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Probabilistic Knowledge Representation

§ Basic probability theory
§ Syntax and Semantics
§ Random variables
§ Distributions over random variables
§ Independence and conditional independence
§ Bayesian Network Representation
§ Inference Using Bayesian Networks
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Agents That Represent and Reason Under 
Uncertainty

Knowledge 
Base

• Intelligent behavior requires knowledge about the world
• Often, we are uncertain about the state of the world
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Representing and Reasoning under Uncertainty

• Probability Theory provides a framework for representing and 
reasoning under uncertainty
• Represent beliefs about the world as sentences (much like in 

propositional logic)
• Associate probabilities with sentences 
• Reason by manipulating sentences according to sound rules of

probabilistic inference
• Results of inference are probabilities associated with 

conclusions that are justified by beliefs and data 
(observations)

• Allows agents to substitute thinking for acting in the world
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Representing and Reasoning under Uncertainty
• Beliefs: 
• If Oksana studies, there is an 60% chance that she will pass the 

test; and a 40 percent chance that she will not. 
• If she does not study, there is 20% percent chance that she will 

pass the test and 80% chance that she will not. 

• Observation: Oksana did not study. 

• Example Inference task: 
• What is the chance that Oksana will pass the test? 
• What is the chance that she will fail?

• Probability theory generalizes propositional logic
• Probability theory associates probabilities that lie in the interval 

[0,1] as opposed to 0 or 1 (exclusively) 
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Probability Theory as a Knowledge 
Representation

• Ontological commitments (what do we want to talk about?)
• Propositions that represent the agent�s beliefs about 

the world
• Epistemological Commitments (what can we believe?)
• What is the probability that a given proposition true 

(given the beliefs and observations)?
• Syntax
• Much like propositional logic

• Semantics
• Relative frequency interpretation
• Bayesian interpretation

• Proof Theory
• Based on laws of probability
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Sources of uncertainty

Uncertainty modeled by Probabilistic assertions may  

• In a deterministic world be due to

• Laziness: failure to enumerate exceptions, qualifications, 

etc. that may be too numerous to state explicitly

• Sensory limitations

• Ignorance: lack of relevant facts etc.

• In a stochastic world be due to

• Inherent uncertainty (as in quantum physics)

The framework is agnostic about the source of uncertainty



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

The world according to Agent Bob
• An atomic event or world state is a complete specification of the 

state of the agent�s world. 
• Event set is a set of mutually exclusive and exhaustive  possible 

world states (relative to an agent�s representational 
commitments and sensing abilities)
• From the point of view of an agent Bob who can sense only 3 

colors and 2 shapes, the world can be in only one of 6 states
• Atomic events (world states) are 
• mutually exclusive 
• exhaustive
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Semantics: Probability as a subjective measure of belief

• Suppose there are 3 agents – Oksana, Cornelia, Jun, in a world 
where a fair dice has been tossed. 
• Oksana observes that the outcome is a �6� and whispers to 

Cornelia that the outcome is �even� but 
• Jun knows nothing about the outcome.

Set of possible mutually exclusive and exhaustive world states 
= {1, 2, 3, 4, 5, 6}

Set of possible states of the world based on what Cornelia 
knows = {2, 4, 6}
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Probability as a subjective measure of belief
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Probability is a measure over all of the world states that are 
possible, or simply, possible worlds, given what an agent 
knows

PrOksana (worldstate = 6) =1

PrCornelia (worldstate = 6) =  1
3

PrJun worldstate = 6( )  =  1
6

  

Oksana, Cornelia, and Jun 
assign different beliefs to the 
same world state because of 
differences in their 
knowledge!
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Random variables

• The �domain� of a random variable is the set of values it can take. The 
values are mutually exclusive and exhaustive.

• The domain of a Boolean random variable X is  {true, false} or {1, 0}
• Discrete random variables take values from a countable domain. 

• The domain of the random variable Color may be {Red, Green}. 
• If E = {(Red, Square), (Green, Circle), (Red, Circle), (Green, Square)}, the 

proposition (Color = Red) is True in the world states {(Red, Square), 
(Red, Circle)}.

• Each state of a discrete random variable corresponds to a proposition 
e.g., (Color = Red)
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Syntax

• Basic element: random variable
• Similar to propositional logic: possible worlds defined by assignment 

of values to random variables.
• Cavity (do I have a cavity?)
• Weather is one of <sunny, rainy, cloudy, snow>
• Domain values must be exhaustive and mutually exclusive

• Elementary proposition constructed by assignment of a value to a random 
variable
• Weather = sunny=true (abbreviated as sunny), Cavity = false (abbreviated 

as ¬cavity)

• Complex propositions formed from elementary propositions and standard 
logical connectives 
• Weather = sunny Ú ¬cavity
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Syntax and Semantics
• Atomic event: A complete specification of the state of the world 

about which the agent is uncertain

• Atomic events correspond to a possible worlds (much like in the 
case of propositional logic)

E.g., if the world consists of only two Boolean variables Cavity
and Toothache, then there are 4 distinct atomic events or 4 
possible worlds:

Cavity = false ÙToothache = false
Cavity = false Ù Toothache = true
Cavity = true Ù Toothache = false
Cavity = true Ù Toothache = true

• Atomic events are mutually exclusive and exhaustive
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Axioms of probability

• For any propositions A, B
• 0 ≤ P(A) ≤ 1
• P(true) = 1 and P(false) = 0
• P(A Ú B) = P(A) + P(B) - P(A Ù B)
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Prior probability

• Prior or unconditional probabilities of propositions

• P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 

correspond to belief prior to arrival of any (new) evidence

• Probability distribution gives values for all possible assignments:

• P(Weather) = <0.72, 0.1, 0.08, 0.1> 

• Note that the probabilities sum to 1

• Joint probability distribution for a set of random variables gives 

the probability of every atomic event on those random variables

• P(Cavity,Play) = a 4 � 2 matrix of values
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Joint probability distribution

• Joint probability distribution for a set of random variables gives 

the probability of every atomic event on those random variables

• P(Weather, Cavity) = a 4 � 2 matrix of values:

•
Weather = sunny rainy cloudy snow 

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08

• Every question about a domain can be answered by the joint 

distribution

•
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Inference using the joint distribution

),(),()( achecavityPachecavityPcavityP ¬+=

Toothache ¬Toothache

Cavity 0.4 0.1

¬Cavity 0.1 0.4
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Conditional probability
• Conditional or posterior probabilities

• P(Cavity | Toothache) = 0.8
(note Cavity is shorthand for Cavity = True)

Probability of Cavity given Toothache
• Notation for conditional distributions:

P(Cavity | Toothache) = 2-element vector of 2-element vectors)
P(Cavity | Toothache, Cavity) = 1

• New evidence may be irrelevant (Probability of Cavity given Toothache is 
independent of Weather)

P(Cavity | Toothache, Sunny) = P(Cavity | Toothache) = 0.8
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Conditional probability

• Definition of conditional probability:
P(a | b) = P(a Ù b) / P(b) if  P(b) > 0

• Product rule gives an alternative formulation:
• P(a Ù b) = P(a | b) P(b) = P(b | a) P(a)

Example: 
• Suppose I have two coins – one a normal fair coin, and the other 

a rigged coin (with heads on both sides). I pick a coin at random, 
toss it, and tell you that the outcome of the toss is a Head. 

• What is the probability that I am looking at a fair coin?
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Conditional probability

Example: 
• Suppose I have two coins – one a normal fair coin, and the other 

a rigged coin (with heads on both sides). I pick a coin at random, 
toss it, and tell you that the outcome of the toss is a Head. 

• What is the probability that I am looking at a fair coin?
• (F, H), (F,T),(R,H), (R,T) 

¼ , ¼, ½, 0
P(F|H) = P(F,H)/P(H)=(1/4)/(3/4) = 1/3
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Conditional probability
• A general version holds for whole distributions, e.g.,

P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

• View as a compact notation for a set of 4 � 2 equations, not matrix 
multiplication

• Chain rule is derived by successive application of product rule:
P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)
= …
= πi P(Xi | X1, … ,Xi-1) (i ranges from 1 to n)
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Possible worlds semantics

• A possible world is an assignment of Truth values to every simple 
proposition about the world. Let W be a set of possible worlds. 
Let wÎW and let p, q be propositions (atomic sentences or 
syntactically well formed logical formulae). Then p is True in w
(written w |= p ) where    
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Possible Worlds and Random Variables

• A possible world is an assignment of exactly one value to 
every random variable. Let W be a set of possible worlds. Let 
wÎW and let f  be a (logical) formula. Then f  is True in w
(written w |= f ) where    
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Probability as a Measure over Possible worlds
• Associated with each possible world is a measure. When there 

are only a finite number of possible worlds, the measure of the 
world w, denoted by µ(w) has the following properties:
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The probability of a formula or state of affairs described by a 
sentence f , written as P ( f ), is the sum of 
the measures of the possible words in which f is True. That is,
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Probability as a measure over possible worlds

• Suppose I have two coins – one a normal fair coin, and the other with 2 
heads. I pick a coin at random and toss it. What is the probability that the 
outcome is a head?

Ω = {(Fair,H ), (Fair,T ), (Rigged,H ), (Rigged,T )}
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Conditional probability as a Measure over Possible worlds not ruled out by 
evidence

• A given piece of evidence e rules out all possible worlds that 
are incompatible with e or selects the possible worlds in 
which e is True. Evidence e induces a new measure µe.
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Effect of Evidence on Possible worlds

E

Evidence z e.g., (color = red) rules out some assignments of values 
to some of the random variables

z

P(e)
P(e|z)

Ez
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Evidence redistributes probability mass over 
possible worlds
• A given piece of evidence z rules out all possible worlds that 

are incompatible with z or selects the possible worlds in which
z is True. Evidence z induces  a distribution Pz
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Defining probability as a Measure over Possible worlds – infinite sets of 
variables, continuous random variables
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When a random variable takes on real values the measure 
corresponds to a probability density function p. The probability that a 
random variable X takes values between a and b is given by 
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Example:

This definition can be 
generalized to handle 
vector valued random 
variables

Note: we now have an 
infinite set of models 
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Inference by enumeration

• Start with the joint probability distribution:
•

• For any proposition φ, sum the measures of atomic events 
where it is true: P(φ) = Σω:ω╞φ P(ω)
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Inference by enumeration

• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω:ω╞φ P(ω)
• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

• Start with the joint probability distribution:

• Can also compute conditional probabilities:
P(¬cavity | toothache) = P(¬cavity Ù toothache)

P(toothache)
= 0.016+0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Normalization

• Denominator can be viewed as a normalization constant α

• P(Cavity | toothache) = α P(Cavity,toothache) 

= α[P(Cavity,toothache,catch) + P(Cavity,toothache,¬ catch)]

= α[<0.108,0.016> + <0.012,0.064>] 

= α <0.12,0.08> = <0.6,0.4>

• General idea: compute distribution on query variable by fixing 
evidence variables and summing over unobserved variables
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Inference by enumeration, continued

• Obvious problems:
• Worst-case time complexity O(dn) where d is the largest arity
• Space complexity O(dn) to store the joint distribution
• How to find the numbers for O(dn) entries?
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Independence
• A and B are independent iff
P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

• 32 entries reduced to 12;
• n independent variables, O(2n) reduced to O(n)
• Absolute independence powerful but rare
• How can we manage a large numbers of variables?



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

Conditional independence
• P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries

• If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
• P(catch | toothache, cavity) = P(catch | cavity)

• The same independence holds if I haven't got a cavity:
• P(catch | toothache,¬cavity) = P(catch | ¬cavity)

• Catch is conditionally independent of Toothache given Cavity:
• P(Catch | Toothache,Cavity) = P(Catch | Cavity)
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Conditional independence

• Catch is conditionally independent of Toothache given Cavity:
• P(Catch | Toothache,Cavity) = P(Catch | Cavity)

• Equivalent statements:
• P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
• P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | 

Cavity)
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Conditional independence 

• Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)
= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

i.e., 2 + 2 + 1 = 5 independent numbers

• Conditional independence 
• often reduces the size of the representation of the joint 

distribution from exponential in n to linear in n
• Is one of the most basic and robust form of knowledge about 

uncertain environments
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• X is conditionally independent of Y given Z (written I(X,Z,Y) ) if 
the probability distribution governing X is independent of the 
value of Y given the value of Z: 

• P (X |Y, Z ) = P (X |Z ) that is,

Conditional Independence

)|(),|(),,( kikjikji zZxXPzZyYxXPzyx ======"
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Independence is symmetric: I(X Y Z)=I(Z,Y,X)
• Assume: P(X|Y, Z) = P(X|Y) 
• X and Z are independent given Y
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ZPZYXPZYP

=
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Bayes Rule
Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test 

returns a correct positive result in only 98% of the cases in which the 

disease is actually present, and a correct negative result in only 97% 

of the cases in which the disease is not present. Furthermore, .008 of 

the entire population have this cancer.
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Bayes Rule
Does patient have cancer or not?
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P cancer+( ) =
P(+ cancer)P cancer( )

P +( )
;       

 P ¬cancer+( ) =
P(+¬cancer)P ¬cancer( )

P +( )
 

P cancer+( )P +( ) = 0.98 × 0.008 = 0.0078;   

P ¬cancer+( )P +( ) = 0.03× 0.992 = 0.0298
P(+) = 0.0078 + 0.0298
P(cancer | +) = 0.21;          P(¬cancer | +) = 0.79
The patient, more likely than not, does not have cancer
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Bayes Rule

• Product rule 
• P(aÙb) = P(a | b) P(b) = P(b | a) P(a)
• Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)

• In distribution form 

P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y)
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Probabilistic KR: The story so far

• Probability is a rigorous formalism for uncertain knowledge
• Joint probability distribution specifies probability of every 

atomic event
• Queries can be answered by summing over atomic events
• Independence and conditional independence provide the 

basis for compact representation of joint probability 
distributions
• Graph theory provides a basis for efficient computation
•
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• Random variable X is conditionally independent of Y given Z if the 
probability distribution governing X is independent of the value of Y 
given the value of Z: 

• P (X |Y, Z ) = P (X |Z ) that is, if

Building Probabilistic Models –
Conditional Independence  

)|(),|(),,( kikjikii zZxXPzZyYxXPzyx ======"
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Conditional Independence
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Bayesian Networks

CancerSmoking{ }heavylightnoS ,,Î

{ }malignantbenignnoneC ,,ÎP( S=no) 0.80
P( S=light) 0.15
P( S=heavy) 0.05

Smoking= no light heavy
P( C=none) 0.96 0.88 0.60
P( C=benign) 0.03 0.08 0.25
P( C=malig) 0.01 0.04 0.15
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Product Rule

• P(C,S) = P(C|S) P(S)

Sß     CÞ none benign malignant
no 0.768 0.024 0.008
light 0.132 0.012 0.006
heavy 0.035 0.010 0.005
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Marginalization

Sß   CÞ none benign malig total
no 0.768 0.024 0.008 .80
light 0.132 0.012 0.006 .15
heavy 0.035 0.010 0.005 .05

total 0.935 0.046 0.019

P(Cancer)

P(Smoke)
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Bayes Rule Revisited

)(
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CP
SCP

CP
SPSCPCSP ==

Sß   CÞ none benign malig
no 0.768/.935 0.024/.046 0.008/.019
light 0.132/.935 0.012/.046 0.006/.019
heavy 0.030/.935 0.015/.046 0.005/.019

Cancer= none benign malignant
P( S=no) 0.821 0.522 0.421
P( S=light) 0.141 0.261 0.316
P( S=heavy) 0.037 0.217 0.263
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A Bayesian Network

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics
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Independence

Age and Gender are 
independent.

P(A|G) = P(A)    A ^ G 
P(G|A) = P(G)    G ^ A 

GenderAge

P(A,G) = P(G|A) P(A) = P(G)P(A)
P(A,G) = P(A|G) P(G) = P(A)P(G)

P(A,G) = P(G)P(A)
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Conditional Independence

Smoking

GenderAge

Cancer

Cancer is independent 
of Age and Gender
given Smoking.

P(C|A,G,S) = P(C|S)    C ^ A,G | S
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More Conditional Independence: Naïve Bayes 

Cancer

Lung
Tumor

Serum
Calcium

Serum Calcium is 
independent of Lung Tumor, 
given Cancer

P(L|SC,C) = P(L|C)

Serum Calcium and Lung 
Tumor are dependent
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• The Probabilistic graphical models e.g., Bayes networks, 
explicitly model conditional independence among subsets of 
variables to yield a graphical representation of probability 
distributions that admit such independence

Probabilistic Graphical Models
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=
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i
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Bayesian network

• Bayesian network is a directed acyclic graph (DAG) in which 

the nodes   represent random variables

• Each node is annotated with a probability distribution P (Xi | 
Parents(Xi ) ) representing the dependency of that node on 

its parents in the DAG

• Each node is asserted to be conditionally independent of its  

non-descendants, given its immediate predecessors

• Arcs represent direct dependencies
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• X is conditionally independent of Y given Z if the probability 
distribution governing X is independent of the value of Y given 
the value of Z: 

• P (X |Y, Z ) = P (X |Z ) that is,

Conditional Independence

)|(),|(),,( kikjikji zZxXPzZyYxXPzyx ======"
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Bayesian Networks
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Bayesian Networks
• Qualitative part

statistical independence 
statements represented 
in the form of a directed 
acyclic graph 
(DAG)

• Nodes - random 
variables 

• Edges – direct 
influence

Quantitative part 

Conditional probability 

distributions – one  for each 

random variable conditioned on 

its parents
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Efficient factorized representation of probability 
distributions via conditional independence

• Nodes are independent of non-
descendants given their parents 

d-separation: 
• a graph theoretic criterion

for checking implicit  independence 
assertions 
• can be computed in linear time (in the 

number of edges)

Earthquake

Radio

Burglary

Alarm

Call
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What independences does a Bayes Net model?
• In order for a Bayesian network to model a probability 

distribution, the following must be true by definition: 
• Each variable is conditionally independent of all its non-

descendants in the graph given the value of all its parents.
This implies

But what else does it imply?

Õ
=

=
n

i
iin XparentsXPXXP

1
1 ))(|()( ! Earthquake

Radio

Burglary

Alarm

Call

P(E,B,R,A,C) =
P(E)P(B)P(R | E)P(A | E,B)P(C | A)
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What Independences does a Bayes Network model?

Example:

Z

Y

X

Given Y, does learning the value of Z tell us 
nothing new about X? 

i.e., is P(X|Y, Z) equal to P(X | Y)?

Yes.  Since we know the value of all of X�s
parents (namely, Y), and Z is not a
descendant of X, X is conditionally 
independent of Z.

Also, since independence is symmetric, 
P(Z|Y, X) = P(Z|Y).
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What Independences does a Bayes Network model?

• Let I(X,Y,Z) represent X and Z being conditionally independent 
given Y.

• I(X,Y,Z)? Yes, just as in previous example: All X�s parents given, 
and Z is not a descendant.

Y

X Z
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What Independences does a Bayes Network model?

• I(X,{U},Z)? No.
• I(X,{U,V},Z)? Yes.

Z

VU

X
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Dependency induced by V-structures

• X has no parents, so we know all its parents� values trivially
• Z is not a descendant of X
• So, I(X,{},Z), even though there is a undirected path from X to
Z through an unknown variable Y.
• What if we do know the value of Y ?  Or one of its 

descendants?

ZX

Y
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The Burglar Alarm example

• Your house has a twitchy burglar alarm that is also sometimes 

triggered by earthquakes.

• Earth arguably doesn’t care whether your house is currently 

being burgled

• While you are on vacation, one of your neighbors calls and tells 

you your home�s burglar alarm is ringing.  

Burglar Earthquake

Alarm

Phone Call
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• But now suppose you learn that there was a medium-sized 
earthquake in your neighborhood. …Probably not a burglar 
after all.

• Earthquake �explains away� the hypothetical burglar.

• But then it must NOT be the case that

I(Burglar,{Phone Call}, Earthquake), 

even though I(Burglar,{}, Earthquake)!

Burglar Earthquake

Alarm

Phone Call
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d-separation

• Fortunately, there is a relatively simple algorithm for 
determining whether two variables in a Bayesian network 
are conditionally independent given some other variables:
Ø d-separation.

• Two variables are independent if all paths between them 
are blocked by evidence
• Three cases:
Ø Common cause
Ø Intermediate cause
Ø Common Effect
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Blocked Unblocked
E

R A

E

R A

d-separation

• Two variables are 
independent if all paths 
between them are 
blocked by evidence
• Three cases:

• Common cause
• Intermediate cause
• Common Effect

Blocked Unblocked

• If  we do not know whether an earthquake 
occurred, then radio announcement can 
influence our belief about the alarm having 
gone off. 

• If we know that earthquake occurred, then 
radio announcement gives no information 
about the alarm

Evidence may be transmitted 
through a diverging connection 
unless it is instantiated.
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Blocked Unblocked
E

C

A

E

C

A

d-separation

Common cause
Intermediate cause
Common Effect

Blocked Unblocked

Information may be transmitted through a serial 
connection unless it is blocked (value set)
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Blocked UnblockedE B

A

C

E B

A

C
E B

A

C

d-separation

Common cause
Intermediate cause
Common Effect

Blocked Unblocked

Information may be transmitted through a 
converging connection only if either the variable or 
one of its descendants has been set
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d-separation

§ Definition: X and Z are d-separated by a set of evidence 
variables E iff every undirected path from X to Z is 
�blocked� by evidence E
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d-separation
• Theorem [Verma & Pearl, 1998]: If a set of evidence variables E d-

separates X and Z in a Bayesian network�s graph, then I(X, E, Z).
• d-separation can be computed in linear time using a depth-first 

search like algorithm.

• We now have a fast algorithm for automatically inferring whether 
finding out about the value of one variable might give us any 
additional hints about some other variable, given what we already 
know. 

• d-separation of X and Z by E is sufficient for asserting I(X, E, Z), but 
not necessary. 
• Variables may actually be independent when they are not d-

separated, depending on the actual probabilities involved
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d-separation

A B

C D

E F

G

I

H

J

I(C, {}, D)?
I(C, {A}, D)?
I(C, {A, B}, D)?
I(C, {A, B, J}, D)?
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Markov Blanket
• A node is conditionally independent of all other nodes in the 

network given its parents, children, and children�s parents -

Alarm

MaryCallsJohnCalls

EarthquakeBurglary

Burglary is independent of John Calls and Mary Calls given Alarm 
and Earth Quake
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Bayesian Networks: Summary

• Bayesian networks offer an efficient representation of probability 
distributions

• Efficient:
• Local models
• Independence (d-separation)

• Effective: Algorithms take advantage of structure to 
• Compute posterior probabilities 
• Compute most probable instantiation
• Decision making
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Inference in Bayesian network

Bad news:
• – Exact inference problem in BNs is NP-hard (Cooper)
• – Approximate inference is NP-hard (Dagum, Luby)
In practice, things are not so bad
• Exact inference 

• Inference in Simple Chains
• Variable elimination
• Clustering / join tree algorithms

• Approximate inference
• Stochastic simulation / sampling methods
• Markov chain Monte Carlo methods
• Mean field theory
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Computing joint probability distributions using a 
Bayesian network

§ Any entry in the joint probability distribution can be calculated 
from the Bayesian network.

§ We�re just using the chain rule and conditional independence.
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Computing joint probabilities

• Joint distribution can be used to answer  any query about the 
domain. 
• Bayesian network represents the joint distribution
• Any query about the domain can be answered using a BN
• Tradeoff:  A BN can be much more concise, but you need to 

calculate, rather than look up in a table, probabilities from the 
joint distribution

P(X1,...,Xn ) = P(X11) P(Xi
i=2

n

∏ | Parents(Xi )

General formula:
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Inference in Bayesian Networks

• Bayesian networks are a compact encoding of the full joint 
probability distribution over N variables that makes 
conditional independence assumptions between these 
variables explicit.
• We can use Bayesian networks to compute any probability 

of interest over the given variables.
• Now we look at Inference in more detail
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Inference in Bayesian Networks

Find P(Q=q|E=e)
- Q the query variable(s)
- E set of evidence variables

P(q|e) =   P(q,e) / P(e)
X1,.. Xn are network variables except Q,E 
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Basic Inference

P(b) = ?

A B

åå ==
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bP P(a) a) | P(b   b) P(a,)(
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Basic Inference

åå ==
aa

bP P(a) a) | P(b   b) P(a,)(

A B C

å=
b

bPbcPcP )()|()(

å

å

åå

=

=

==

ba

ba

baba

bPbcP

aPabPbcP

aPabPabcPcbaPcP

,

,

,,

)()|(

)()|()|(

)()|(),|(),,()(



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

Inference in trees

Y1 Y2

X
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Polytrees

§ A network is singly connected (a polytree) if it contains no 
undirected loops.

Not a polytree Polytree
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Inference in polytrees

• Theorem: Inference in polytrees can be performed in time 
that is polynomial in the number of variables.
• Main idea: in variable elimination, need only maintain 

distributions over single nodes at any step.
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Inference with Bayesian Networks

• Inference in polytrees can be performed efficiently
• Inference with DAG is NP-Hard
• Proof by reduction of SAT to Bayesian network 

inference
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Approaches to inference

• Exact inference 
• Inference in Simple Chains
• Variable elimination
• Clustering / join tree algorithms

• Approximate inference
• Stochastic simulation / sampling methods
• Markov chain Monte Carlo methods
• Mean field theory
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Building Junction Trees

DAG

Moral Graph

Triangulated Graph

Junction Tree

Identifying Cliques
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Approximate Inference: Stochastic simulation
• Suppose you are given values for some subset of the variables, 

G, and want to infer values for unknown variables, U

• Randomly generate a very large number of instantiations from 
the BN

• Generate instantiations for all variables – start at root 
variables and work your way �forward�

• Only keep those instantiations that are consistent with the 
values for G

• Use the frequency of values for U to get estimated probabilities

• Accuracy of the results depends on the size of the sample 
(asymptotically approaches exact results)
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Stochastic Simulation

RainSprinkler

Cloudy

WetGrass
1. Draw N samples from the BN by repeating 1.1 and 1.2

1.1. Guess Cloudy at random according to P(Cloudy)     
1.2. For each guess of Cloudy, guess

Sprinkler and Rain, then WetGrass
2. Compute the ratio of the # runs where   

WetGrass and Cloudy are True 
over the # runs where Cloudy is True

P(WetGrass|Cloudy)?

P(WetGrass|Cloudy) 
= P(WetGrass, Cloudy) / P(Cloudy)
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Stochastic simulation

• The probability is approximated using sample frequencies

BN sampling: 
• Generate sample in a top down manner, following the links 

in BN
• A sample is an assignment of values to all 

variables
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BN Sampling Example

P(B | J = T,M = F)Goal: To infer
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BN Sampling Example
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BN Sampling Example
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BN Sampling Example



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

BN Sampling Example
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BN Sampling Example
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Rejection Sampling

Rejection sampling:
• Generate sample for the full joint by sampling BN
• Use only samples that agree with the condition, the 

remaining samples are rejected
• Problem: many samples can be rejected
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Likelihood weighting 

• Avoids inefficiencies of rejection sampling
• Idea: generate only samples consistent with an evidence (or 

conditioning event)
• If the value is set by evidence, there is no sampling
• Problem: using simple counts is not enough since these may 

occur with different probabilities
• Likelihood weighting: with every sample keep a weight with 

which it should count towards the estimate
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Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood weighting Example 



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

Likelihood weighting Example 



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood weighting Example 
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Likelihood Sampling
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Likelihood Sampling
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Likelihood Weighting
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First order probability models

• Can we combine probability with the expressive power of first order 
logic (FOL) representation?
• Problem: The set of possible worlds represented by an FOL 

sentence can be infinite
• Relational probability models (RPM)  ‘solve’ this problem by 

replacing standard FOL semantics by database semantics 
• Unique names assumption (e.g., each customer has a unique ID)
• Domain closure assumption (there are no more objects beyond 

the ones that have been named)

Koller, Pfeffer, Getoor et al. 1999-2007
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Probabilistic Relational Models 
• Combine advantages of relational logic & Bayesian networks: 
• natural domain modeling: objects, properties, relations;
• generalization over a variety of situations;
• compact, natural probability models.

• Integrate uncertainty with relational model:
• properties of entities can depend on properties of related 

entities;
• uncertainty over relational structure of domain.
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Relational Schema
Strain
Unique
Infectivity

Infected with

Interacted with

• Describes the types of objects and relations in the database

Classes

Relationships
Contact

Close-Contact

Skin-Test

Age

Patient
Homeless
HIV-Result
Ethnicity
Disease-Site Attributes

Contact-Type
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Close-Contact

Transmitted

Contact-Type
Disease Site

Strain

Unique

Infectivity

Patient

Homeless

HIV-Result

POB

Contact Age

4.06.0

3.07.0

2.08.0

1.09.0
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,
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Relational Skeleton 

Fixed relational skeleton s
– set of objects in each class
– relations between them

Uncertainty over assignment of values to attributes

PRM defines distribution over instantiations of attributes

Strain
s1

Patient
p2

Patient
p1

Contact
c3

Contact
c2

Contact
c1

Strain
s2

Patient
p3
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PRM: Aggregate Dependencies

Disease Site

Patient

Homeless

HIV-Result

POB

Age
Close-Contact

Transmitted

Contact-Type

Contact

Age

.

.

Patient
Jane Doe

POB       
US

Homeless  
no

HIV-Result       
negative

Age  
???

Disease Site  
pulmonary

.

Contact
#5077

Contact-Type
coworker

Close-Contact  
no 

Age
middle-aged

Transmitted  
false

Contact
#5076

Contact-Type
spouse

Close-Contact  
yes 

Age
middle-aged

Transmitted  
true

Contact
#5075

Contact-Type
friend

Close-Contact  
no 

Age
middle-aged

Transmitted  
false
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PRM with AU Semantics
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PRM relational skeleton s+ =

Strain
Patient

Contact

Strain
s1

Patient
p1

Patient
p2

Contact
c3

Contact
c2

Contact
c1

Strain
s2

Patient
p3
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Open universe probability models

• Unique names assumption and domain closure assumption 
do not hold in the presence of uncertainty about existence 
and identity of objects
• Open universe probability models (OUPMs) extend Bayes 

networks and RPMs by adding
• generative steps that add objects to the possible world 

under construction 
• where the number and type of objects added may 

depend on the objects that are already present

Milch et al., 2007
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Herbrand vs full first-order semantics

• Given:  Father(Bill,William) and Father(Bill,Junior)
• How many children does Bill have?
• Database (Herbrand) semantics: 2
• First-order open world logical semantics: 
• Between 2 and ∞ (under the unique names 

assumption)
• Between 1 and ∞ (in the absence of the unique 

names assumption)
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Possible worlds
• Propositional (Boolean logic, Bayes nets)

• First-order closed-universe (DB, RPM)

• First-order open-universe: uncertainty about existence of objects and 
the relations 

A B C D A B C D A B C D A B C D A B C D A B C D
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Open-universe models in BLOG

• Construct worlds using two kinds of steps, proceeding in 
topological order:
• Dependency statements: Set the value of a function or 

relation on a tuple of (quantified) arguments, conditioned 
on parent values
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Open-universe models in BLOG

• Construct worlds using two kinds of steps, proceeding in 
topological order:
• Dependency statements: Set the value of a function or 

relation on a tuple of (quantified) arguments, conditioned 
on parent values
• Number statements: Add some objects to the world, 

conditioned on what objects and relations exist so far
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Technical basics

Theorem: Every well-formed* BLOG model specifies a unique 
proper probability distribution over open-universe possible 
worlds; equivalent to an infinite contingent Bayes net

Theorem: BLOG inference algorithms (rejection sampling, 
importance sampling, MCMC) converge to correct posteriors 
for any well-formed* model, for any first-order query



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

#Person ~ LogNormal[6.9, 2.3]();
Honest(x) ~ Boolean[0.9]();
#Login(Owner = x) ~ 

if Honest(x) then 1 else LogNormal[4.6,2.3]();
Transaction(x,y) ~ 

if Owner(x) = Owner(y) then SibylPrior()
else TransactionPrior(Honest(Owner(x)),

Honest(Owner(y)));
Recommends(x,y) ~ 

if Transaction(x,y) then 
if Owner(x) = Owner(y) then Boolean[0.99]()
else RecPrior(Honest(Owner(x)),

Honest(Owner(y)));

Evidence: lots of transactions and recommendations
Query: Honest(x)

Example: cyber-security sibyl defense
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Probabilistic Programming Languages
• Logic based
• PRISM, Problog – logic programming + probability distributions 

over facts [Sato and Kameya, 2001; De Raedt, Kimmig, and Toivonen, 2007]

• BLOG – a language based on open universe probability models [Milch
et al., 2007]

• Functional programming based
• Church, Venture – extend Scheme with probabilistic semantics for 

specifying recursively defined generative processes [Goodman, Mansinghka, 

Roy, Bonawitz and Tenenbaum, 2008]

• IBAL – a stochastic functional programming language [Pfeffer, 2007]

• Object-oriented
• Figaro – an expressive language with support for directed and 

undirected probabilistic graphical models, OUPMs, models defined 
over complex data structures. [Pfeffer, 2009]


