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ABSTRACT
Restricted Boltzmann Machines (RBMs) are widely adopt-
ed unsupervised representation learning methods and have
powered many data mining tasks such as collaborative fil-
tering and document representation. Recently, linked data
that contains both attribute and link information has be-
come ubiquitous in various domains. For example, social
media data is inherently linked via social relations and web
data is networked via hyperlinks. It is evident from recent
work that link information can enhance a number of real-
world applications such as clustering and recommendation-
s. Therefore, link information has the potential to advance
RBMs for better representation learning. However, the ma-
jority of existing RBMs have been designed for independen-
t and identically distributed data and are unequipped for
linked data. In this paper, we aim to design a new type
of Restricted Boltzmann Machines that takes advantage of
linked data. In particular, we propose a paired Restricted
Boltzmann Machine (pRBM), which is able to leverage the
attribute and link information of linked data for represen-
tation learning. Experimental results on real-world dataset-
s demonstrate the effectiveness of the proposed framework
pRBM.
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1. INTRODUCTION
Representation learning, which aims at learning low di-

mensional semantic representations of high-dimensional da-
ta, has proven to facilitate many machine learning and data
mining tasks such as classification [13, 10, 2], clustering [17,
31] and information retrieval [7]. In terms of the label avail-
ability, representation learning methods can be broadly clas-
sified into supervised [13, 10] and unsupervised methods [17,
29]. As most data is unlabeled and it is very expensive
to label the data, unsupervised representation learning has
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attracted increasing attention in recent years [17, 31]. Re-
stricted Boltzmann Machine (RBM) is one of the most wide-
ly used unsupervised representation learning methods. It is
a two-layer undirected graphical model where one layer of
hidden units is used to learn nonlinear latent features and
one layer of visible units is to denote observed features. RB-
M is very powerful in learning meaningful nonlinear latent
features, which has powered many applications such as col-
laborative filtering [18, 5], link prediction [12], document
representation [7, 31] and social behavior prediction [16].

In recent years, linked data has become pervasively avail-
able in various domains. For example, social media data is
inherently linked via social context [22], web data is net-
worked via hyperlinks [15], and biological data is embedded
in correlation or interaction networks [4]. Link information
can be represented as a network as shown in Figure 1(a),
where nodes are data instances. Figure 1(b) is a conven-
tional representation of the attribute-value part of linked
data: rows are instances and columns are features. In ad-
dition, linked data provides link information as demonstrat-
ed in Figure 1(c). Linked information is complementary
to attribute information and has been proven to enhance a
variety of applications such as feature selection [22], senti-
ment analysis [8], topic modeling [1] and document classi-
fication [28]. Therefore, it has potential to advance RBMs
for better representation learning. Most of existing RBMs
have been designed for independent identically distributed
(i.i.d) data and cannot fully take advantage of linked data.
Motivated by this, we design a new type of RBMs for linked
data.

In this paper, we aim to develop a novel RBM for linked
data. We design a novel RBM called Paired Restricted
Boltzmann Machine (pRBM) that can leverage attribute
and link information of linked data simultaneously. The
main contributions of the paper are listed as follows:

• We design a new structure of RBM to capture the at-
tribute and link information.

• We propose a novel framework pRBM that utilizes
both attribute and link information for representation
learning; and

• We conduct extensive experiments on real-world dataset-
s to understand the characters and effectiveness of pRB-
M.

The rest of this paper is organized as follows. In Section
2, we propose the novel framework, pRBM, that can fully
leverage linked data. In Section 3, we derive and develop an



(a) Linked Data (b) Attribute-Value (c) Attribute-Value and Link Information

Figure 1: An Illustrative Example of Linked Data.

effective algorithm to train pRBM. In Section 4, we conduct
experiments for extensive evaluation. In Section 5, we dis-
cuss related work. In Section 6, we conclude the paper and
discuss areas of future work.

2. THE PROPOSED PAIRED RESTRICTED
BOLTZMANN MACHINE MODEL

Before introducing the details of pRBM, we will first in-
troduce the notations used in this paper. Throughout the
paper, scalars are denoted by lower-case letters, e.g., a, bi,
vectors are written as lower-case bold letters, e.g., a,b(1), ci,
and matrices correspond to boldfaced upper-case letters such
as W. Wij denotes the element of W in the i-th row and
j-th column. Let U = {u1, u2, . . . , un} be the set of linked
data instances where n is the number of data instances and
F = {f1, f2, . . . , fm} is the set of attributes/features of size
m. Let V = [v1,v2, . . . ,vn] ∈ Rm×n be the attribute-value
representation of U w.r.t. F where vi(j) is the value of fj in
ui. In addition, linked data provides link information. We
use an adjacency matrix A ∈ Rn×n where Aij is the con-
nection strength if there is a link from ui to uj and Aij = 0
otherwise. We assume that links among data instances are
undirected, i.e., A = AT . In the rest of this section we
will first give the basic RBM model and then continue to
introduce the proposed model pRBM for linked data.

2.1 A Basic Model: RBM
A restricted Boltzmann machine is an undirected graphi-

cal model that defines a probability distribution over a vec-
tor of observed, or visible, variables v ∈ {0, 1}m and a vector
of latent, or hidden, variables h ∈ {0, 1}d. It is widely used
for unsupervised representation learning and for pretraining
deep learning models. Figure 2(a) gives a toy example of an
RBM. In the figure, each node of the hidden layer is con-
nected to each node in the visible layer, while there are no
connections between hidden nodes or visible nodes. Figure
2(b) is a simplified representation of RBM, where the con-
nection details between hidden layers and visible layers are
simplified. In this paper, we consider both v and h as binary
vectors, i.e., elements of v and h can only take the value of
0 or 1. An RBM defines a joint probability over v and h as,

P (v,h) = exp(−E(v,h))/Z (1)

where Z is a normalization constant, i.e., the partition func-
tion, which is defined as

Z =
∑
v

∑
h

exp(−E(v,h)) (2)

and E is an energy function given by

E(v,h) = −hTWv − bTh− cTv (3)

where W ∈ Rd×m is a matrix of pairwise weights between
elements of v and h (see Figure 2(a)), while b ∈ Rd×1 and

(a) RBM (b) Simplified Rep-
resentation of RBM

Figure 2: An Illustration of Restricted Boltzmann Machine

c ∈ Rm×1 are biases for the hidden and visible variables,
respectively1. The marginal distribution P (v) of P (v,h) is
defined as,

P (v) =
∑
h

P (v,h) (4)

Since there are no explicit connections between hidden u-
nits in an RBM, given a randomly selected training instance
v, the hidden units are independent of each other

P (h|v) =

d∏
i=1

P (hi|v) (5)

and the binary state, hi, i = 1, . . . , d, is set to 1 with condi-
tional probability given as

P (hi = 1|v) = σ
( m∑

j=1

Wijvj + bi
)

(6)

where σ(·) is the sigmoid function defined as σ(x) = (1 +
exp(−x))−1. Similarly, given h, the visible units are inde-
pendent of each other, which result in

P (v|h) =

m∏
j=1

P (vj |h) (7)

and the binary state, vj , j = 1, . . . ,m, is set to 1 with
conditional probability given as

P (vj = 1|h) = σ(

d∑
i=1

Wijhi + vj) (8)

With the simple conditional probabilities given by Eq.(6)
and Eq.(8), sampling from P (h|v) and P (v|h) becomes very
efficient. RBMs have generally been trained using gradient
ascent in log-likelihood l(θ) for some set of training vectors
V ∈ Rm×n, where θ = {W,b, c} is the variable to be opti-
mized. The log-likelihood l(θ) is written as

l(θ) =
1

n
logP (V) =

1

n

n∑
i=1

logP (vi) (9)

1For simplicity, bias terms are not shown in Figure 2.



The differentiation of logP (v) w.r.t variable θ is given as,

∂logP (v)

∂W
=
∑
h

P (h|v)hvT −
∑
ṽ

∑
h

P (ṽ,h)hṽT (10)

∂logP (v)

∂b
=
∑
h

P (h|v)h−
∑
ṽ

∑
h

P (ṽ,h)h (11)

∂logP (v)

∂c
=
∑
h

P (h|v)v −
∑
ṽ

∑
h

P (ṽ,h)ṽ (12)

where ṽ ∈ {0, 1}m is an m-dimensional binary vector. The
first terms in Eqs.(10), (11) and (12) can be computed ex-
actly. These terms are often referred to as the positive gra-
dient. It corresponds to the expected gradient of the energy
with respect to P (h|v). The second terms in Eqs.(10), (11)
and (12) are known as the negative gradients, which are
expectations over the model distribution P (v,h). It is in-
tractable to compute the negative gradients exactly, which
can be approximated by Persistent Contrastive Divergence
(PCD) [25].

Figure 3: Paired Data

2.2 Paired Restricted Boltzmann Machine
Instances in linked data can be represented as a network

where nodes are instances and edges are relations among in-
stances. Since the number of edges is usually much larger
than that of nodes, considering linked data as pairs of nodes
extracted from link information may have two advantages.
First, it paves a way for us to capture link information be-
cause paired linked nodes have close relationships. Second,
it may help us develop a robust representation learning al-
gorithm which is able to work well even when the number
of data instances (or nodes) is small. However, pairs of n-
odes challenge the traditional RBM because RBM works
with independent data instances (or nodes). Next, we will
introduce our approach to model linked data from the edge
perspective, which results in paired Restricted Boltzmann
Machine, pRBM.

We first extract pairs of users as 〈u1, u2〉 if u1 and u2

are linked, and represent linked data from the edge perspec-
tive. For example, Figure 3 shows the pair representation of
linked data in Figure 1, where each row in Figure 3 is a pair
of nodes corresponding to an edge in Figure 1. The vector
a contains the weights of the links and matrices V(1),V(2)

contain the attributes of pairs of nodes. For the linked pair
〈u1, u2〉, we use h(1) ∈ {0, 1}d×1 and h(2) ∈ {0, 1}d×1 to de-
note their latent feature representations. Linked instances
are likely to be more similar than two randomly-chosen in-
stances [19, 22], which serves as the foundation of many
data mining and machine learning applications of linked da-
ta such as collective classification [24, 19] and linked feature
selection [22]. Therefore, in order to model linked data from
the edge perspective, we force latent feature representations
of linked pairs of instances to be similar. To achieve this
goal, we propose a novel representation learning algorith-

Figure 4: An Illustration of Paired Restricted Boltzmann
Machine for Linked Data

m paired Restricted Boltzmann Machine pRBM as demon-
strated in Figure 4. pRBM is composed of two RBMs, which
is designed for the pair representation. Since we assume that
links are undirected, the two RBMs share the same param-
eters, such as W,b and c, which ensures that 〈u1, u2〉 has
the same effect to pRBM as 〈u2, u1〉, i.e., switching the or-
der of a pair of nodes does not matter. Furthermore, by
sharing the same parameters, we can reduce the number
of parameters of pRBM greatly, which is significant for s-
mall datasets with high dimensionality of attributes because
when datasets are small and the dimensionality of attributes
is high, a complex model with large number of parameters
cannot be well trained. As shown in Figure 4, hidden layers
of the two RBMs are linked, which means that the feature
representations h(1) and h(2) are fully connected. The con-
nection between h(1) and h(2) allows interaction between
them. This models the link between 〈u1, u2〉. More specif-
ically, as 〈u1, u2〉 are linked, it is likely that 〈u1, u2〉 share
similar interests/topics, which implies that the similarity be-

tween h(1) and h(2) should be high. Thus, we learn a metric
M ∈ Rd×d to force latent feature representations of pairs
of linked instances as 〈u1, u2〉 to be similar. Therefore, the
joint probability of pRBM is defined as

P (v(1),v(2),h(1),h(2), a;θ) =

exp(−E(v(1),v(2),h(1),h(2), a))/Z (13)

where θ = {W,b, c,M} is the parameter set and the energy
function is defined as

E(v(1),v(2),h(1),h(2), a)

=− a(h(1))TMh(2) − (h(1))TWv(1) − cTv(1)

− bTh(1) − (h(2))TWv(2) − cTv(2) − bTh(2)

(14)

where (h(1))TMh(2) forces the latent feature representations
of 〈u1, u2〉 to be close. Obviously, if M is the identity matrix

I, then (h(1))TMh(2) reduces to (h(1))Th(2), which is the

similarity between h(1) and h(2). In this way, learning M
can help us to capture more complex similarity while M = I
is a special case. The vectors v(1) and v(2) are the original
feature vectors of a pair of instances, and the scalar a is the
weight of the link between v(1) and v(2). For un-weighted
linked data, a is set to 1. The partition function is given as

Z =
∑
v(1)

∑
v(2)

∑
h(1)

∑
h(2)

exp(−E(v(1),v(2),h(1),h(2))) (15)

And the marginal distribution P (v(1),v(2), a) is given as

P (v(1),v(2), a) =
∑
h(1)

∑
h(2)

P (v(1),v(2),h(1),h(2), a;θ) (16)

The paired Restricted Boltzmann Machine pRBM intro-
duced in this paper improves upon RBM for linked data and
is different from Deep Boltzmann machines (DBM) [17]. An



Figure 5: An Illustration of 3 hidden-layer DBM

illustration of a 3 hidden-layer DBM is shown in Figure 5.
From Figures 2, 4 and 5, we can see that the differences are

• RBM and 3 hidden-layer DBM work with independen-
t data instances (or nodes); while pRBM works with
pairs of linked data instances, which results in sub-
stantially different structures. RBM has one visible
layer v and one hidden layer h as shown in Figure 2,
the 3 hidden-layer DBM has one visible layer v and
three hidden layers h(1), h(2), h(3) for leaning high-
er lever features as shown in Figure 5, while pRBM
has two visible layers v(1),v(2) and two linked hidden
layers h(1),h(2) for modeling linked nodes as shown in
Figure 4; and

• The 3 hidden-layer DBM stacks three RBMs and has
different weights for each layer as shown in Figure 5;
while pRBM shares weights for the two RBMs and has
weights to model the inteaction between h(1) and h(2)

as shown in Figure 4. Therefore, pRBM has fewer
parameters to train and can model linked data.

One unique property, and advantage, of our algorithm is
the input it requires. This difference is illustrated in Fig-
ure 3, where the pairs are generated according to the links
shown in Figure 1(c). Given a training dataset V ∈ Rm×n

and an adjacency matrix A, as shown in Figure 1(c), we

can define V(1) ∈ Rm×N , V(2) ∈ Rm×N and a ∈ RN×1,

where N is the number of links, such that (v
(1)
i ,v

(2)
i ) are

the feature vectors corresponding to the i-th pair of linked
instances and ai is the weight of the link. For example, in
Figure 1(c), u1 and u2 are connected, so we can take these

two nodes and align them as a pair in V(1) and V(2), as
seen in Figure 3. Additionally, since the number of edges is
usually much larger than that of nodes (or N > n), we will
ultimately have more training data for pRBM.

3. TRAINING pRBM
The training process of pRBM involves sampling from

P (h(1),h(2)|v(1),v2)). However, unlike RBM, because of the

link between the two hidden layers h(1) and h(2) of pRB-
M, sampling from P (h(1),h(2)|v(1),v2)) becomes difficult,
which makes training pRBM challenging. Next, we give de-
tails about how to train pRBM.

Given V(1), V(2), and a, the log-likelihood function of
pRBM can be written as

l(θ) =
1

N

N∑
i=1

logP (v
(1)
i ,v

(2)
i , ai;θ) (17)

We use the gradient ascent method to update the variables
M,W,b and c. For simplicity of notation, let h = {h(1),h(2)}
and v = {v(1),v(2)}. Then the marginal distribution P (v(1),

v(2), a) is written as P (v, a). The derivative of logP (v, a)
with respect to W is:

∂logP (v, a)

∂W
=
∑
h

P (h|v)[h(1)(v(1))T + h(2)(v(2))T ]

−
∑
h

∑
ṽ

P (h, ṽ)[h(1)(ṽ(1))T + h(2)(ṽ(2))T ]

(18)

Thus, the derivative of the objective function in Eq.(17)
w.r.t W can be written as

∂l(θ)

∂W
=EPdata

[
h(1)(v(1))T + h(2)(v(2))T

]
−EPmodel

[
h(1)(v(1))T + h(2)(v(2))T

] (19)

In Eq. (19), EPdata [·] denotes an expectation with respect to
the data distribution

Pdata(h,v(1),v(2)) = P (h|v(1),v(2))Pdata(v(1),v(2)) (20)

where Pdata(v(1),v(2)) represents the empirical distribution
as

Pdata(v(1),v(2)) =
1

N

∑
i

δ(v(1),v
(1)
i )δ(v(2),v

(2)
i ), (21)

and δ(x, y) is the delta function whose value is 1 if x = y
and 0 otherwise. In Eq. (19), EPModel [·] is an expecta-
tion with respect to the distribution defined by the model,
i.e., P (v(1),v(2),h(1),h(2)). Using the same procedure, the
derivative of the objective function w.r.t b is given by

∂l(θ)

∂b
= EPdata(h(1) + h(2))− EPmodel(h

(1) + h(2)). (22)

Similarly, we can get the derivative of the objective function
w.r.t c as

∂l(θ)

∂c
= EPdata(v(1) + v(2))− EPmodel(v

(1) + v(2)) (23)

The derivative of logP (v, a) w.r.t W can be written as

∂logP (v, a)

∂M
=
∑
h

P (h|v)[ah(1)(h(2))T ]

−
∑
h

∑
ṽ

P (h, ṽ)[ãh(1)(h(2))T ]
(24)

where ṽ = {ṽ(1), ṽ(2)} with ṽ(1) ∈ {0, 1}m and ṽ(2) ∈
{0, 1}m. The scalar ã is the weight of link between ṽ(1)

and ṽ(2). Thus, for each pair of ṽ(1) and ṽ(2), we need to
estimate the corresponding ã, which is intractable. We use
ā = 1

N

∑
i ai to approximate ã. Note that this approxima-

tion has no effects on unweighed links since we always have
a = 1 in the energy function. Therefore, we can get the
derivative of the objective function with respect to M as

∂l(θ)

∂M
=

1

N

N∑
i=1

∑
h

P (h|v(1)
i ,v

(2)
i )

[
aih

(1)(h(2))T
]

− āEPmodel

[
h(1)(h(2))T

] (25)

As with RBMs, in Eqs.(19), (22), (23) and (25), the sec-
ond terms are refereed to as negative gradient and the exact
calculation of EPmodel[·] is intractable. Following the com-
mon way to deal with the negative gradient [11, 7], we use



Persistent Contrastive Divergence (PCD) [25] to approxi-
mate EPmodel[·]. Specifically, Contrastive Divergence is to
get samples of EPmodel[·] by starting a Gibbs chain at a train-
ing instance and run it for few steps [6]. Instead of using a
new Gibbs Chain for each parameter, Persistent Contrastive
Divergence is to use one Gibbs chain for all the parameters.
With the approximation, the gradient of W takes the form

∆W =EPdata

[
h(1)(v(1))T + h(2)(v(2))T

]
− EPT

[
h(1)(v(1))T + h(2)(v(2))T

] (26)

where PT represents a distribution defined by running the
Gibbs chain for T full steps [7]. Similarly, the gradient of b,
c and M are

∆b = EPdata(h(1) + h(2))− EPT (h(1) + h(2))

∆c = EPdata(v(1) + v(2))− EPT (v(1) + v(2))

∆M =
1

N

∑
i

∑
h

P (h|v(1)
i ,v

(2)
i )(aih

(1)(h(2))T )

− āEPmodel(h
(1)(h(2))T ) (27)

To run Gibbs sampling, we need an efficient Gibbs sampler
that alternates between sampling the states of the hidden
units independently given the states of the visible units, and
vice versa. From Figure 4, we can see that v(1) and v(2) are
conditionally independent on h(1),h(2). So when h(1) and
h(2) are given, we have

P (v(1),v2|h(1),h(2)) = P (v(1)|h1)P (v(2)|h(2)) (28)

where P (v(1)|h1) has the same form as RBM

P (v(1)|h(1)) =

m∏
i=1

P (v
(1)
i |h

(1)) (29)

with

P (v
(1)
i = 1|h(1)) = σ

(
ci + (h(1))TW·i

)
(30)

Similarly, we have

P (v(2)|h(2)) =

m∏
i=1

P (v
(2)
i |h

(2)) (31)

with

P (v
(2)
i = 1|h(2)) = σ

(
ci + (h(2))TW·i

)
(32)

Therefore, sampling of the visible layers given the hidden
layers is very efficient. However, since h(1) and h(2) are not
independent given v(1) and v(2) (see Figure 4), the sam-
pling of P (h|v) becomes intractable when the dimension of

h(1) and h(2) are large. We use mean-field inference to deal
with this problem. Consider any approximation distribution
Q(h|v;µ), parameterized by a vector of parameters µ, for
the posterior P (h|v;θ). Then the likelihood of the pRBM
model has the following variational lower bound [14]

logP (v;θ) ≥
∑
h

Q(h|v;µ) logP (v,h;θ) +H(Q) (33)

where H(·) is the entropy function. The bound becomes
tight if and only if Q(h|v;µ) = P (h|v;θ)

For simplicity and efficiency, we approximate the true pos-
terior P (h|v;θ) with a fully factorized approximating distri-
bution over the two sets of hidden units, which correspond
to the mean-field approximation

QMF (h|v;µ) =

d∏
i=1

q
(1)
i (h

(1)
i )

d∏
j=1

q
(2)
j (h

(2)
j ) (34)

where d is the dimension of the hidden layer, and µ =

{µ(1),µ(2)} are the mean-field parameters with q
(1)
i (h

(1)
i =

1) = µ
(1)
i and q

(2)
j (h

(2)
j = 1) = µ

(2)
j . With mean-field ap-

proximation, to maximize the lower bound of Eq.(33), we

only need to set q
(1)
i as [14]

log q
(1)
i (h

(1)
i ) = E−qi [log p̃(h)] + const (35)

where E−qi [log p̃(h)] is defined as

E−qi [log p̃(h)] =
∑
h
(1)
−i

∑
h(2)

∏
m 6=i

q(1)m (h(1)
m )

d∏
j=1

q
(2)
j (h

(2)
j ) log p̃(h)

(36)
and p̃(h) ∝ exp(−E(v,h;θ)) with all the variables being

constant except h
(1)
i and h

(1)
−i is h(1) except h

(1)
i . Thus,

E−qi [log p̃(h)] can be calculated as

E−qi [log p̃(h)]

=
∑
h
(1)
−i

∑
h(2)

∏
m 6=i

q(1)m (h(1)
m )

d∏
j=1

q
(2)
j (h

(2)
j )[−E(v,h;θ)]

=h
(1)
i [a

∑
j

Mijµ
(2)
j +

∑
j

Wijv
(1)
j + bi]

(37)

From the above equation, we can get

q
(1)
i (h

(1)
i ) ∝ exp

(
h
(1)
i [a

∑
j

Mijµ
(2)
j +

∑
j

Wijv
(1)
j + bi]

)
(38)

Then the mean of q
(1)
i (h

(1)
i ) is given as,

µ
(1)
i =

q
(1)
i (h

(1)
i = 1)

q
(1)
i (h

(1)
i = 1) + q

(1)
i (h

(1)
i = 0)

= σ(a
∑
j

Mijµ
(2)
j +

∑
j

Wijv
(1)
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which can be written as

µ(1) = σ(aMµ(2) + Wv(1) + b). (40)

With the same procedure, we can get that

q
(2)
j (h

(2)
j ) ∝ exp

(
h
(2)
j [a

∑
j

Mijµ
(1)
i +

∑
i

Wjiv
(2)
i + bj ]

)
(41)

and thus µ(2) is estimated as

µ(2) = σ(a(µ(1))TM + Wv(2) + b) (42)

As we can see from Eq.(40) and Eq.(42), the update rules

of µ(1) and µ(2) are fixed-point equations and are coupled
together. To solve these fixed-point equations, we simply
cycle through layers by updating the mean-field parameters
within a single layer, i.e., updating µ(1) and µ(1) alterna-
tively by fixing one and update the other one until they
converge. To make it smoother, we use damped updates as

µ(1) ← λµ(1) + (1− λ)(aMµ(2) + Wv(1) + b) (43)

µ(2) ← λµ(2) + (1− λ)(a(µ(1))TM + Wv(2) + b) (44)

Given µ(1),µ(2), we can sample h(1),h(2) from the distri-
bution QMF (h|v;µ) efficiently. Then h(1),h(2) are used to



sample v(1),v(2) using Eq.(30) and Eq.(32), which gives us
a Gibbs chain. Thus, with mean-field inference, we can per-
form Gibbs sampling efficiently, which allows us to calculate
both EPdata [·] and EPT [·]2. The training algorithm for pRB-
M is summarized in Algorithm 1. Next we briefly review
Algorithm 1. We first pretrain pRBM by using RBM to ini-
tialize W,b, c. After that, we prepare the paired training
data V(1),V(2) and a from the attribute-value matrix V and
the adjacency matrix A. Since we use mini-batch training,
we split the data into mini-batches. For each mini-batch,
we perform PCD by running Gibbs sampling with mean-
field inference to calculate the gradients, i.e., ∆W,∆b,∆c
and ∆M. With the gradients, we update W,b, c and M
using gradient descent where ε is the learning rate.

Algorithm 1 Training pRBM

Input: V ∈ Rm×n,A ∈ Rn×n, d
Output: M ∈ Rd×d,W ∈ Rd×m,b ∈ Rd, c ∈ Rm

1: initialize W,b, c using an RBM
2: prepare paired data V(1),V(2),a from V and A
3: for epoch = 1:maxepoch do
4: for batch = 1:numbatch do
5: perform PCD by running Gibbs sampling with

mean-field inference
6: calculate ∆W using Eq.(26)
7: calculate ∆b, ∆c, and ∆M using Eq.(27)
8: update W as W = W + ε∆W,
9: update b as b = b + ε∆b

10: update c as c = c + ε∆c,
11: update M as M = M + ε∆M
12: end for
13: end for

3.1 Representation Learning with pRBM
After pRBM is trained, learning representations is equiva-

lent to sampling from the posterior distribution P (h(1),h(2)|
v(1),v(2)). As we discussed in the previous subsection, be-

cause of the dependence between h(1) and h(2), the sam-
pling of P (h(1),h(2)|v(1),h(2)) is very difficult. Thus, we
use the same method, i.e., mean-field approximation, to in-
fer this posterior distribution. Specifically, if we want to
get the feature representation of ui whose corresponding in-
put feature vector is vi, we first find the set Ui = {uj :
ui is connected to uj}. For each uj ∈ Ui, we can get the
input data (vi,vj , Aij). Ideally, we want to sample from
P (hij ,hj |vi,vj) to get hij where hij means that the fea-
ture representation is from (vi,vj , Aij). Due to the reason
that sampling from P (hij ,hj |vi,vj) is difficult, we use the

mean-field inference instead. We first calculate µ(1) and
µ(2) using Eq.(43) and Eq.(44) with vi,vj as input. We
then sample hij from QMF (hij ,hj |vi,vj ;µ), whose defini-
tion is given by Eq.(34). Finally, the feature representation
of ui is given by the weighted sum as

h̄i =

∑
j:uj∈Ui Aijhij∑
j:uj∈Uj Aij

(45)

2The calculation of EPdata [·] also depends on the calculation
of P (h|v). For simplicity and efficiency, we also use mean-
field inference to approximate

3.2 Time Complexity
Given a training instance v(1),v(2), we need to perform

PCD, which involves running Gibbs sampling using mean-
field approximation. The main cost of Gibbs sampling is on
the calculation of µ(1) and µ(2), which is O(d2 +dm). Thus,
it takes O(d2 + dm) to perform Gibbs sampling with mean-
field inference for one pair of training instance. The total
computational cost of ∆W,∆b,∆c, and ∆M using Eq.(27)
and Eq.(26) is also O(d2 + dm). Similarly, the total time
complexity of updating W,b, c,M using gradient ascent as
shown in line 8 to line 11 in Algorithm 1 is O(d2+dm). Since
there are N pairs of training instances, the computational
cost of each epoch is O(Nd2 +Ndm).

4. EXPERIMENTAL ANALYSIS
In this section, we present experiments to verify the effec-

tiveness of the proposed framework pRBM. Specifically, we
aim to answer the following questions:

• Is the proposed framework pRBM effective in learning
useful representations by exploiting link information?

• How robust is pRBM when datasets are small?

To answer these questions, we conduct extensive experi-
ments on two real-world datasets and compare the proposed
framework pRBM with state-of-the-art algorithms. We be-
gin by explaining the experimental setting.

4.1 Experimental Setting
We use two datasets from real-world social media websites,

i.e., BlogCatalog3 and Flickr4. These datasets are publicly
available datasets used in [23] to study unsupervised feature
selection for linked data. The statistics of the datasets are
shown in Table 1. In both datasets, the number of links
is much larger than that of data instances, thus, links have
potential to provide extra information over attributes; and
the number of features is larger than that of data instances,
thus, it is necessary to learn dense representations. These
characteristics make these two datasets suitable to assess the
performance of unsupervised representation learning meth-
ods for linked data.

Table 1: Statistics of the datasets.

BlogCatalog Flickr

Nodes 5,198 7,575
Links 27,965 47,344
Avg Degree 5.38 6.25
Features 8,189 12,047
Classes 6 9

Following the common way to assess the performance of
unsupervised representation learning algorithms, we use clus-
tering performance to evaluate the quality of learned repre-
sentations. Intuitively, better representations will lead to
better clustering performance. Each unsupervised represen-
tation learning algorithm is first performed to learn feature
representations, and then k-means clustering is performed
based on the learned features. The clustering quality is e-
valuated by two commonly used metrics: accuracy (ACC)

3http://www.blogcatalog.com
4http://www.flickr.com



and normalized mutual information (NMI). Let yj be the
true cluster label of j-th document, l(dj) be the predicted
cluster label of the j-th document, accuracy is defined as

ACC =
1

n

n∑
j=1

δ(yj , l(dj)) (46)

where δ(x, y) is the delta function previously defined. Given
two clusterings C and C′, the mutual informationMI(C,C′)
is defined as

MI(C,C′) =
∑

ci∈C,c′j∈C
′

P (ci, c
′
j)log2

P (ci, c
′
j)

P (ci)P (c′j)
(47)

and normalized mutual information (NMI) is defined by

NMI(C,C′) =
MI(C,C′)

max(H(C), H(C′))
(48)

whereH(C) andH(C′) represent the entropies of clusterings
C and C′, respectively. Larger NMI values represent better
clustering qualities.

4.2 Quality of Learned Representations
In order to answer the question of “is the proposed frame-

work pRBM effective in learning useful representations by
exploiting link information?”, we assess the quality of rep-
resentations learned by different representation learning al-
gorithms via clustering performance. pRBM is compared
with the following representative unsupervised representa-
tion learning algorithms:

• ALL: We perform clustering on the original data with-
out representation learning.

• PCA: Principle Component Analysis [9] performs di-
mensionality reduction by seeking orthogonal projec-
tions of the data onto a low-dimensional linear space
such that the variance of the projected data is maxi-
mized. It is a popular and effective linear feature learn-
ing algorithm. We use it as a representative traditional
representation learning algorithm.

• DAE: Denoising autoencoder [26] is a variant of au-
toencoder that is to learn a feature representation that
is able to reconstruct the input data. Specifically, DAE
is trained to reconstruct a clean “repaired” input from
a corrupted version, which makes it able to extrac-
t more robust features. The encoded feature is used
to perform clustering. We use it as a representative
nonlinear feature learning algorithm.

• SDAE: Stacked denoising autoencoder [27] is a deep
network based on stacking layers of denoising autoen-
coders which are trained locally to denoise corrupted
versions of their inputs. Compared with the denoising
autoencoder, features learned in a purely unsupervised
fashion by SDAE are higher-level and could boost the
performance of clustering. We used a three-layer s-
tacked denoising autoencoder and the third layer fea-
ture representation is used for clustering in our exper-
iment. SDAE is used as a representative deep learning
algorithm for unsupervised representation learning.

• RBM: Restricted Boltzmann machine [3] is an undi-
rected graphical model which defines a probability dis-
tribution over a vector of observed and a vector of la-
tent variables. The learned latent variable is used for
clustering in our experiment. RBM can be seen as
pRBM without link information.

• RTM: Relational Topic Model [1] is a variant of Latent
Dirichlet Allocation (LDA), which takes attribute and
link information into consideration for learning topic
distributions. The learned topic distributions of docu-
ments are treated as the representations.

• TADE: Text-associated DeepWalk [32] incorporates both
attribute and link information into the matrix factor-
ization framework to learn representations of each n-
odes. It is state-of-the-art representation learning al-
gorithm for network with rich attributes.

• LRBM: LRBM [11] combines graph factorization and
conditional RBM using four-way tensor for linked data.
It is the closest work to ours and their differences will
be detailed in the related work section.

We use the “grid” search method to determine the values
of parameters of the unsupervised representation learning
algorithms. For the proposed model, we empirically set the
number of hidden units to be 500 for both datasets. We
will discuss the sensitivity of the number of hidden units in
Section 4.4. For each method, we first learn feature repre-
sentations and then use k-means clustering. Since the results
of k-means depend on the initialization, we repeat each ex-
periment 20 times and report the average performance. The
comparison results, i.e., accuracy and NMI performance in
Flickr and BlogCatalog, are shown in Table 2 and 3. From
the tables, we make the following observations:

• The performance of representation learning methods
outperforms ALL, i.e., using all features for clustering
without learning representations, which suggests that
representation learning can improve the performance.

• pRBM obtains better performance than RBM in both
datasets. For example, on BlogCatalog dataset, pRBM
gains 5.95% relative accuracy improvement and 8.17%
relative NMI improvement compared to RBM. The
performance improvement of pRBM compared with
RBM demonstrates that link information does provide
complementary information that could help learn bet-
ter representations.

• SDAE, RBM and DAE outperform PCA, which sug-
gests nonlinear features learned by SDAE, RBM and
DAE are more effective than linear features learned by
PCA. In addition, SDAE outperforms DAE and RBM.
SDAE is a deep network by stacking DAEs, which is
able to learn more effective high-lever representations.
However, pRBM outperforms SDAE, which is because
pRBM leverages both attribute and link information
while SDAE only learns representations from attribute
information.

• Though RTM, TADE and LRBM consider both at-
tribute and link information, pRBM obtains better
performance than them. We perform t-test on these



Table 2: Accuracy(%) comparison on BlogCatalog and Flickr.

Method ALL PCA DAE RBM SDAE RTM TADE LRBM pRBM
BlogCatalog 36.00 42.45 53.73 53.60 55.77 54.35 54.76 49.60 56.79

Flickr 53.82 58.00 54.81 59.71 59.74 55.38 58.87 56.71 61.95

Table 3: NMI comparison on BlogCatalog and Flickr

Method ALL PCA DAE RBM SDAE RTM TADE LRBM pRBM
BlogCatalog 0.2176 0.2787 0.4047 0.3829 0.4078 0.3802 0.3954 0.3547 0.4142

Flickr 0.4334 0.4601 0.4459 0.4646 0.4831 0.4472 0.4553 0.4481 0.5659

results, which suggests that the improvement is sig-
nificant. These results suggest that pRBM is more
effective in leveraging both information for learning
representations. In particular, LRBM, which utilizes
conditional RBM, doesn’t perform as well as RBM.
RBM shares parameter for each data instance, i.e., the
parameter have dimension W ∈ Rd×m, where d is the
number of latent dimensions and m is the number of
attributes, thus we can still learn good representations
from data with high dimensionality, i.e., m ≤ n, where
n is the data size. However, for LRBM, the parame-
ter is a four-way tensor that is much more complex.
Therefore, given the small and sparse characteristics
of the used datasets, LRBM doesn’t perform well.

From these findings, we can draw a positive answer to the
first question - pRBM is effective in learning representations
by exploiting link information.

4.3 Robustness of pRBM to Small Data
To answer the question of “how robust is pRBM when

datasets are small?”, we examine how the performance of
pRBM varies with changes to the size of data. To achieve
this goal, we randomly select x% of the data instances from
each class to construct smaller datasets from original dataset-
s. We vary x as {10, 20, 40, 60} in the paper and correspond-
ingly we can get four smaller datasets from each original
dataset. For example, we construct BC10, BC20, BC40
and BC60 from BlogCatalog by randomly selecting 10%,
20%, 40% and 60% of its data instances. Furthermore, we
compare each reduced dataset with the full dataset, named
BC100. Since we make similar observations on both Blog-
Catalog and Flickr, we only report results on BlogCatalog.
The statistics of these four datasets are shown in Table 4,
where “Ratio” in the table refers to feature dimension over
data size. Generally, it can also be used as a measure of how
large the dataset is. A large ratio of feature dimensions as
a function of the data size usually implies a small dataset.

Table 4: Statistics of the Reduced Datasets

BC10 BC20 BC40 BC60
Size 523 1042 2081 3121

Features 8189
Classes 6
Links 2,782 5,480 10,717 16,885

Avg Degree 5.32 5.26 5.15 5.41
Ratio 15.66 7.86 3.94 2.62

From the table, we can see that though the number of
instances is small, we still have a relatively large number of
links, which could be sufficient to train pRBM. Similarly, we
use accuracy and NMI clustering performance to assess the
quality of learned features and k-means is chosen as the basic
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Figure 6: The Impact of the Size of Data on the Performance
of Representation Learning Methods.

clustering algorithm. Since the results of k-means depend on
the initialization, we repeat each experiment 20 times and
report the average performance. The performance variances
w.r.t. the size of data are shown in Figures 6(a) and 6(b) for
accuracy and NMI, respectively. We also show the results of
PCA, RBM and TADE for comparison because PCA repre-
sents linear representation learning algorithm, RBM can be
seen as pRBM without link information and TADE is the
state-of-the-art method for linked data. From the figures, it
can be observed:

• In general, traditional feature learning algorithm PCA
is stable with the changes of the size of data; while
the performances of RBM, TADE and pRBM increase
with the increase of the data size. This suggests that
with larger dataset, RBM, TADE and pRBM can be
better trained.

• When data size is small such as BC10, we cannot ob-
serve performance improvement from RBM compared
to PCA; while pRBM and TADE always outperform
PCA, which supports that link information is useful
for representation learning when data size is small.

• In addition, pRBM always outperforms TADE. We al-
so perform t-test on these results, which suggests that
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the improvement is significant. This implies that pRB-
M is more effective in leveraging link data and pRBM
is also robust to small dataset.

4.4 Parameter Sensitivity
In this subsection, we investigate the impact of the dimen-

sionality of the latent representations, d, on the performance
of pRBM. We test d at {100, 200, 500, 800, 1000}. For each
dataset, we first apply pRBM to learn representations and
then perform clustering to access the quality of the repre-
sentations. We repeat each experiment 20 times and report
the average performance. Since we make similar observa-
tions on both BlogCatalog and Flickr, we report results on
BlogCatalog. The performance variances w.r.t d are shown
in Figures 7(a) and 7(b). From the figures, we can see that,
generally, as the dimensionality of the latent representation
increases, the performance first increase until it reaches a
certain point, then the performance decreases. For the two
datasets used, we find that a value of d between 300 to 700
works well, which eases parameter selection.

5. RELATED WORK
The related work includes the Persistent Contrastive Di-

vergence used for training pRBM and the variants of RBM.

5.1 Persistent Contrastive Divergence
As mentioned earlier, for training RBM and pRBM, cal-

culation of the negative gradient is intractable. Contrastive
divergence (CD) [6] is the first practical method for training
RBMs. Instead of running a Gibbs chain until equilibrium to
draw samples for negative gradient, contrastive divergence
approximates the negative gradient using samples obtained
by starting a Gibbs chain at a training vector and running it
for a few steps. Though it has been proven that the resulting
gradient estimate is not the gradient of any function [20], it
is extensively used for training energy-based models such as
RBMs, and the performance is good. However, CD learn-
ing has a problem that it provides biased estimates of the
gradient. The Persistent Contrastive Divergence (PCD) ad-
dressed this problem [25]. Instead of running a new chain
for each parameter, PCD maintains a single persistent chain.
The update at time t takes the state of Gibbs chain at time
t− 1, perform one round of Gibbs sampling and uses this s-
tate in the negative gradient estimate. PCD has been proven
to have good performance in practice. Thus, in this paper,
we use it for estimating the negative gradient of pRBM.

5.2 Variants of RBMs
RBM is very powerful for unsupervised representation learn-

ing, which has powered many applications such as collabora-
tive filtering [5, 18], document representation [7, 31] and so-

cial behavior prediction [16]. In [31], RBM is used for repre-
sentation learning of documents by considering the diversity.
In [17] Deep Boltzmann Machines (DBM) are proposed with
multiple hidden layers by stacking RBMs [17]. RBM is also
used for modeling networks. In [30], RBM and conditional
RBM are applied to the task of learning Drug-Target rela-
tions on multidimensional networks. In [12], an advanced
model named ctRBM is proposed to do link prediction on
dynamic data. However, they only use the link structure
without considering the attributes of the nodes. In [11], L-
RBM is proposed to learn feature representation from both
attributes and the link structure for node classification and
link prediction. LRBM combines graph factorization and
conditional RBM using a four-way tensor for linked data.
Instead of sharing weights for each data instance as RBM
and pRBM, LRBM models each data instance and the la-
tent representation to have different weights, thus, the num-
ber of parameters to learn, i.e., the four-way tensor, is very
large. It is difficult for LRBM to learn good representations
from linked data whose attributes are of high dimensional-
ity because high-dimensional data makes the tensor more
complex, which is difficult for LRBM to be well trained. In
contrast, the proposed framework pRBM is good at deal-
ing linked data with high-dimensional attributes because
pRBM has fewer parameters to learn, i.e., W ∈ Rd×m and
M ∈ Rd×d. Thus, pRBM can be well trained even when the
dimension of attributes is very large. The proposed frame-
work pRBM is trained on pairs of data instances extracted
from link information, which makes pRBM substantially d-
ifferent from existing variants of RBM. First, pRBM has a
distinct structure. It consists of two linked RBM, i.e.,, two
visible layers and two connected hidden layers, which can
model the interaction of paired nodes. Second, since the
number of possible pairs of nodes is much larger than that
of nodes, pRBM is very robust to small datasets.

6. CONCLUSION
In this paper, we propose a novel RBM for linked da-

ta called pRBM, which is able to leverage both attribute
and link information for representation learning. Specifical-
ly, pRBM is composed of a pair of RBMs so as to mod-
el nodes linked together. Gibbs sampling with mean-filed
inference is used to solve the challenge of efficient param-
eter estimation. Extensive experiments on two real-world
datasets demonstrate the effectiveness of the proposed algo-
rithm. Further experiments are conducted to demonstrated
the robustness of pRBM on small datasets.

There are several directions needing further investigation-
s. First, currently, we assume that links are non-negative.
Recently, signed networks where links can have both posi-
tive and negative links is attracting more and more attention
and have been proven to be helpful for representation learn-
ing of linked data [21]. Thus, we would like to extend the
proposed framework pRBM to deal with signed links. Sec-
ond, currently we choose Restricted Boltzmann Machines as
our basic models; hence, we will investigate novel algorithm-
s based on other representation learning algorithms such as
deep belief networks and stacked denoising autoencoders.
RBM can be used to pretrain and initialize weights of deep
neural networks. We would also investigate if the learned
weights of pRBM can be used as initializing weights for deep
neural networks.
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