
Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

Causal Models

Vasant Honavar
Artificial Intelligence Research Laboratory

Informatics Graduate Program
Computer Science and Engineering Graduate Program

Bioinformatics and Genomics Graduate Program
Neuroscience Graduate Program

Center for Big Data Analytics and Discovery Informatics
Huck Institutes of the Life Sciences

Institute for Cyberscience
Clinical and Translational Sciences Institute

Northeast Big Data Hub
Pennsylvania State University

vhonavar@ist.psu.edu
http://faculty.ist.psu.edu/vhonavar

http://ailab.ist.psu.edu



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

Perils of fishing for wisdom in oceans of data

Does cancer cause cell phone use?

• Big data ≠ End of theory!
• Correlation ≠ Causation!

Data Science and informatics have to offer more than a facility in 
finding correlations! 
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Perils of fishing for wisdom in oceans of data

• Big data ≠ End of theory!
• Correlation ≠ Causation!

Correlation between science funding and hanging suicides is over 0.99!
Eliminate science funding to save American lives!
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Big data Fallacy

• “Petabytes allow us to say: “Correlation is enough.” We can stop 
looking for models. We can analyze the data without hypotheses 
about what it might show. We can throw the numbers into the 
biggest computing clusters the world has ever seen and let 
statistical algorithms find patterns where science cannot.”
• “Correlation supersedes causation, and science can advance even 

without coherent models, unified theories, or really any 
mechanistic explanation at all.”
• We will argue that causal models are extremely important for 

making sense of big data!
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Causality in Biomedical and Health Sciences

The central concern of all sciences, biomedical and health 
sciences included,  has to do with the discovery of causal 
relationships

• Understanding mechanisms
• Predicting the results of interventions
• Controlling events
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Causality

• Is there a causal calculus? 
• What language can we use to  represent and 

reason about causal relationships?
• What tools do we  have for
• Answering causal questions from causal 

models? 
• Learning causal models from observational 

and experimental data?
• Generalizing a causal account beyond the 

setting in which it was obtained? 
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• “The object of statistical methods is the reduction of data” 
(Fisher 1922)
• Statistical concepts are those expressible in terms of 

joint distribution of observed variables
• All others are: 

• “substantive matter,” “domain dependent,” 
“metaphysical,” “ad hockery,” 

• i.e., outside the province of statistics
• thus ruling out many interesting questions

• Traditional statistics education promotes a fear of 
venturing to answer causal questions (Pearl, 2000)

Statistics 1834–2018
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• “More has been learned about causal inference in the last 
few decades than the sum total of everything that had been 
learned about it in all prior recorded history.”  (Gary King, 
Harvard, 2014)

• From liability to respectability
• Many workshops, including one at NAS
• An NIH BD2K Center for Causal Modeling and Discovery
• Papers in AAAI, NIPS, ICML, UAI, PNAS, JSSM…

• Causal revolution makes it fun to solve important problems 
that Pearson, Fisher, Neyman, and most of of their 
successors. . . were not able to articulate, let alone solve!

Things are changing
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• Association
• Activity: Seeing (Observation)
• Question: How would seeing X change my belief about Y?
• Methods: Statistics, Traditional machine learning
• Powerful methods for summarizing data!

• Intervention
• Activity: Doing (Intervention)
• Question: What would Y be if I do X?
• Statistics and traditional machine learning don’t offer the means 

to even pose the question, let alone answer it!
• Counterfactuals

• Activity: Imagining (Retrospection)
• Question: What would Y be if I had not done X?
• Statistics and traditional machine learning don’t offer the means 

to even pose the question, let alone answer it

What can a causal reasoner do?
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• How can we represent causal 
knowledge?

• Causal diagrams
• Nodes denote variables
• Links denote direct causes

• Suppose all variables are Boolean
• If a court order is given captain 

orders soldiers A and B to fire. If 
at least one fires, prisoner dies.

• Association: Prisoner is found 
dead. Was court order given?

What does a causal reasoner need?

AI Mantra: Representation before anything else
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• Intervention: If soldier A is compromised and is forced to shoot 
(without caption’s order, would the prisoner die?

What does a causal reasoner need?

Mutilated 
Causal Graph

Seeing ≠ Doing!
Seeing: If A shoots, we can conclude that B shoots too
Doing: If A is forced to shoot, we can’t say what B does 
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• Counterfactual: Suppose the prisoner is found dead. Would he 

have died had A’s gun failed to shoot?

What does a causal reasoner need?

Mutilated 

Causal Graph

Seeing ≠ Imagining!

Seeing: If D is dead, A and B must have shot (captain’s order, court order)

Imagining: If  A failed to shoot, and D is dead, B must have shot….
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Causal reasoning under uncertainty
Data: 
• We learn that 99 kids who were vaccinated die of a reaction to vaccine
• And 40 who were not vaccinated die of smallpox
• More children die from vaccine than those that die from smallpox
Question:
• Should we ban vaccination?

• Big data answer?
• CNN headlines?
• Your answer?
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Suppose we know: 99% of children are 
vaccinated, 1% are not
• A vaccinated child has a 1 in 100 

chance of a reaction; and a reaction 
has a 1 in 100 chance of being fatal

• A child who is not vaccinated has 0 
chance of reaction, but 1 in 50 chance 
of smallpox which is fatal in 1 in 5 
cases

Causal reasoning under uncertainty

Data: 
• Out of 1 million kids, 990,000 are vaccinated; 9900 have reaction, 99 of whom die
• 10,000 are not vaccinated, 200 get smallpox, 40 die of smallpox
Fact:
• More children die from vaccine than those that die from smallpox
Question:
• Should we ban vaccination? Pearl, 2018
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Should we ban vaccination?
• Depends. 
• On what? 
• On the answer to the counterfactual 

question 
• How many children out of 1 

million would have died if none 
had been vaccinated?

• If no child is vaccinated,
• No child would have a reaction, 

and there would be no reaction 
related fatalities 

• We expect 1 in 50, or 20,000 out 
of 1 million small pox cases, of 
which 1 in 5 or 4000 would result 
in death 

Causal reasoning under uncertainty
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Should we ban vaccination?
Causal reasoning under uncertainty

Data informed by causal model: 
• Out of 1 million children

• If none were vaccinated, 4000 would 
have died

• If 99% were vaccinated, 99+40 = 139 
would have died

Fact:
• Fewer children (139) die if the vaccination policy is in place than if 

vaccination were banned (4000)
Question:
• Should we ban vaccination?
• Obviously not!
Note: We could not have answered this question from observational 
data alone in the absence of a causal model
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Controlled experiments

• Prospectively choose two groups of individuals
• One is treated (veg diet)
• The other is not 

• Compare the two groups
• Do you see a problem? 
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Observations versus Controlled Experiments

• Suppose you want to see whether exercise helps reduce 
heart disease
• Prospectively choose two groups of individuals
• One group exercised
• The other did not

• Compare the two groups on incidence of heart disease
• Do you see a problem with this setup?

• Solution – Randomized control trial
• But RCT is not always feasible
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Confounding bias
• Suppose the treated group is healthier than 

the control group to start with
• Confounding bias arises whenever a variable 

influences both who is selected for treatment 
and the outcome of the experiment
• Sometimes the confounders are known
• Sometimes the confounders are 

suspected
• The most basic version of confounding

• The true causal effect X à Y is mixed with 
the spurious correlation induced by the 
fork X ßZà Y

• Example: 
• We are testing a drug but give it to 

patients who are younger, but not to 
those who are older

• age becomes a confounder
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Confounding bias
• The most basic version of confounding

• The true causal effect X à Y is mixed with 
the spurious correlation induced by the 
fork X ßZà Y

• Example: We are testing a drug but give it 
to patients who are younger, but not to 
those who are older – age becomes a 
confounder

• If we have measurements on the confounder, it is very easy to de-
confound the true and spurious causal effects – `adjusting for Z’
• Simply compare treatment and control groups for each value of Z
• Take a weighted average where the weights correspond to the 

fraction of the population represented by each value of Z
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The puzzle of a drug that is bad for men, bad for women, but good for people

• The data are from an observational study 
• The data present instance of Simpson’s paradox which has puzzled statisticians 

since 1956
• There dozens of papers and PhD theses have been written to “explain” the 

Simpson’s paradox, the most recent one in 2017
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The puzzle of a drug that is bad for men, bad for women, but good for people
• Suppose gender is unaffected 

by the drug
• Suppose gender affects both 

heart attack risk and whether 
the patient chooses to take the 
drug

• Gender is a confounder that 
needs to be controlled for in 
assessing the effect of the drug 
on heart attack
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The puzzle of a drug that is bad for men, bad for women, but good for people

• For women, the rate of heart attack was 1 in 20 (5%) without the drug and 3 in 
40  (7.5%) with the drug: The drug is bad for women

• For men, the rate of heart attack was 12 in 40 (30%) without the drug and 8  in 
20 (40%) with the drug: The drug is bad for men

• Adjusting for the confounder, given that the proportion of men and women is 
the same, we simply average the gender-specific heart attack rates to get 
population rates

• Among the population at large, the rate of heart attacks is 17.5% without the 
drug and 23.75% with the drug: The drug is bad for people

• Paradox resolved!
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Eliciting causal effects: The story so far

• We can predict the effect of an intervention by adjusting for the 
confounders if we have data on a sufficient set of variables (de-
confounders) to block all backdoor paths between the intervention 
and the outcome

• What if the confounders are not observable? 
• All previous methods fail, and we need Randomized Control Trials
• What if RCT are not feasible?  due to practical or ethical reasons?
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What is wrong with adjusting for confounders?
• Adjusting for confounders is both:

• Overrated by standard statistical practice because of controlling for 
many more variables than needed, including variables that should 
not be controlled for
• Statistical methodology provides little guidance for what 

variables to control for
• You can end up controlling for the very thing you are trying to 

measure
• Underrated  by standard statistical practice because even when the 

confounders have been properly identified and controlled for, 
conclusions stop short of making causal claims even if they are 
justified
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Confounding redefined
• Many definitions, almost all flawed (Pearl, 2018)
• Correct definition using the language of causal calculus
• Confounder is any factor that leads makes 

		P Y |X( )≠ P Y |do X( )( )
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Confounding in the language of causal calculus
• Confounder is any factor that leads makes
• In causal graphs, information flows in causal direction (along the 

arrows) as well as non-causal direction
• Non-causal paths are the source of confounding
• How can we stop the flow of information along non-causal paths?

• In a chain AàBà C, controlling for B makes A and C 
independent

• In a fork A ßB à C, controlling for B makes A and C 
independent

• In a collider A à B ß C, A and C are independent to start with. 
But if you control for B or one of its descendants, you make A 
and C dependent (so B becomes a confounder although it was 
not in the absence of adjustment)!
• The usual statistical practice of controlling for every 

variable you can think of is not just wasteful, but fatally 
flawed! 

		P Y |X( )≠ P Y |do X( )( )
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Reasoning about Independence in Causal Graphs
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What Independences does a causal graph model?

Example:

Z

Y

X

Given Y, does learning the value of Z tell us 
nothing new about X? 

i.e., is P(X|Y, Z) equal to P(X | Y)?

Yes.  Since we know the value of all of X�s
parents (namely, Y), and Z is not a
descendant of X, X is conditionally 
independent of Z.

Also, since independence is symmetric, 
P(Z|Y, X) = P(Z|Y).
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What Independences does a causal network model?

• Let I(X,Y,Z) represent X and Z being conditionally 
independent given Y.

• I(X,Y,Z)? Yes, just as in previous example: All X�s parents 
given, and Z is not a descendant.

Y

X Z
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What Independences does a Bayes Network model?

• I(X,{U},Z)? No.
• I(X,{U,V},Z)? Yes.

Z

VU

X
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Dependency induced by V-structures

• X has no parents, so we know all its parents� values trivially
• Z is not a descendant of X
• So, I(X,{},Z), even though there is a undirected path from X
to Z through an unknown variable Y.
• What if we do know the value of Y ?  Or one of its 

descendants?

ZX

Y
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The Burglar Alarm example

• Your house has a twitchy burglar alarm that is also 

sometimes triggered by earthquakes.

• Earth arguably doesn’t care whether your house is currently 

being burgled

• While you are on vacation, one of your neighbors calls and 

tells you your home�s burglar alarm is ringing.  

Burglar Earthquake

Alarm

Phone Call
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• But now suppose you learn that there was a medium-sized 
earthquake in your neighborhood. …Probably not a burglar 
after all.

• Earthquake �explains away� the hypothetical burglar.

• But then it must NOT be the case that

I(Burglar,{Phone Call}, Earthquake), 

even though I(Burglar,{}, Earthquake)!

Burglar Earthquake

Alarm

Phone Call
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d-separation

• Fortunately, there is a relatively simple algorithm for 
determining whether two variables in a Bayesian network 
are conditionally independent given some other 
variables:
Ø d-separation.

• Two variables are independent if all paths between them 
are blocked by evidence
• Three cases:
Ø Common cause
Ø Intermediate cause
Ø Common Effect
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Blocked Unblocked

E

R A

E

R A

d-separation

• Two variables are 

independent if all 

paths between them 

are blocked by 

evidence

• Three cases:

• Common cause

• Intermediate 

cause

• Common Effect

• If  we do not know whether an earthquake 

occurred, then radio announcement can 

influence our belief about the alarm having 

gone off. 

• If we know that earthquake occurred, then 

radio announcement gives no information 

about the alarm

Evidence may be transmitted through a diverging 

connection unless it is instantiated.
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Blocked Unblocked
E

C

A

E

C

A

d-separation

Common cause
Intermediate cause
Common Effect

Blocked Unblocked

Evidence may be transmitted through 
a serial connection unless it is blocked
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Blocked UnblockedE B

A

C

E B

A

C
E B

A

C

d-separation

Common cause
Intermediate cause
Common Effect

Blocked Unblocked

Evidence may be transmitted through a converging 
connection only if either the variable or one of its 
descendants has received evidence
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d-separation

§ Definition: X and Z are d-separated by a set of evidence 
variables E iff every undirected path from X to Z is 
�blocked� by evidence E
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d-separation

A B

C D

E F

G

I

H

J

I(C, {}, D)?
I(C, {A}, D)?
I(C, {A, B}, D)?
I(C, {A, B, J}, D)?
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Confounding through the lens of causal calculus
• Confounder is any factor that leads makes
• To de-confound two variables X and Y

• We need to block all non-causal paths between X and Y without 
perturbing any causal paths
• A backdoor path is any path from X to Y that starts with an 

arrow pointing into X
• X and Y will be de-confounded if we block every such 

backdoor path
• If we do this by controlling for some variables Z, we need to 

make sure that no member of Z is a descendent of X on a 
causal path 

• That is all there is to it!

		P Y |X( )≠ P Y |do X( )( )
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Confounding through the lens of causal calculus

What do we need to control for in order to de-confound X and Y?
• B passes a classical epidemiological definition of confounding
• But if we control for B, we introduce confounding rather than 

eliminating  it!
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Confounding through the lens of causal calculus

• If we can identify and measure the confounders, we can 
control for them
• But as Pearl’s work has shown, standard criteria for 

identifying confounders are flawed
• Both false positive and false negative confounders can yield 

misleading conclusions
• Causal calculus and tools based on graph theoretic criteria 

like d-separation provide effective methods for identifying 
the confounders (and only the confounders) 
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Confounding through the lens of causal calculus

What do we need to control for in order to de-confound X and Y?

• A, B, C, D are pre-treatment variables, X is the treatment

• The only backdoor path X ßA à B ßDà EàY is already blocked by the 

collider B, so no need to control for anything!

• Standard statistical practice would be to control for B and C

• “To avoid conditioning on some observed covariates … is scientific ad 

hockery” 

• Controlling for B and C introduces confounding (unless we control for A 

or  D as well)
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Confounding through the lens of causal calculus

What do we need to control for in order to de-confound X and Y?
• There is a backdoor path X ßB àY
• We can block it only by blocking B
• If B is observable, we are all set
• If B is unobservable

• We cannot control for it, so there is no way we can de-confound X and 
Y, so there is no way to estimate the causal effect of X on Y without 
running a RCT

• Current statistical practice would advocate controlling for A, a proxy of 
B – but this only partially eliminates the confounding bias and 
introduces a collider biasl
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Confounding through the lens of causal calculus

What do we need to control for in order to de-confound X and Y?
• There is a backdoor path X ßA àB ßC à Y which is already blocked by B
• Some of the correlation based statistical definitions of confounding would 

identify B as a confounder!
• B becomes a confounder when we control for it!
• Example 

• B – Seatbelt use, X – Smoking, A – Attitude towards societal norms, C –
Attitude towards safety and health related measures, Y – lung cancer

• A 2006 study found B to be correlated with both X and Y



Artificial Intelligence Spring 2019 Vasant G Honavar

Center for Big Data Analytics and Discovery Informatics
Artificial Intelligence Research Laboratory

Confounding through the lens of causal calculus

What do we need to control for in order to de-confound X and Y?
• There is a backdoor path X ßA àB ßC à Y which is already blocked by B
• There is a second backdoor path X ßB ßC àY

• If we control B to block this path, we need to block A and C as well to 
ensure that the first backdoor path does not get unblocked

• But blocking C alone suffices to block both the paths
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Knocking on the front door
• Observational study collects data 

about Smoking, Lung Tar, and 
Cancer

• Suppose we want to rule out the 
possibility that a “smoking gene” 
is responsible for both the 
tendency to smoke and 
susceptibility to cancer

• Lacking data on Smoking Gene, we cannot block the backdoor path Smoking 
ßSmoking Gene à Cancer

• We try the front door Smoking à Tar à Cancer 
• Since we have data on all three variables on the front door path, suppose we 

estimate the effect of Smoking on Tar and Tar on Cancer and from these, obtain 
the effect of Smoking on Cancer

• The Smoking ßSmoking Gene àCancer ßTar path is blocked by the collider 
Cancer – there is no need for backdoor adjustment!

• We can simply observe     and take their 
difference to compute the causal effect of Smoking on Tar

		P Tar |Smoking( )and	P Cancer |Tar( )
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C (Weather)

R
(Rain)

S
(Sprinkler)

W (Wetness)

Deriving counterfactuals from a causal model

Graph (G)
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C (Weather)

R
(Rain)

S = 1
(Sprinkler)

W (Wetness)

Deriving counterfactuals from a causal model

Graph (G)

What is the probability that we find  the pavement is wet 
if we turn the sprinkler ON?
Find if P(WS = 1 = 1) = P(W = 1 | do(S = 1)) 

Mutilated Model (MS=1)
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C (weather)

R
(Rain)

S = 1
(Sprinkler)

W (Wetness)

Deriving counterfactuals from a causal model

Graph (G) Mutilated Model (MS=1)

Would it rain if we turn the sprinkler ON?
Not necessarily, because RS = 1 = R
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C (Climate)

R = 1
(Rain)

S 
(Sprinkler)

W (Wetness)

Graph (G) Mutilated Model (MR=1)

Would the pavement be wet had it rained?
Find if W = 1 in MR=1

Every counterfactual question has an answer in M

Deriving counterfactuals from a causal model
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Counterfactuals and algorithmic Fairness

• Is there gender-based discrimination in hiring?
• We know that Jane was not hired
• Was she discriminated against because of gender?

• Would the hiring decision be different had the candidate 
been female (or male) as opposed to male (female)?
• In other word

! ℎ#$#%& '( &)%')$ = +),-.)
≠ ! ℎ#$#%& '( &)%')$ = ,-.) ?

[Kusner et al., 2017, Khademi et al., 2018]
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Traditional method for learning causal 
relationships from observational data

• Question: Does Y cause Z? Y Z
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Traditional Method for Learning Causal 
Relationships from Observational Data

• Question: Does Y cause Z?
• Standard recipe
• Identify all confounders of Y and Z
• Measure them

Y Z

Y Z

C
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Traditional Method for Learning Causal 
Relationships from Observational Data

• Question: Does Y cause Z?

• Identify all confounders of Y and Z
• Measure them
• Condition on them

Y Z

Y Z

C
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• Question: Does Y cause Z?

• Identify all confounders of Y and Z
• Measure them
• Condition on them
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• Question: Does Y cause Z?
• Identify all confounders of Y and Z
• Measure them
• Condition on them

• The recipe fails when
• The traditional methods of identifying 

confounders fail to identify the 
confounders
• Not all confounders are measureable

Y Z

Y Z

C

Y Z

CH

Traditional Method for Learning Causal 
Relationships from Observational Data
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Confounding redefined using causal calculus
• Many definitions, almost all flawed
• Except the potential outcomes framework of Greenland and 

Robins (1986) which introduces exchangeability as a requirement 
for absence of confounding
• Treatment group would behave identical to the control group 

if it were not treated
• Correct definition using the language of causal calculus

• Confounder is any factor that leads makes 		P Y |X( )≠ P Y |do X( )( )
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Causal Network Methods for Learning Causal 
Relationships from Observational Data

• Constraint-based
• Bayesian
• Other
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• Constraint-based
• Bayesian
• Other

Causal Network Methods for Learning Causal 
Relationships from Observational Data
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The Constraint-Based Learning of Causal 
Models

1. Determine constraints that hold among the nodes (e.g., 
independence conditions based on statistical tests)

2. Use the patterns of constraints to narrow the causal 
possibilities
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Constraint-Based Search for a Causal Model: Example
• Three binary variables X, Y, Z
• Suppose time ordering is known (we can relax this condition): 

X occurs before Y which occurs before Z
• For instance
• X: economic circumstances
• Y: environmental risk 
• Z: disease

• Question: Does Y cause Z?
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• Suppose statistical testing yields the following constraints
dep(X, Y), dep(Y, Z), dep(X, Z), ind(X, Z | Y)

• Consider the consistency of these constraints with respect to the 
following causal models:

X Y Z

X Y Z

X

X

X

X Y Z

X Y Z

H

H

Constraint-Based Search for a Causal Model: Example
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• Suppose statistical testing yields the following constraints
dep(X, Y), dep(Y, Z), dep(X, Z), ind(X, Z | Y)

• Consider the consistency of these constraints with respect to the 
following causal models:
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Constraint-Based Search for a Causal Model: Example
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Pneumonia Fever Abdominal 
Pain

Appendicitis

• Given Fever = present, if Pneumonia = present then Appendicitis 
Is unlikely and therefore Abdominal Pain is unlikely.

• Given Fever = present, if Pnemonia = absent then  Appendicitis 
is likely and therefore Abdominal Pain is likely.

• Thus, when fever is present, Pneumonia and Abdominal Pain 
have an inverse statistical relationship

• This causal model is not consistent with the known constraint 
ind(X, Z | Y).

• The pneumonia story is more complicated because pneumonia 
does lead to toxemia which leads to abdominal pain

X

X Y Z
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• Suppose statistical testing yields the following constraints
dep(X, Y), dep(Y, Z), dep(X, Z), ind(X, Z | Y)

• Consider the consistency of these constraints with respect to the 
following causal models:
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Constraint-Based Search for a Causal Model: Example
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• Suppose statistical testing yields the following constraints
dep(X, Y), dep(Y, Z), dep(X, Z), ind(X, Z | Y)

• Consider the consistency of these constraints with respect to the 
following causal models:

X Y Z
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91 additional causal models

Constraint-Based Search for a Causal Model: Example
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• The following models are the only ones consistent with the 
constraints:

X Y Z

X Y Z

• In all of these models, Y causes Z and there is no confounding of Y
and Z. 

H

X Y Z

H

Constraint-Based Search for a Causal Model: Example
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• Reduce the large number of causal model possibilities to just 
those models consistent with the constraints obtained from the 
data
• Look for causal relationships that are invariant across those 

models (e.g., Y à Z).

Constraint-Based Search for a Causal Model: Example
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Constraint-Based Causal Discovery Algorithms
• They find general patterns of statistical dependency among 

the measured variables that are consistent with the causal 
models that they output 
• They make the following assumptions:
• Causal Markov Condition: Causality is local.
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• They find general patterns of statistical dependency among the 
measured variables that are consistent with the causal networks 
that they output 
• They make the following assumptions:

• Causal Markov Condition: A node is independent of its non-effects given 
it direct causes.     A à B à C

• Causal Faithfulness Condition: The only independence among nodes is 
due to the Causal Markov Condition.

• Test accuracy: The tests of statistical independence are correct.

Constraint-Based Causal Discovery Algorithms
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What else can we do with causal models? 
• Causal transportability1

• Suppose we have run a study in Chicago and learned a causal 
relationship, say between poverty and obesity

• Suppose we want to see if the relationship is true in some 
form in Los Angeles
• Los Angeles is different from Chicago in some respects, 

e.g., demographics
• We now have tools to answer if the causal relationship which 

we learned from a study in Chicago can be tweaked in some 
way so that it applies to Los Angeles

1Bareinboim and Pearl, 2012; Lee and Honavar, 2013, Bareinboim, Lee, Honavar, and Pearl, 2013
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Beyond simple cases
• Learning Causal Models from Relational Data1

• The methods considered so far assume that the observations 

are independent and identically distributed

• Not true in the case when individuals are connected, e.g., 

through family relationship

• We now have tools to learn causal models from relational data

• We will soon have tools to learn causal models from temporal 

relational data

• We will soon have tools for counterfactual inference from 

observational data

1
Lee and Honavar, 2016, Lee and Honavar, 2017a; Lee and Honavar, 2017b
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1. Correlation ≠ causation
2. Causality is more - not less - important in the era of big data
3. Every causal inference task must rely on assumptions 

beyond the information supplied by data
4. We have ways of encoding those assumptions 

mathematically and testing their implications
5. We have a mathematical machinery to combine the 

assumptions with data to answer to questions of interest
6. We now have a way of doing (2) and (3) in a language that 

permits us to judge the scientific plausibility of our 
assumptions and to derive their ramifications

7. Items (2)-(4) make causal inference manageable and useful 

Key lessons in causality
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Summary
• Causal models play a pivotal role in science

• We now have tools to learn and reason with causal models 

from observations and experiments

• We ought to use such tools to advance discovery

• By answering associational, interventional, and 

counterfactual questions

• By integrating experimental and observational data

• By optimizing experiments…

• Across a variety of domains including

• Biomedical Sciences

• Social sciences

• Environmental sciences ..


