY
The accuracy of an LSH is determined
by probability that it will find the true
nearest neighbor. To analyze this, we
introduce the concept of s-stable distri-
butions. A distribution D is s-stable if, for
any independent identically distributed
(iid) random variables X1, . . . , Xn dis-
tributed according to D, and any real
numbers v1, . . . , vn, the random vari-
able

∑
i vi Xi has a probability distribu-

tion that is the same as that of the
random variable

(∑
i

|vi|s

)(1/s)

X (5)

where X is drawn from D. For s = 2 (the
L2 norm), a Gaussian probability distri-
bution is s-stable.

To analyze the accuracy of our pro-
jections, recall that the projections of
two close points p and q, separated by
the distance u = ||p− q ||, will always
be close. However, because of quanti-
zation they might fall on opposite
sides of a boundary and thus land in
different buckets. The probability that
these two points are quantized into the
same bucket is given by

p(u) = Pra,b[ha,b(p) = ha,b(q)]

=
∫ w

0

1
u

fs

(
t
u

)(
1 − t

w

)
dt

(6)

where fs is the probability density func-
tion (pdf) of the hash H as given by (5).
For any given bucket width w, this prob-
ability falls as the distance u grows.

Using this probability we calcu-
late PH in (2) and (3) for an L2 space
with R1 equal to the bin width w [4]
as follows:

P2 = 1 − 2F(−w/c) − 2√
2πw/c

×
(

1 − e−(w2/2c2)
)

. (7)

Here F()is the cumulative pdf of a Gaussian
random variable, and c is the ratio of dis-
tances from (3). Setting c = 1 gives us P1.

The probability that a single point falls
into the same bucket as the query is
given by (P1)

k. Consequently, the proba-
bility that all L projections fail to produce
a collision between the query and the
true nearest neighbor is equal to
(1 − Pk

1)L. By requiring that the proba-
bility of LSH failing to find the true near-
est neighbor is no more than δ, a given
value of k will require L to be at least

L = [log δ]

log(1 − Pk
1)

. (8)

The E2 LSH algorithm finds the best
value for k by experimentally evaluating
the cost of the calculation for samples in
the given data set.

SPEED
The amount of time needed to find a
nearest neighbor is the time Tg needed
to calculate and hash the projections,
plus the time Tc needed to search the
buckets for collisions. Because there are
kL projections, Tg is O(nkL), where n is
the dimensionality of the original data
space. On the other hand, Tc increases
linearly based on the expected number of
collisions, i.e., Tc = O(dLNc), where d is
the average number of points in each
bucket. Nc, the expected number of col-
lisions for a single projection, is given by

Nc =
∑
q ′∈D

pk(||q − q ′||) (9)

where p() from (6) gives the probability
that each point contributes to a collision,
and D represents all the points in the
database. It is easy to see that Tg increas-
es as a function of k, while Tc decreases
since pk < p for p < 1 and k > 1.

APPLICATIONS
The LSH algorithm has been applied suc-
cessfully to quickly find nearest neighbors

IEEE SIGNAL PROCESSING MAGAZINE [131] MARCH 2008

in very large databases. Instead of find-
ing exact matches as conventional
hashes would, LSH takes into account
the locality of the points so that nearby
points remain nearby. Examples of
such applications include finding
duplicate pages on the Web, image
retrieval, and music retrieval.

FINDING DUPLICATE
PAGES ON THE WEB
The Web contains many duplicate pages,
partly because content is duplicated
across sites and partly because there is
more than one URL that points to the
same file on a disk. Yet search engines
should not return several copies of the
same page. A solution to identify Web
page duplicates makes use of shingles.
Each shingle represents a portion of a
Web page and is computed by forming a
histogram of the words found within that
portion of the page. We can test to see if
a portion of the page is duplicated else-
where on the Web by looking for other
shingles with the same histogram. Given
that there are billions of pages on the
Web and any portion of any page might
be a duplicate, there are an enormous
number of shingles to test.

AltaVista, the first large-scale Web
search engine, used random selections
(similarly to LSH) to test the similarity
of pages [6]. If the shingles of the new
page match shingles from the database,
then it is likely that the new page bears
a strong resemblance to an existing
page. The nearest-neighbor solution is
important because Web pages are sur-
rounded by navigational and other
information that changes from site to
site. An approximate solution to this
problem is desired, especially when bal-
anced with the computational savings of
a solution like LSH.

RETRIEVING IMAGE AND MUSIC
LSH can be used in image retrieval as
an object recognition tool [7]. We com-
pute a detailed metric for many differ-
ent orientations and configurations of
an object we wish to recognize. Then,
given a new image we simply check our
database to see if a precomputed object’s
metrics are close to our query. This

database contains millions of poses and
LSH allows us to quickly check if the
query object is known.

In music retrieval typically we use
conventional hashes and robust fea-
tures to find musical matches. The fea-
tures can be fingerprints, i .e.,
representations of the audio signal that
are robust to common types of abuse
that are performed to audio before it
reaches our ears [8]. Fingerprints can
be computed, for instance, by noting
the peaks in the spectrum (because
they are robust to noise) and encoding
their position in time and space. One
then just has to query the database for
the same fingerprint.

However, to find similar songs we
cannot use fingerprints because these
are different when a song is remixed for
a new audience or when a different
artist performs the same song. Instead,
we can use several seconds of the song—
a snippet—as a shingle. To determine if
two songs are similar, we need to query
the database and see if a large enough
number of the query shingles are close to
one song in the database [2]. Although
closeness depends on the feature vector,
we know that long shingles provide speci-
ficity. This is particularly important
because we can eliminate duplicates to
improve search results and to link recom-
mendation data between similar songs. As
discussed earlier, LSH proves useful to
identify nearest neighbors quickly even
when the database is very large.

CONCLUSIONS—WHAT
WE HAVE LEARNED
In this lecture note, we have described
the theory and implementation of a
randomized algorithm known as LSH.
Unlike conventional computer hashes
that are designed to return exact
matches in O(1) time, an LSH algo-
rithm uses dot products with random
vectors to quickly find nearest neigh-
bors. LSH provides a probabilistic guar-
antee that it will return the correct
answer. In systems that have other
sources of error (perhaps due to misla-
beled data) one can reduce the LSH
error below the error due to other
sources, while significantly improving

the computational performance. This
makes LSH in particular, and random-
ized algorithms in general, important
in today’s world of Internet-sized
databases.

ACKNOWLEDGMENTS
We appreciate thoughtful comments we
have received from Alex Jaffe, Sara
Anderson, and several reviewers.

AUTHORS
Malcolm Slaney (malcolm@ieee.org) is a
researcher with Yahoo! Research,
Sunnyvale, California, and a consulting
professor at Stanford University. He is a
coauthor of the book Principles of
Computerized Tomographic Imaging
and coeditor of the book Computational
Models of Hearing. He is a Senior
Member of IEEE.

Michael Casey (m.casey@gold.ac.uk)
is a professor of music at Dartmouth
College, Hanover, New Hampshire, and
visiting research professor of computer
science at Goldsmiths College, University
of London. His main interests are in the
area of music information retrieval. He is
a Member of IEEE.

REFERENCES
[1] J. Bentley, “Multidimensional binary search trees
used for associative searching,” Commun. ACM, vol.
18, pp. 509–517, 1975.

[2] M. Casey and M. Slaney, “Fast recognition of
remixed music audio,” in Proc. IEEE ICASSP, 2007,
pp. IV-1425–1428.

[3] A. Andoni and P. Indyk, “E2LSH 0.1 User
Manual,” Jun. 2005. [Online]. Available: http://
web.mit.edu/andoni/www/LSH

[4] A. Andoni, M. Datar, N. Immorlica, and V.
Mirrokni, “Locality-sensitive hashing using stable
distributions,” in Nearest Neighbor Methods in
Learning and Vision: Theory and Practice, T. Darrell,
P. Indyk, and G. Shakhnarovich, Eds. Cambridge,
MA: MIT Press, 2006.

[5] A. Andoni and P. Indyk, “Near-optimal hashing
algorithms for near neighbor problem in high
dimensions,” in Proc. Symp. Foundations of
Computer Science (FOCS’06), 2006.

[6] A. Broder, S. Glassman, M. Manasse, and G.
Zweig, “Syntactic clustering of the Web,” in Proc.
WWW, Santa Clara, 1997, pp. 1157–1166.

[7] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast
pose estimation with parameter-sensitive hashing,”
in Nearest Neighbor Methods in Learning and
Vision: Theory and Practice, T. Darrell, P. Indyk, and
G. Shakhnarovich, Eds. Cambridge, MA: MIT Press,
2006.

[8] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A
review of algorithms for audio fingerprinting,” in
Proc. Int. Workshop Multimedia Signal Processing,
2002. [SP]

