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Outline

• The Planning problem
• Planning with State-space search
• Partial-order planning
• Planning graphs
• Planning with propositional logic
• Analysis of planning approaches



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

Planning problem
• Classical planning environment: fully observable, 

deterministic, finite, static and discrete.
• Find a sequence of actions that achieves a given goal when 

executed from a given initial world state.  That is, given 
• a set of action descriptions (defining the possible 

primitive actions by the agent), 
• an initial state description, and 
• a goal state description or predicate, 

• compute a plan, which is 
• a sequence of action instances, such that executing 

them in the initial state will change the world to a state 
satisfying the goal-state description. 

• Goals are usually specified as a conjunction of subgoals to 
be achieved
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Planning vs. problem solving

• Planning and problem solving methods can often 
solve the same sorts of problems
• Planning is more powerful because of the 

representations and methods used
• States, goals, and actions are decomposed into sets 

of sentences (usually in first-order logic)
• Search often proceeds through plan space rather 

than state space (though first we will talk about 
state-space planners)
• Subgoals can be planned independently, reducing the 

complexity of the planning problem
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• Choose actions to achieve a certain goal
• But isn’t it exactly the same goal as for problem solving?
• Some difficulties with problem solving:

• The successor function is a black box: it must be 
“applied” to a state to know which actions are possible 
in that state and what are the effects of each one

Goal of Planning
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Have(Milk)

• Suppose that the goal is HAVE(MILK). 
• From some initial state where HAVE(MILK) is not 

satisfied, the successor function must be repeatedly 
applied to eventually generate a state where 
HAVE(MILK) is satisfied. 
• An explicit representation of the possible actions and 

their effects would help the problem solver select the 
relevant actions  
• Otherwise, in the real world an agent would be 

overwhelmed by irrelevant actions
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Planning vs Problem Solving

• Another difficulty with problem solving:
• The goal test is another black-box function, states 

are domain-specific data structures, and heuristics 
must be supplied for each new problem
• Suppose that the goal is HAVE(MILK)∧HAVE(BOOK)
• Without an explicit representation of the goal, the 

problem solver cannot know that a state where 
HAVE(MILK) is already achieved is more promising 
than a state where neither HAVE(MILK) nor 
HAVE(BOOK) is achieved 
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Planning vs Problem Solving

• A third difficulty with problem solving:
• The goal may consist of several nearly independent 

subgoals, but there is no way for the problem solver to 
know it
• HAVE(MILK) and HAVE(BOOK) may be achieved by

two nearly independent sequences of actions
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Representations in Planning

• Planning opens up the black-boxes by using logic to 
represent:
• Actions
• States
• Goals Problem solving Logic representation

Planning
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Major approaches
• Situation calculus
• State space planning
• Partial order planning
• Planning graphs
• Planning with Propositional Logic
• Hierarchical decomposition (HTN planning)
• Reactive planning
• Note:  This is an area in which AI is changing 

quickly.
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Situation Calculus Planning

• Formulate planning problem in FOL
• Use theorem prover to find proof (aka plan)
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Representing change

• Representing change in the world in logic can be tricky.

• One way is just to change the KB

• Add and delete sentences from the KB to reflect changes

• How do we remember the past, or reason about changes?

• Situation calculus is another way

• A situation is a snapshot of the world at some instant in 

time

• When the agent performs an action A  in situation S1, the 

result is a new situation S2.
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Situation calculus
• A situation is a snapshot of the world at an interval of time during 

which nothing changes 
• Every true or false statement is made with respect to a particular 

situation. 
• Add situation variables to every predicate.
• at(hunter,1,1) becomes at(hunter,1,1,s0): at(hunter,1,1) is true in 

situation (i.e., state) s0.
• Add a new function, result(a,s), that maps a situation s into a new 

situation as a result of performing action a. For example, 
result(forward, s) is a function that returns the successor state 
(situation) to s 
• The action agent-walks-to-location-y could be represented by 

(∀x)(∀y)(∀s) (at(Agent,x,s) ^ ~onbox(s)) -> at(Agent,y,result(walk(y),s)) 
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Situation calculus planning
• Initial state: a logical sentence about (situation) S0

• At(Home, S0) ^ ~Have(Milk, S0) ^ ~ Have(Bananas, S0) ^ 
~Have(Drill, S0)

• Goal state: 
• (∃s) At(Home,s) ^ Have(Milk,s) ^ Have(Bananas,s) ^ 

Have(Drill,s)
• Operators  are descriptions of actions: 

• ∀(a,s) Have(Milk,Result(a,s)) <=> ((a=Buy(Milk) ^ At(Grocery,s)) 
∨ (Have(Milk, s) ^ a~=Drop(Milk)))

• Result(a,s) names the situation resulting from executing action a in 
situation s. 
• Action sequences are also useful: Result'(l,s) is the result of 

executing the list of actions (l) starting in s:
• (∀s) Result'([],s) = s
• (∀a,p,s) Result'([a|p]s) = Result'(p,Result(a,s))
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Situation calculus planning II
• A solution is thus a plan that when applied to the initial 

state yields a situation satisfying the goal query: 
• At(Home,Result'(p,S0)) 
• ^ Have(Milk,Result'(p,S0))
• ^ Have(Bananas,Result'(p,S0))
• ^ Have(Drill,Result'(p,S0))

• Thus we would expect a plan (i.e., variable assignment 
through unification) such as: 
• p = [Go(Grocery), Buy(Milk), Buy(Bananas), 

Go(HardwareStore), Buy(Drill), Go(Home)]
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Planning with propositional logic:  SATPLAN

• Planning can be done by proving theorem in situation calculus
• Test the satisfiability of a logical sentence:

– initial state  ∧ all possible action descriptions ∧ goal
• Sentence contains propositions for every action occurrence.

– A model will assign true to the actions that are part of the 
correct plan and false to the others

– An assignment that corresponds to an incorrect plan will 
not be a model because of inconsistency with the assertion 
that the goal is true.

– If the planning is unsolvable the sentence will be 
unsatisfiable
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SC planning: analysis

• This is fine in theory, but remember that problem solving 
(search) is exponential in the worst case
• Also, resolution theorem proving only finds a proof (plan), 

not necessarily a good plan
• Another important issue: the Frame Problem
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The Frame Problem
• In SC, need not only axioms to describe what changes in 

each situation, but also need axioms to describe what stays 
the same (can do this using successor-state axioms)

• Qualification problem: difficulty in specifying all the 
conditions that must hold in order for an action to work

• Ramification problem: difficulty in specifying all of the 
effects that will hold after an action is taken
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So…

• we restrict the language and use a special-purpose 
algorithm (a planner) rather than general theorem prover
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Planning language
• What is a good language?

• Must represent

• States

• Goals

• Action.

• Must be 

• Expressive enough to describe a wide variety of 

problems.

• Restrictive enough to allow efficient algorithms to 

operate.

• STRIPS (Stanford Research Institute Problem Solver), ADL…
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Representing States

holding(A)
clear(B)
on(B,C)
onTable(C)
State 1

handEmpty
clear(A)
on(A,B)
on(B,C)
onTable(C)
State 2

C

A
B

C

A
B

World states are represented as sets of facts.
We will also refer to facts as propositions. 

Closed World Assumption (CWA):
Fact not listed in a state are assumed to be false. Under CWA
we are assuming the agent has full observability.
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Representing Goals
Goals are also represented as sets of facts. 
For example { on(A,B) } is a goal in the blocks world.

A goal state is any state that contains all the goal facts.

handEmpty
clear(A)
on(A,B)
on(B,C)
onTable(C)
State 1

C

A
B

holding(A)
clear(B)
on(B,C)
onTable(C)
State 2

C

A
B

State 1 is a goal state for the goal { on(A,B) }. 
State 2 is not a goal state for the goal { on(A,B) }.
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Representing Action in STRIPS
holding(A)
clear(B)
on(B,C)
onTable(C)
State 1

handEmpty
clear(A)
on(A,B)
on(B,C)
onTable(C)
State 2

PutDown(A,B)

C

A
B

C

A
B

A STRIPS action definition specifies: 
1) a set PRE of preconditions facts
2) a set ADD of add effect facts 
3) a set DEL of delete effect facts

PutDown(A,B):
PRE: { holding(A), clear(B) }
ADD: { on(A,B), handEmpty, clear(A) }
DEL:  { holding(A), clear(B) }
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Semantics of STRIPS Actions
holding(A)
clear(B)
on(B,C)
onTable(C)

S

handEmpty
clear(A)
on(A,B)
on(B,C)
onTable(C)
S È ADD – DEL

PutDown(A,B)

C

A
B

C

A
B

• A STRIPS action is applicable (or allowed) in a state when its 
preconditions are contained in the state.

• Taking an action in a state S results in a new state S È ADD – DEL
(i.e. add the add effects and remove the delete effects)

PutDown(A,B):
PRE: { holding(A), clear(B) }
ADD: { on(A,B), handEmpty, clear(A)}
DEL:  { holding(A), clear(B) }
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PutDown(A,B):
PRE: { holding(A), clear(B) }
ADD: { on(A,B), handEmpty, clear(A)}
DEL:  { holding(A), clear(B) }

A STRIPS planning problem specifies: 
1) an initial state S
2) a goal G 
3) a set of STRIPS actions 

holding(A)
clear(B)
onTable(B)

Initial State 

A
B on(A,B)

Goal 

PutDown(B,A):
PRE: { holding(B), clear(A) }
ADD: { on(B,A), handEmpty, clear(B) }
DEL:  { holding(B), clear(A) }

STRIPS Actions

Example Problem:

Objective: find a “short” action sequence reaching a goal state,
or report that the goal is unachievable

Solution: (PutDown(A,B))
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STRIPS Action Schemas

PutDown(x,y):
PRE: { holding(x), clear(y) }
ADD: { on(x,y), handEmpty, clear(x) }
DEL:  { holding(x), clear(y) }

For convenience we typically specify problems via action 
schemas rather than writing out individual STRIPS actions. 

Action Schema: (x and y are variables)

PutDown(A,B):
PRE: { holding(A), clear(B) }
ADD: { on(A,B), handEmpty, clear(A) }
DEL:  { holding(A), clear(B) }

PutDown(B,A):
PRE: { holding(B), clear(A) }
ADD: { on(B,A), handEmpty, clear(B) }
DEL:  { holding(B), clear(A) }

h Each way of replacing variables with objects from the initial state and 

goal yields a “ground” STRIPS action.

h Given a set of schemas, an initial state, and a goal, propositional 

planners compile schemas into ground actions and then ignore the 

existence of objects thereafter.

. . . .
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STRIPS Versus PDDL

• Your book refers to the PDDL language for defining planning problems 
rather than STRIPS

• The Planning Domain Description Language (PDDL) was defined by 
planning researchers as a standard language for defining planning 
problems
• Includes STRIPS as special case along with more advanced features
• Some simple additional features include: type specification for objects, 

negated preconditions, conditional add/del effects
• Some more advanced features include allowing numeric variables and 

durative actions

• Most planners you can download take PDDL as input
• Majority only support the simple PDDL features (essentially STRIPS)
• PDDL syntax is easy to learn from examples packaged with planners, 

but a definition of the STRIPS fragment can be found at: 
http://eecs.oregonstate.edu/ipc-learn/documents/strips-pddl-
subset.pdf
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Properties of Planners

h A planner is sound if any action sequence it returns is a 
true solution

h A planner is complete if it outputs an action sequence or 
“no solution” for any input problem

h A planner is optimal if it always returns the shortest 
possible solution

Is optimality an important requirement?
Is it a reasonable requirement?
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Planning as Graph Search
• It is easy to view planning as a graph search problem

• Nodes/vertices = possible states

• Directed Arcs = STRIPS actions

• Solution: path from the initial state (i.e. vertex) to one 
state/vertices that satisfies the goal
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Search Space: Blocks World
Graph is finite

Initial State Goal State
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Planning as Graph Search

• Planning is just finding a path in a graph
• Why not just use standard graph algorithms for finding 

paths? 

• Answer: graphs are exponentially large in the problem encoding 
size (i.e. size of STRIPS problems). 
• But, standard algorithms are poly-time in graph size
• So standard algorithms would require exponential time

• Can we do better than this?
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Satisficing vs. Optimality
h While finding a plan is hard in the worst case, for many planning 

domains, finding a plan is easy.
h However finding optimal solutions can still be hard in those 

domains. 
5For example, optimal planning in the blocks world is NP-

complete.
h In practice it is often sufficient to find “good” solutions “quickly” 

although they may not be optimal. 
5This is often referred to as the “satisficing” objective.
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Satisficing

• Still finding satisficing plans for arbitrary STRIPS problems is not 
easy.
• Must still deal with the exponential size of the underlying 

state spaces
• Why might we be able to do better than generic graph 

algorithms?
• Answer: we have the compact and structured STRIPS 

description of problems
• Try to leverage structure in these descriptions to intelligently 

search for solutions
• We will now consider several frameworks for doing this



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

STRIPS General language features
• Representation of states

• Decompose world in logical conditions and represent 
state as conjunction of positive literals. 

• Propositional literals: Poor ∧ Unknown

• FO-literals (grounded and function-free): 

• at(plane1, phl) ∧ at(plane2, bwi)

• does not allow 

• at(X,Y),  (not grounded)

• at(father(fred),bwi),  (function)

• ¬at(plane1, phl. (negative literal)
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STRIPS

• Closed world assumption 
• Representation of goals

• Partially specified state and represented as a 
conjunction of positive ground literals
• A goal is satisfied if the state contains all literals in goal.
• e.g.:  at(paula, phl) ∧ at(john,bwi) satisfies the goal 

at(paula, phl)
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General language features
• Representations of actions

• Action = PRECOND + EFFECT
• Action(Fly(p,from, to),
• PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧

Airport(to)
• EFFECT: ¬AT(p,from) ∧ At(p,to))

• = action schema (p, from, to need to be instantiated)
• Action name and parameter list
• Precondition (conj. of function-free literals)
• Effect (conj of function-free literals and P is True and 

not P is false)
• May split Add-list and delete-list in Effect
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Example
• Paula flies from Philadelphia to Baltimore

• Action(Fly(p,from,to)
• PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
• EFFECT: ¬At(p,from) ∧ At(p,to))

• We begin with
• At(paula,phl) ∧ Plane(phl)  ∧ Airport(phl)  ∧ Airport(bwi)

• We take the action
• Fly(paula, phl, bwi)

• We end with
• ¬At(paula,phl) ∧ At(paula, bwi)

• Note that we haven’t said anything in the effect about what 
happened to the plane.  Do we care?
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Language semantics?

• How do actions affect states?
• An action is applicable in any state that satisfies the 

precondition.
• For FO action schema applicability involves a 

substitution θ for the variables in the PRECOND.
• At(P1,JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧

Airport(JFK) ∧ Airport(SFO)
• Satisfies : At(p,from) ∧ Plane(p) ∧ Airport(from) ∧

Airport(to)
• With θ ={p/P1,from/JFK,to/SFO}
• Thus the action is applicable.
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Language semantics?

• The result of executing action a in state s is the state s’ 
• s’ is same as s except
• Any positive literal P in the effect of a is added to s’
• Any negative literal ¬P is removed from s’
• EFFECT: ¬AT(p,from) ∧ At(p,to):
• At(P1,SFO) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧

Airport(JFK) ∧ Airport(SFO)
• STRIPS assumption: (avoids representational frame 

problem)
• every literal NOT in the effect remains unchanged
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Languages for Planning Problems
• STRIPS 

• Stanford Research Institute Problem Solver
• Historically important

• ADL
• Action Description Languages
• Relaxed some of the restrictions that made STRIPS inadequate 

for real-world problems

• PDDL
• Planning Domain Definition Language
• Revised & enhanced for the needs of the International Planning 

Competition
• Includes STRIPS and ADL 
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Planning Languages

• STRIPS is simplest  
• Important limit: function-free literals

• Allows for propositional representation
• Function symbols lead to infinitely many states and actions
• But poor expressivity

• Extension:Action Description language (ADL)
• Allows negative literals
• Allows quantified variables, conjunctions, disjunctions in goals
• Open World assumption

• Action(Fly(p:Plane, from: Airport, to: Airport),
• PRECOND: At(p,from) ∧ (from ≠ to)
• EFFECT: ¬At(p,from) ∧ At(p,to))
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Blocks world
• The blocks world is a micro-world that consists of a table, a 

set of blocks and a robot hand.
• Some domain constraints:

• Only one block can be on another block
• Any number of blocks can be on the table
• The hand can only hold one block

• Typical representation:
• ontable(a)
• ontable(c)
• on(b,a)
• handempty
• clear(b)
• clear(c)

A
B

C

TABLE
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State Representation

Conjunction of propositions:
BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A), 
CLEAR(B), CLEAR(C), HANDEMPTY

A B

C

TABLE
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Goal Representation

A

B

C

Conjunction of propositions:
ON(A,TABLE), ON(B,A), ON(C,B)

The goal G is achieved in a state S if all 
the propositions in G are also in S 
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Action Representation

Unstack(x,y)

P = HANDEMPTY, BLOCK(x), BLOCK(y), 

CLEAR(x), ON(x,y)

E = ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x),

¬ ON(x,y), CLEAR(y)

Effect: list of literals

Precondition: conjunction of propositions
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Example

A B

C

Unstack(C,A)
P = HANDEMPTY, BLOCK(C), BLOCK(A), 

CLEAR(C), ON(C,A)
E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C),

¬ ON(C,A), CLEAR(A)

BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A), 
CLEAR(B), CLEAR(C), HANDEMPTY
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Example

A B

C
BLOCK(A), BLOCK(B), BLOCK(C),
ON(A,TABLE), ON(B,TABLE), ON(C,A), 
CLEAR(B), CLEAR(C), HANDEMPTY, 
HOLDING(C), CLEAR(A)

Unstack(C,A)
P = HANDEMPTY, BLOCK(C), BLOCK(A), 

CLEAR(C), ON(C,A)
E = ¬HANDEMPTY, ¬CLEAR(C), HOLDING(C),

¬ ON(C,A), CLEAR(A)
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Action Representation
Action(Unstack(x,y)

P: HANDEMPTY, BLOCK(x), BLOCK(y), CLEAR(x), ON(x,y)

E: ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), ¬ ON(x,y), CLEAR(y)

Action(Stack(x,y)

P: HOLDING(x), BLOCK(x), BLOCK(y), CLEAR(y)

E: ON(x,y), ¬CLEAR(y), ¬HOLDING(x), CLEAR(x), HANDEMPTY
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Actions
Action(Pickup(x)
P: HANDEMPTY, BLOCK(x), CLEAR(x), ON(x,TABLE)
E: ¬HANDEMPTY, ¬CLEAR(x), HOLDING(x), ¬ON(x,TABLE)

Action(PutDown(x)
P: HOLDING(x)
E: ON(x,TABLE), ¬HOLDING(x), CLEAR(x), HANDEMPTY
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Example: Spare tire problem

Init(At(Flat, Axle) ∧ At(Spare,trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare,Trunk)

PRECOND: At(Spare,Trunk)
EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground)) 

Action(Remove(Flat,Axle)
PRECOND: At(Flat,Axle)
EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground)) 

Action(PutOn(Spare,Axle)
PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)
EFFECT: At(Spare,Axle) ∧ ¬At(Spare,Ground))

Action(LeaveOvernight
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,trunk) ∧ ¬ 

At(Flat,Ground) ∧ ¬ At(Flat,Axle) )
This example is ADL: negative literal in pre-condition 
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Planning with state-space search

• Search the space of states
• Progression planners

• forward state-space search
• Consider the effect of all possible actions in a given 

state
• Regression planners 

• backward state-space search
• To achieve a goal, what must have been true in the 

previous state.
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Progression and regression



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

State-Space Formulation

• Formulation as state-space search problem:
• Initial state = initial state of the planning problem
• Literals not appearing are false

• Actions = those whose preconditions are satisfied
• Add positive effects, delete negative

• Goal test = does the state satisfy the goal?
• Step cost = each action costs 1
• Solution is a sequence of actions.
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Progression Algorithm

• No functions, so the number of states is finite … any graph 
search that is complete is a complete planning algorithm.
• E.g. A*

• Inefficient: 
• (1) irrelevant action problem 
• (2) good heuristic required for efficient search
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Regression algorithm

• How to determine predecessors?
• What  are the states from which applying a given action 

leads to the goal?
• Actions must not undo desired literals (consistent)
• Main advantage: only relevant actions are considered.

• Often much lower branching factor than forward 
search.
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Regression algorithm

• General process for predecessor construction
• Give a goal description G
• Let A be an action that is relevant and consistent
• The predecessors is as follows:

• Any positive effects of A that appear in G are deleted.
• Each precondition literal of A is added , unless it already appears.

• Any standard search algorithm can be added to perform 
the search.
• Termination when predecessor satisfied by initial state.

• In FO case, satisfaction might require a substitution.
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Heuristics for state-space search

• Neither progression or regression are very efficient without 
a good heuristic.
• How many actions are needed to achieve the goal?
• Exact solution is NP hard, find a good estimate 

• Two approaches to find admissible heuristic:
• The optimal solution to the relaxed problem.
• Remove all preconditions from actions

• The subgoal independence assumption:
• The cost of solving a conjunction of subgoals is 

approximated by the sum of the costs of solving the 
subproblems independently.
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Partial Order Planning
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Search through State Space

The simplest way to build a planner is to cast the planning 
problem as search through the space of world states. Each 
node in the graph denotes a state of the world, and arcs 
connect worlds that can be reached by executing a single 
action. We would call it a situation space planner because it 
searches through the space of possible situations.

There are two types of planners:

Progression Planner: it searches forward from the initial 
situation to the goal situation. 

Regression Planner: it searches backward from the goal 
situation to the initial situation.
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Search through the Space of Plans
An alternative is to search through space of plans  rather 
than space of situations i.e plan-space node denote plans  

• Start with a simple partial plan

• Expand the plan until the complete plan is developed

• Operators in this step:

• Adding a step

• Imposing an ordering that puts one step after another

• Instantiating a previously unbound variable

• The solution is the final plan 
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Representation of Plans
Consider a simple problem: Putting on a pair of shoes

Goal àRightShoeOn ^ LeftShoeOn

Four operators:

Op(Action:RightShoe, PreCond:RightSockOn, Effect:RightShoeON)

Op(Action:RightSock , Effect: RightSockOn)

Op(Action:LeftShoe, Precond:LeftSockOn, Effect:LeftShoeOn)

Op(Action:LeftSock,Effect:LeftSockOn)
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Least Commitment –

One should make choices only about things that you currently 
care about  ,leaving the others to be worked out later.

Partial Order Planner –

A planner that can represent plans in which some steps are ordered 

(before or after) w.r.t each other and other steps are unordered.

Total Order Planner—

Planner in which plans consist of a simple lists of steps

Linearization  of P—

A totally ordered plan that is derived from a plan P by adding 

constraints 
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Left 
Sock

Start

Finish

Right 
Shoe

Left 
Shoe

Right 
Sock

Start

Right 
Sock

Finish

Left
Shoe

Right
Shoe

Left 
Sock

Start Start Start Start Start

Right 
Sock

Right 
Sock

Right 
Sock

Right 
Sock

Right 
Sock

Left 
Sock

Left 
Sock

Left 
Sock

Left 
Sock

Left 
Sock

Left 
Sock

Right
Shoe

Right
Shoe

Right
Shoe

Right
Shoe

Right
Shoe

Left
Shoe

Left
Shoe

Left
Shoe

Left
Shoe

Finish Finish Finish Finish Finish

Left Shoe on Right Shoe on

Left Sock on Right Sock on

Partial Order Plans: Total Order Plans:
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Plans, Causal Links and Threats

Representing a Plan as a three tuple :-- <A,O,L>

•A à Set of Actions

•L à Set of Causal Links

•O à Set of Ordering constraints over A

If A ={A1,A2,A3} then O might be set{A1<A3,A2<A3}

These constraints specify a plan in which A3 is necessarily the 
last action but does not commit to a choice of which of the 
three actions comes first 

As least commitment planners refine their plans, they must do 
constraint satisfaction  to ensure consistency of O
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Causal Links—

A Causal Links is written as Si
cà Sj and read as “ Si achieves c for Sj

“.Causal Links serve to record the purpose of steps in the plan:here a 
purpose of Si is to achieve the precondition c of Sj

Threat –

Causal Links are used to detect when a newly introduced action 
interferes with past decision. Such an action is called a Threat.

Let At be a different action in A : we sat that A t threatens Ap
Qà Ac

when the two criteria are met:

•O U{Ap<At<Ac} is consistent

•At has ¬Q as an effect.
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Resolving Threats

When a plan contains a threat , then there is a danger that the 
plan  won’t work as anticipated i.e.  We have reached a dead-
end  in the search.

The causal  link S1 cà S2 is threatened by a new step S3 
because one effect  of S3 is to delete c.

The way to resolve the Threat is to add  ordering constraints to 
make sure that S3 does not intervene between S1 and S2

Demotion -- S3 is placed before S1 .

Promotion – S3 is placed after S2.
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S1

S3

S2

S1

S2

S3

S3

S1

S2

C

¬C

¬C

¬C

C
C
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Partial Order Planning

• Plan from goals, back to initial state
• Search through partial plans

• Representation:
• Operators given in declarative representation, rather 

than black box functions.
• Plans represent only relevant commitments

(e.g., relevant ordering of operators, not total ordering)
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POP as a search problem

• States are (mostly unfinished) plans.
• The empty plan contains only start and finish actions.

• Each plan has 4 components:
• A set of actions (steps of the plan)
• A set of ordering constraints: A ! B (A before B)

• Cycles represent contradictions.  A ! B and B ! A
• A set of causal links between actions

• A achieves p for B
• Can’t add an action C that conflicts with the causal link. (if the effect of C 

is ¬p and if C could come after A and before B).  
• eg:  Right Sock                       Right Shoe

• A set of open preconditions.
• Planner tries to reduce this set to the empty set without introducing 

contradictions

A        B
p

Right Sock On
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Consistent Plan (POP)

• Consistent plan is a plan that has
• No cycle in the ordering constraints
• No conflicts with the causal links

• Solution
• Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A         B and an 
action C (that clobbers, threatens the causal link), we 
force C to occur outside the “protection interval”  by 
adding
• the constraint  C ! A  (demoting C) or 
• the constraint  B ! C (promoting C)

p
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Setting up the PoP
• Add dummy states 

• Start

• Has no preconditions

• Its effects are the literals of the initial state

• Finish

• Its preconditions are the literals of the goal state

• Has no effects

• Initial Plan:

• Actions: {Start, Finish}

• Ordering constraints: {Start ! Finish}

• Causal links: {}

• Open Preconditions: {……}
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Consistent Plan (POP)

• Consistent plan is a plan that has
• No cycle in the ordering constraints
• No conflicts with the causal links

• Solution
• Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A         B and an 
action C (that clobbers, threatens the causal link), we 
force C to occur outside the “protection interval”  by 
adding
• the constraint  C ! A  (demoting C) or 
• the constraint  B ! C (promoting C)

p
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POP as a Search Problem
• The successor function arbitrarily picks one open precondition p

on an action B
• For every possible consistent action A that achieves p

• It generates a successor plan adding the causal link  A          B 
and the ordering constraint  A ! B
• If A was not in the plan, it adds  Start ! A and  A ! Finish
• It resolves all conflicts between 
• the new causal link and all existing actions 
• between A and all existing causal links

• Then it adds the successor states for  combination of 
resolved conflicts

• It repeats until no open precondition exists

p
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Process summary

• Operators on partial plans
• Add link from existing plan to open precondition.
• Add a step to fulfill an open condition.
• Order one step w.r.t another to remove possible 

conflicts
• Gradually move from incomplete/vague plans to 

complete/correct plans
• Backtrack if an open condition is unachievable or if a 

conflict is irresolvable.
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Given: Initial and Goal State

Have(Milk) At(Home) Have(Banana) Have(Drill)
Finish

Start
At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Banana)
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Given: Plan Operators (Actions)

Go(HWS)

Go(Home)

Buy(Drill)

Buy(Milk)

Buy(Banana)Go(SM)

At(SM), Sells(SM,Milk)At(SM)

At(SM), Sells(SM,Banana)

At(Home)

At(HWS)

At(HWS) Sells(HWS,Drill)

Have(Milk)

Have(Drill)

Have(Ban)

At(Home)

At(HWS)

At(SM)

What is a solution?
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Start

Finish
Have(Milk) At(Home) Have(Banana) Have(Drill)

Buy(Milk)
At(SM), Sells(SM,Milk)

Buy(Banana)
At(SM), Sells(SM,Banana)

Buy(Drill)
At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Banana)

Partial Order Plan <Actions,Orderings,Links>
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Start

Finish

Buy(Drill)

Buy(Milk) Buy(Banana)

Have(Milk) At(Home) Have(Banana) Have(Drill)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Banana)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Banana)
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Start

Finish

Buy(Drill)

Buy(Milk) Buy(Banana)

Have(Milk) At(Home) Have(Banana) Have(Drill)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Banana)

At(HWS) Sells(HWS,Drill)

Go(Home)

At(HWS)
Go(SM)

At(SM)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Banana)
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Start

Go(Home)

Finish

Buy(Drill)

Buy(Milk) Buy(Banana)

Go(SM)

Have(Milk) At(Home) Have(Banana) Have(Drill)

At(SM), Sells(SM,Milk)

At(SM)

At(SM), Sells(SM,Banana)

At(HWS)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Banana)

Go(HWS)
At(Home)
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Start

Go(HWS)

Go(Home)

Finish

Buy(Drill)

Buy(Milk) Buy(Banana)

Go(SM)

Have(Milk) At(Home) Have(Banana) Have(Drill)

At(SM), Sells(SM,Milk)

At(SM)

At(SM), Sells(SM,Ban.)

At(Home)

At(HWS)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Banana)
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Why is an ordering needed?

Go(Home)

Buy(Milk)

Go(SM)

At(Home)

At(SM)

At(SM)

At(HWS)
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Why is an ordering needed?

Go(Home)

Go(SM)

At(Home)

At(SM)

At(HWS)

Buy(Milk)
At(SM)

Suppose the other order is allowed,
what happens?

“Threatened
Precondition”
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Why is an ordering needed?

Go(Home)

Go(SM)

At(Home)

At(SM)

At(HWS)

Buy(Milk)
At(SM)

Suppose the other order is allowed,
what happens?

Link indicates
protected time
interval.
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Ordering Resolves Threat

Go(Home)

Buy(Milk)

Go(SM)

At(Home)

At(SM)

At(SM)

At(HWS)
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A Solution: Complete and Consistent Plan
• Complete Plan

• Consistent Plan

IFF every precondition of 
every step is achieved
A step’s precondition is achieved iff
• its the effect of a preceding step,
• no possibly intervening step 
undoes it. 

IFF there is no contradiction 
in the ordering constraints
(I.e., never si < sj and sj < si.)

Start

Go(HWS)

Go(Home)

Finish

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(SM)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

At(SM), Sells(SM,Milk)

At(SM)

At(SM), Sells(SM,Ban.)

At(Home)

At(HWS)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)
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POP(<A,O,L>, agenda, actions)
• <A,O,L>, A partial plan to expand 

• Agenda: A queue of open conditions still to 

be satisfied: <p, aneed >

• Actions: A set of actions that may be 

introduced to meet needs.

• aadd: an action that produces the needed 

condition p for aneed

• Athreat : an action that might threaten a 

causal link from aproducer to aconsumer
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POP(<A,O,L>, agenda, actions)
1. Termination: If agenda is empty, return plan <A,O,L>.

2. Goal Selection: select and remove open condition <p, aneed > from 
agenda.

3. Action Selection: Choose new or existing action aadd that can 
precede aneed and whose effects include p.  
Link and order actions.

4. Update Agenda:  If aadd is new, add its preconditions to agenda.

5. Threat Detection: For every action athreat that might threaten some 
causal link from aproduce to aconsume, choose a consistent ordering: 

a) Demotion: Add athreat < aproduce

b) Promotion: Add aconsume < athreat

6. Recurse: on modified plan and agenda

Choose is nondeterministic Select is deterministic
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To remove threats…

Go(Home)

Go(SM)

At(Home)

At(SM)

At(HWS)

Buy(Milk)
At(SM)

promote the threat…
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To remove threats…

Go(Home)

Go(SM)

At(Home)

At(SM)

At(HWS)

Buy(Milk)
At(SM)

promote the threat… demote the threat…
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Go(SM)
At(HWS)

• But allow demotion/promotion
only if schedulable

• consistent = loop free
• no action precedes initial state

To remove threats…
promote the threat… demote the threat…

Buy(Milk)
At(SM)
Buy(Milk)

At(SM)

Go(Home)
At(Home)

At(SM)
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Start

Finish
Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)
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Start

Finish
Have(Drill) Have(Milk) Have(Ban.) at(Home)

Buy(Drill)
At(HWS) Sells(HWS,Drill)

Buy(Ban.)
At(SM), Sells(SM,Ban.)

Buy(Milk)
At(SM), Sells(SM,Milk)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)
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Start

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)
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Start

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Go(HWS)
At(x) Go(SM)

At(x)
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Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)
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Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)
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Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(x)

Go(Home)
At(SM)
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Start

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Go(HWS)
At(x) Go(SM)

At(x)
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Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)
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Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(Home)
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Start

Go(HWS)

Finish

Buy(Drill) Buy(Milk) Buy(Ban.)

Go(SM)

Have(Drill) Have(Milk) Have(Ban.) at(Home)

At(SM), Sells(SM,Milk) At(SM), Sells(SM,Ban.)

At(Home)

At(HWS) Sells(HWS,Drill)

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

At(x)

Go(Home)
At(SM)



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

POP Algorithm (1)

• Backtrack when fails to resolve a threat or find an operator

• Causal links 

• Recognize when to abandon a doomed plan without wasting time 

expanding irrelevant part of the plan

• allow early pruning of inconsistent combination of actions

• When actions include variables, we need to find 

appropriate substitutions

• Typically we try to delay commitments to instantiating a variable 

until we have no other choice (least commitment) 

• POP is sound, complete, and systematic (no repetition)
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POP Algorithm (2)
• Decomposes the problem (advantage) 

• But does not represent states explicitly: it is hard to design 
heuristic to estimate distance from goal
• Example: Number of open preconditions – those that match the 

effects of the start node.  Not perfect (same problems as before)

• A heuristic can be used to choose which plan to refine 
(which precondition to pick-up): 
• Choose the most-constrained precondition, the one satisfied by 

the least number of actions.  Like in CSPs! 

• When no action satisfies a precondition, backtrack!

• When only one action satisfies a precondition, pick up the 
precondiction. 
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Planning graphs

• Used to achieve better heuristic estimates.
• A solution can also directly extracted using GRAPHPLAN 

algorithm

• Consists of a sequence of levels that correspond to 
time steps in the plan.
• Level 0 is the initial state.
• Each level consists of a set of literals and a set of actions.

• Literals = all those that could be true at that time step, depending 
upon the actions executed at the preceding time step.

• Actions = all those actions that could have their preconditions 
satisfied at that time step, depending on which of the literals 
actually hold.
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Planning graphs

• “Could”?
• Records only a restricted subset of possible negative 

interactions among actions.
• They work only for propositional problems.
• Example:

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake), PRECOND: Have(Cake)

EFFECT: ¬Have(Cake) ∧ Eaten(Cake))
Action(Bake(Cake), PRECOND: ¬ Have(Cake)

EFFECT: Have(Cake)) 
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Cake example

• Start at level S0 and determine action level A0 and next level S1.
• A0 >> all actions whose preconditions are satisfied in the 

previous level.
• Connect precond and effect of actions S0 --> S1
• Inaction is represented by persistence actions.

• Level A0 contains the actions that could occur
• Conflicts between actions are represented by mutex links
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Cake example

• Level S1 contains all literals that could result from picking any 

subset of actions in A0

• Conflicts between literals that can not occur together (as a consequence 

of the selection action) are represented by mutex links.

• S1 defines multiple states and the mutex links are the constraints that 

define this set of states.

• Continue until two consecutive levels are identical: leveled off
• Or contain the same amount of literals (explanation follows later)
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Cake example

• A mutex relation holds between two actions when:
• Inconsistent effects: one action negates the effect of another.
• Interference: one of the effects of one action is the negation of a precondition of the 

other.
• Competing needs: one of the preconditions of one action is mutually exclusive with 

the precondition of the other.

• A mutex relation holds between two literals when (inconsistent support):
• If one is the negation of the other OR 
• if each possible action pair that could achieve the literals is mutex.
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The GRAPHPLAN Algorithm
• How to extract a solution directly from the PG
function GRAPHPLAN(problem) return solution or failure

graph ← INITIAL-PLANNING-GRAPH(problem)

goals ← GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do
solution ← EXTRACT-SOLUTION(graph, goals, LENGTH(graph))

if solution ≠ failure then return solution

else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph ← EXPAND-GRAPH(graph, problem)
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GRAPHPLAN example

• Initially the plan consist of 5 literals from the initial state and the CWA 
literals (S0).

• Add actions whose preconditions are satisfied by EXPAND-GRAPH (A0)
• Also add persistence actions and mutex relations.
• Add the effects at level S1
• Repeat until goal is in level Si
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GRAPHPLAN example

• EXPAND-GRAPH also looks for mutex relations
• Inconsistent effects

• E.g. Remove(Spare, Trunk) and LeaveOverNight due to At(Spare,Ground) and not At(Spare, Ground)
• Interference 

• E.g. Remove(Flat, Axle) and LeaveOverNight At(Flat, Axle) as PRECOND and not At(Flat,Axle) as EFFECT
• Competing needs

• E.g. PutOn(Spare,Axle) and Remove(Flat, Axle) due to At(Flat.Axle) and not At(Flat, Axle)
• Inconsistent support

• E.g. in S2, At(Spare,Axle) and At(Flat,Axle)
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GRAPHPLAN example

• In S2, the goal literals exist and are not mutex with any other
• Solution might exist and EXTRACT-SOLUTION will try to find it

• EXTRACT-SOLUTION can use Boolean CSP to solve the problem or a search process:
• Initial state = last level of PG and goal goals of planning problem
• Actions = select any set of non-conflicting actions that cover the goals in the state
• Goal = reach level S0 such that all goals are satisfied
• Cost = 1 for each action.
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GRAPHPLAN characteristics

• Will terminate.

• PG are monotonically increasing or decreasing:

• Literals increase monotonically

• Actions increase monotonically

• Mutexes decrease monotonically

• Because of these properties and because there is a 

finite number of actions and literals, every PG will 

eventually level off .

• A solution is guaranteed not to exist when

• The graph levels off with all goals present & non-

mutex, and

• EXTRACTSOLUTION fails to find solution
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PG and heuristic estimation
• PG’s provide information about the problem

• A literal that does not appear in the final level of the 
graph cannot be achieved by any plan.
• Useful for backward search (cost = inf).

• Level of appearance can be used as cost estimate of 
achieving any goal literals = level cost.
• Small problem: several actions can occur

• Restrict to one action using serial PG (add mutex links 
between every pair of actions, except persistence actions).

• Cost of a conjunction of goals? Max-level, sum-level 
and set-level heuristics.

• PG is a relaxed problem.


