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Neural networks have become very popular in recent years, because of the astonishing success of deep learn-
ing in various domains such as image and speech recognition. In many of these domains, specific architectures
of neural networks, such as convolutional networks, seem to fit the particular structure of the problem do-
main very well and can therefore perform in an astonishingly effective way. However, the success of neural
networks is not universal across all domains. Indeed, for learning problems without any special structure, or
in cases where the data are somewhat limited, neural networks are known not to perform well with respect
to traditional machine-learning methods such as random forests. In this article, we show that a carefully
designed neural network with random forest structure can have better generalization ability. In fact, this ar-
chitecture is more powerful than random forests, because the back-propagation algorithm reduces to a more
powerful and generalized way of constructing a decision tree. Furthermore, the approach is efficient to train
and requires a small constant factor of the number of training examples. This efficiency allows the training of
multiple neural networks to improve the generalization accuracy. Experimental results on real-world bench-
mark datasets demonstrate the effectiveness of the proposed enhancements for classification and regression.
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1 INTRODUCTION

Neural networks have become increasingly popular in recent years because of their tremendous
success in computer vision [12, 23, 40, 41], speech recognition [11, 14], and natural language pro-
cessing tasks [7, 25, 36]. In fact, deep-learning methods have regularly won many recent challenges
in these domains [14, 43]. This success is, in part, because the special structure of these domains
often allows the use of specialized neural network architectures [39] such as convolutional neural
networks [14], which take advantage of the aspects like spatial locality in images. Images, speech,
and natural language processing are rather specialized data domains in which the attributes
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exhibit very characteristic spatial/temporal behavior, which can be exploited by carefully designed
neural network architectures. Such characteristics are certainly not true for all data domains, and
in some cases a dataset may be drawn from an application with unknown characteristic behaviors.

In spite of the successes of neural networks in specific domains, this success has not been repli-
cated across all domains. In fact, methods like random forests [4, 16] regularly outperform neural
networks in arbitrary domains [8], especially when the underlying data sizes are small and no
domain-specific insight has been used to arrange the architecture of the underlying neural net-
work. This is because neural networks are highly prone to overfitting, and the use of a generic
layered architecture of the computation units (without domain-specific insights) can lead to poor
results. The performance of neural networks is often sensitive to the specific architectures used
to arrange the computational units. Although the convolutional neural network architecture is
known to work well for the image domain, it is hard to expect an analyst to know which neural
network architecture to use for a particular domain or for a specific dataset from a poorly studied
application domain.

In contrast, methods like decision forests are considered generalist methods in which one can
take an off-the-shelf package like caret [24] and often outperform [8] even the best of classifiers.
A recent study [8] evaluated 179 classifiers from 17 families on the entire UCI collection of datasets
and concluded that random forests were the best performing classifier among these families, and
in most cases, their performance was better than other classifiers in a statistically significant way:.
In fact, multiple third-party implementations of random forests were tested by this study and vir-
tually all implementations provided better performance than multiple implementations of other
classifiers; these results also suggest that the wins by the random forest method were not a re-
sult of the specific implementations of the method but are inherent to the merit of the approach.
Furthermore, the datasets in the UCI repository are drawn from a vast variety of domains and
are not specific to one narrow class of data such as images or speech. This also suggests that the
performance of random forests is quite robust irrespective of the data domain at hand.

Random forests and neural networks share important characteristics in common. Both have the
ability to model arbitrary decision boundaries, and it can be argued that in this respect, neural
networks are somewhat more powerful when a large amount of data is available. However, neural
networks are highly prone to overfitting, whereas random forests are extremely robust to over-
fitting because of their randomized ensemble approach. The overfitting of neural networks is an
artifact of the large number of parameters used to construct the model. Methods like convolutional
neural networks drastically reduce the number of parameters to be learned by using specific in-
sights about the data domain (e.g., images) at hand. This strongly suggests that the choice of a neu-
ral network architecture that drastically reduces the number of parameters with domain-specific
insights can help in improving accuracy.

Domain-specific insights are not the only way in which one can engineer the architecture of
a neural network to reduce the parameter footprint. In this article, we show that one can use
inspiration from successful classification methods like random forests to engineer the architecture
of the neural network. Furthermore, starting with this basic architecture, one can improve on the
basic random forest model by leveraging the inherent power in the neural network architecture
in a carefully controlled way. The reason is that models like random forests are also capable of
approximating arbitrary decision boundaries but with less overfitting on smaller datasets.

It is noteworthy that several methods have been proposed to simulate the output of a decision
tree (or random forest) algorithm on a specific dataset, once it has already been constructed [2, 33].
In other words, such an approach first constructs the decision tree (or random forests) on the
dataset up front and then tries to simulate this specific instantiation of the random forest with a
neural network. Therefore, the constructed random forest is itself an input to the algorithm. Such
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an approach defeats the purpose of a neural network in the first place, because it now has to work
with the straitjacket of a specific instantiation of the random forest. In other words, it is hard to
learn a model, which is much better than the base random forest model, even with modifications.

In this article, we propose a fundamentally different approach to design a basic architecture of
the neural network, so that it constructs a model with similar properties as a randomized decision
tree, although it does not simulate a specific random forest. A different way of looking at this
approach is that it constructs a neural network first, which has the property of being interpreted
as a randomized decision tree; therefore, the learning process of the neural network is performed
directly with back-propagation, and no specific instantiation of a random forest is used as in-
put. However, a mapping exists from an arbitrary random forest to such a neural network, and
a mapping back exists as well. Interestingly, such a mapping has also been shown in the case of
convolutional neural networks [22, 32], although the resulting random forests have a specialized
structure that is suited to the image domain [32]. This article will focus on designing a neural net-
work architecture that has random forest structure such that it has better classification/regression
ability and reduced overfitting. The main contributions of the article are listed as follows:

e We propose a novel architecture of decision-tree-like neural networks, which has similar
properties as a randomized decision tree, and an ensemble of such neural networks forms
the proposed framework called Neural Network with Random Forest Structure (NNRF);

e We design decision-making functions of the neural networks, which results in forward and
backward propagation with low time complexity and with reduced possibility of overfitting
for smaller datasets; and

e We conduct extensive experiments to demonstrate the effectiveness of the proposed frame-
work for classification and regression.

The remaining of the article are organized as follows. In Section 2, we introduce the random-
forest-inspired architecture. In Section 3, we give the detailed design of the proposed framework
NNREF for classification followed by training algorithm and time complexity analysis. In Section 4,
we extend NNRF for regression. In Section 5, we conduct experiments to demonstrate the effec-
tiveness of NNRF for classification and regression and analyze the parameter sensitivity on NNRF.
In Section 6, we briefly review related works. In Section 7, we conclude with future work.

2 A RANDOM-FOREST-INSPIRED ARCHITECTURE

In this section, we introduce the basic architecture of the neural network used for the learning
process. Throughout this article, matrices are written as bold capital letters such as M, W;;, and
vectors are denoted as bold lowercase letters such as p and p;;. M(i, j) denotes the (i, j)th entry of
M while M(i, :) and M(:, j) denotes the ith row and jth column, respectively. Similarly, p(i) denotes
the ith elements of p.

In conventional neural networks, the nodes in the input layer are cleanly separated from the
hidden layer. However, in this case, we will propose a neural network in which a clear separation
does not exist between the nodes of the input and hidden layers. The internal nodes are not com-
pletely hidden, because they are allowed to receive inputs from some of the features. Rather, the
neural network is designed with a hierarchical architecture, much like a decision tree. Further-
more, just as a random forest contains multiple independent decision trees, our approach will use
multiple independent neural networks, each of which has a randomized architecture based on the
randomized choice of the inputs in the “hidden” layers. As we will see later, each neural network
can be trained extremely efficiently, which is what makes this approach extremely appealing.

The total number of layers in the neural network is denoted by d, which also represents the
height of each decision tree in the random forest that the neural network is simulating. Thus, one
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Fig. 1. An illustration of the decision-tree-structured neural network architecture for classification with

d=3.

input parameter to the algorithm is the number of layers d of the neural network. The neural
network is structured exactly like a binary decision tree, with each node simulating a split and
having two outputs out of which exactly one is active. These two outputs feed into a unique node of
the next layer of the neural network. Therefore, the number of nodes always doubles from one layer
to the next. Thus, the total number of nodes in the neural network is given by 1 + 2! + - -+ + 2471,
which is equal to 2¢ — 1. In addition, there is a special output node that takes as its input the 247!
nodes in the final layer and combines them to provide a single prediction of the class label.

Although the number of nodes might seem large, we will see that the required value of d is often
quite modest in real settings, because the neural network nodes are able to simulate more powerful
splits. Furthermore, because of the tree structure of the neural network, the number of parameters
to be learned is quite modest compared to the number of nodes. This is an important factor in
avoiding overfitting. Another parameter input to the algorithm is r, which is the number of features
that are randomly selected to perform the split at each node. In a traditional random forest, the bag
of features to be used for a split at each node is randomly selected up front. Similarly, while setting
up the architecture of each neural network, each node in the tree has a bag of features that are
randomly selected and fixed up front. Thus, the architecture of the neural network is inherently
randomized, based on the input features that are selected for each node. As we will see later, this
property is particularly useful in an ensemble setting.

The overall architecture of a three-layer neural network for classification is illustrated in
Figure 1. For ease of explanation, we name the nodes as N;;, which means the jth node in the
ith layer. A parent node N;; is connected to two child nodes N;,; »/_; and N, »i. For example, as
shown in the figure, Ny, is the second node in layer 2 and is connected to two child nodes N33 and
N34. The network contains three types of nodes:

e The nodes in the first layer are input nodes. These nodes only have as input r randomly
chosen features from the input data. The node has two outputs, one of which is always 0
(i.e., inactive).

e The nodes in the middle layer are somewhat unconventional from the perspective of most
neural networks, in that they are hybrid between the hidden and in the input layer. They
receive a single input from an ancestor node (in the treelike neural structure) and also inputs
from r randomly chosen features (which were selected up front). Therefore, the node can
be viewed as a hybrid node belonging to both the hidden layer and the input layer, since
some of its inputs are visible and one input is not. Another important property of this node
is that if the hidden input is 0, then all outputs of this node are 0. This is a crucial property
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to ensure that only one path is activated by a given training instance in the treelike neural
network structure.

e The single output node combines the outputs of all the nodes to create a final prediction.
However, since only one path in the tree is activated at a given time (i.e., only one of its
incoming outputs is nonzero), the output node only uses the one input in practice.

Like a decision tree, only one path is activated in the neural network at a given time. This par-
ticularly important, because it means that the back-propagation algorithm only needs to update the
weights of the nodes along this path. This is a crucial property, because it means that one can ef-
ficiently perform the updates for a single path. Therefore, the training phase for a single neural
network is expected to work extremely efficiently. However, like any random forest, multiple such
“miniature” neural networks are used for prediction.

The overall prediction step uses an ensemble approach like a random forest. Each test instance
is predicted with the different neural networks that have been independently trained. These pre-
dictions are then averaged to provide the final result.

A number of key properties of this type of neural network can be observed:

e Like a decision tree, only one path in the neural network is activated by a given instance.
This makes the back-propagation steps extremely efficient.

e The neural network is potentially more powerful, because the function computed at each
internal node can be more powerful than a univariate split.

e The back-propagation algorithm is more powerful than the typical training process of a de-
cision tree, which is very myopic at a given node. The back-propagation effectively adjusts
the split criterion all the way from the leaf to the root, which results in a more informed
“split” criterion with a deeper understanding of the training data.

3 PROPOSED NNRF FOR CLASSIFICATION

The previous section gave the overall architecture of the neural network; in this section, we give
the inner working of the neural network for classification. We will extend the neural network for
regression in Section 4. Next, we first introduce the inner working of decision making in each
type of node, which guarantees that only one path will be activated. We then introduce how to
efficiently perform back-propagation followed by time and space complexity.

3.1 Details of the Proposed Neural Network

Letf;; € R™! be the input features to node Njj, which is fixed up front. Then, given fi; and Ny,
we can calculate the output py; as

P11 = g(Wiifir +byy), (1)

where Wy, € R¥" and by; € R¥*! are the weights and the bias of Ny;. g(-) is the activation function
such as tanh and Leaky ReLu. Since Leaky ReLu has the advantage of alleviating the gradient-
vanishing problem in deep nets and has been proven to outperform tanh [13], in this work, we use
Leaky ReLu. Then, g(x) and the derivative of g(x) w.r.t x are given as

x, ifx>0 o1, ifx>0
g(x)‘{o.Zx,ifx<0 g(x)‘{o.z,ifx<o' @

Since only one path will be activated, we need to decide which path to take based on the values of
p. Specifically, we define the signal vector s;; € R**! as

s11(1) = I(p11(1), P11(2)),  s11(2) = L(p11(2), p11(1)), (3)
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where I(a, b) is an indicator function that if a > b, then I(a, b) = 1; otherwise, I(a, b) = 0. Thus,
only one of the elements in s;; will be 1 and s;1(k) = 1,k = 1,2 means that N, ; will be activated.
s11(1) and pq;(1) will go to node Ny, i.e., first node in layer 2; and s1;(2) and s11(2) will go to
Ny, ie., second in layer 2, which are shown in Figure 1, i.e., the black arrow with sy (k) denote
the signal s;;(k) and the green line next to it is p1;(k), k = 1, 2. Then outputs of Ny; and N, are

calculated as
fy; . .
W [ J .]+b ) Fon(j) == 1
poj = {g( 2j p () 11 if 511 (j) )

(4)
0 € R otherwise
I(p2j(1),p2i(2))] . .
fs ==1
sy = 1 LIp (2 poy(1)) ] 7 11()) ’ 5)
0 € R&X1 otherwise

where j = 1, 2. The idea behind Equation (4) and Equation (5) is that if the input signal s1; (j),j = 1,2
is 0, then the path to node N, ; is inactive. We just simply set the outputs of N ; as 0 € R*!.
However, if 5,1 (j) is 1, then we use both p1;(j) and the input feature f,; to calculate p,; and s,;.
This process guarantees that only one path will be activated in next layer. For example, if s11(1) is
1, then sy, will be 0. And sy; will contain only one 1, meaning that only one node will be activated
in layer 3. With the same procedure, given s;; and p;;, the outputs of layer i + 1, i = 2,...,d are
given as

f; .
Q(Wi+1,t[ I ] +bi+1,t) if s;;(k) == 1

Pi+1,t = Pij(k)
0 € R, otherwise
I(piv1,¢(1), pir1 t(z))] .
’ ’ if s;;(k) ==1
Sit1,r = [H(Pi+1,t(2),Pi+1,t(1)) 1 (k) , (6)
0 € R?X1, otherwise

where t = 2(j — 1) + k and k = 1, 2. It is easy to verify that N, ; is connected by p;;(k). W41, €
R¥>("+1) s the weights of node Nj1 s, and b;1; € R>! is the corresponding bias. Equation (6)
shows that if s;; = 0, then none of its children are activated. Let d be the depth of the neural net-
work. Then the outputs pg 1, . .., Py »a-1 are used as input to the final aggregator. The final aggre-

gator first aggregate all the inputs as one vector. For simplicity, we use p = [pg s pg ) 1t e

R2*1 to denote the aggregated vector. Then, a softmax function is applied,
___exp(W(e,:)p +b(c))
q(c) - C s
D=1 exp(W(k, :)p + b(k))

where W € RE*% is the weights of the softmax, b € RS> is the bias terms, and C is number of
classes. q gives the probability distribution that the input data belongs to the C classes. For exam-
ple, q(c) means the probability that the input data sample belongs to class c. With the estimated
distribution, the cost function is defined using cross-entropy between q and the ground-truth dis-
tribution as follows:

™)

C
L(y,q) == Y y(c) logq(c), (®)
c=1

where y € RE*1 is the one-hot coding of ground-truth label, i.e., y(k) is 1 if the label is k; other-
wise, it is 0. By minimizing the cross-entropy, we want the estimated distribution q to be as close
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Fig. 2. An example of reduced neural network.

as possible to the ground-truth distribution y and thus we can train a good neural network for pre-
diction. Given training data matrix X € R™™ and one-hot coding label matrix Y € R"*C, where n
is number of data samples and m is number of features, the objective function is written as

mein % ;(L(Y(l, ), T (X(L,:)) + aR;(0)), 9)

where 0 = {W,b,W;j,b;j};—1 _nj=1,.. .21 is the set of parameters to be learned in the tree-
structured neural network 7~ and 7 (X(/,:)) is the estimated class distribution of the input data
X(1,:). R;(0) is a regularizer associated with X(/, :) to avoid over-fitting, which is defined as

i-1

d 2 2
Ri(0) = IWIE + 115 + D" " > si5(k) (W5, )15 + by () 117) - (10)

i=1 j=1 k=1

The reason that we design the regularizer to be instance specific is that for every forward compu-
tation, each instance X(1, :) will result in one active path, and only those parameters in the active
path will be updated using back-propagation (more details in Section 3.2). Therefore, an instance
specific regularizer is more appropriate. « is a scalar to control the contribution of the regularizer.

3.2 Efficient Backpropagation

We use back-propagation to train the tree-structured neural network. Let us focus on the cost
function in Equation (8) to show how to perform efficient back-propagation as extension to Equa-
tion (9) is simple. For simplicity of notation, let us denote — Zle y(c)logq(c) as .

Consider that if we take derivative of J w.r.t to W;;. The term that involves W;; is through p;;.
However, if Nj; is inactive, i.e., if the input signal to Nj; is 0, then p;; is set to 0 and is independent
with W;;. In this case, the derivative of J w.r.t W;; is 0 and there is no need to update W;;. Thus,
we can safely remove inactive nodes from the neural network, which reduces the tree-structured
neural network to a small neural network. Figure 2 gives an example of the reduced network of
the full network in Figure 1 assuming that the active path is N;; — Nz; — Ns,. For simplicity of
explanation, we rewrite the weights and bias in the ith layer of the simplified neural network as w;
and b;, the features of each node as f;, and the link connecting the i — 1th layer to the ith layer as p;.
For example, as shown in Figure 2, w; = Wy(1,:), wo = W31(2), and W5 = W3y, £ = £11, £, = 51,
f3 = f32,p1 = p11(1), and p, = p21(2). Then performing back-propagation on the simplified network
is very efficient as it only involves a small number of parameters and the network is narrow. The de-
tails of the derivative are given as follows. Let u(c) = W(c, :)p + b(c), we define the “error” §(c) as

0T __ y(c)q(c) = y(c), c¢=1,...,C. (11)

) = Fui =
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Then, we have

0T . 1 0T
W) " 0P gp =% (12)
Similarly, let ug = Wy [ PS: ] + by, then fork = 1,2,
0 ,
30(K) = Gty = 25 SOWIe ind(path)g (w8 "
N T 0
W =6a(k)[f;, Pa-1]s —8bd(k) =44(k),

where ind(py(k)) is the index of the element in W(c, :) that multiplied with p; (k). With the same

idea,fori=d—1,...,1,letu,~=wi[ fi

Pi ] + b;, then we can get

PN {Zi=1 Sa(k)Wa(k,r + 1)g’(w;), i =d - 1

Y ou; Siniwimi(r+1)g’(u;), i=d—-2,...,1
0 Silff, pial,i=d—-1,...,2
9J _ [71' P il i (14)
ow; 51fl,l=l
N} :
a—bi=5i, i=d-1,...,1.

3.3 Training Algorithm of NNRF for Classification

The algorithm to train a d-layer tree-structured neural network for classification is shown in
Algorithm 1. We first draw a bootstrap sample in Line 1. From Line 2 to Line 5, we draw the input
feature for each node of the neural network. From Line 8 to Line 9, we update the parameters using
back-propagation.

Following the same idea as random forest, we aggregate N independently trained neural net-
works for classification, which we name as NNRF. The algorithm of NNRF is shown in Algorithm 2.
For an input x, the predicted class distribution is by aggregating the predicted class distribution
from the N neural networks,

4o = 2 7). (15)

Then the label is predicted as the class with the highest probability, i.e, y = arg max, qq.

3.4 Time Complexity

Since there are only one active path for each input data sample, the cost of performing forward
propagation up to depth d using Equation (6) is O(rd). Since p only has two nonnegative elements,
the cost of softmax in Equation (7) to get q is O(C). Therefore, the cost of forward propagation
is O(rd + C) for each data sample in each tree. Similarly, the cost of backward propagation using
Equation (13) and Equation (14) is also O(C + rd). Thus, the total cost of training N tree-structured
neural networks with depth d is O(¢(C + rd)nN), where t is number of epochs for training each
neural network. Following the common way of setting r in random forest, r is usually chosen
as \m [10], where m is the number of features. Effects of different choices of r can be found in
Section 5.5.2. Thus, the total cost is approximately O(t(C + Vmd)nN), which is modest, and thus
the training is efficient.
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ALGORITHM 1: Decision-Tree-Structured Neural Network
Require: X € R™™ y e R™! d r a
Ensure: d-layer tree-structured neural network

1: Draw a bootstrap sample X* of size N from X
2. fori=1:ddo
3 forj=1:2"1do
4 Construct f;; by selecting r features at random from the m features of X*
5 end for
6: end for
7
8
9

: repeat
Forward propagation to get cost
Backward propagation to update parameters
10: until convergence
11: return Tree Structured Neural Network

ALGORITHM 2: NNRF
Require: X € R™™ y e R™! d N,r,a
Ensure: N d-layer tree-structured neural networks
1: forb=1:Ndo
2: Construct and Learn Tree Structured Neural Network 7; with Algorithm 1
3. end for
4: return {7;}

N
i=1

3.5 Number of Parameters

The main parameters in a decision-tree-like neural network are W;; € R2X(r+1) and b; € RZX1,
i=2,...,dj=1,...,2", W, e R®" and W € RO?"_ Thus, the number of parameters is ap-
proximately O(2¢(2r + C)). We usually set d as llog, C] + 1, because this ensures that 2¢ is no
less than C. In other words, p has dimension of at least C, which is large enough for classification
with C classes. Considering the fact that d is usually set as [log, C] + 1 and r is usually chosen
as y/m, the space complexity is approximately O((+/m + C) - 2€), which is modest and thus can be
well trained even when the data size is small.

4 PROPOSED NNRF FOR REGRESSION

In this section, we extend NNRF for regression. We will first introduce how to extend the decision-
tree-structured neural network for regression and ensemble of such neural networks result in the
proposed NNREF for regression.

4.1 Tree-Structured Neural Network for Regression

Figure 3 gives an illustration of decision-tree-structured neural network for regression. It has the
same structure as tree-structured neural network for classification as shown in Figure 1. The fea-
ture sampling and decision-making functions used in classification are also adopted for regression.
The only differences are the last layer and the loss function. In tree-structured neural network for
classification, we aggregate all the features to form p, which is used as input to a softmax function
to generate empirical class distributions for predicting the class label. For regression, instead of
using the softmax to predict the class label, we use linear regression to predict the numerical target
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Fig. 3. An Illustration of the decision-tree-structured neural network architecture for regression with d = 3.

value 7 as

j=wlp+b, (16)
where w € R?*1 s the weights and b is the bias term. The loss function is defined as the Euclidean
distance of the predicted value from the ground-truth value

Z(y.9) = (y - 9", (17)
where y is the target value. By minimizing the Euclidean distance, we want the predicted value
7 to be as close as possible to the ground-truth target value y. Given the training data X € R™™
and the target value vector y € R"™!, where n is number of data samples, the objective function
for regression is written as

mgin % Z(Z(y(l), T (X(1,2))) + aR;(0)), (18)
=1

where 0 = {w,b,W;j,b;j};=1 _ pnj=1,..,2i-1 is the set of parameters to be learned in the tree-
structured neural network 7°, and 7 (X(l,:)) is the estimated value of the input data X(l,:). «
is a scalar. R;(0) is the regularizer to avoid over-fitting, which is defined as
d 27! 2
Ri(0) = Wl + 5%+ > > > si(k) (IWis (K, )13 + by (k)11 - (19)
i=1 j=1 k=1
Similarly, we use back-propagation to train the decision-tree-structured neural network for re-
gression. As decision-tree-structured neural network for regression and that for classification have
similar structure except the last layer and the loss function, the derivation of back-propagation
for regression is also very similar to that for classification; the detail of the latter is given in
Section 3.2. We thus omit the detailed derivation for regression here. The algorithm to train a d-
layer tree-structured neural network for regression is the same as that for training a tree-structured
neural network for classification, which is given in Algorithm 1.

4.2 Algorithm of NNRF for Regression

We use Algorithm 2 to train N tree-structured neural networks for regression. Following the same
idea as random forest for regression, we aggregate the predicted values of the N independently
trained neural networks. Specifically, for an input x, the predicted numeric value is by aggregating
the predicted value from the N neural networks as
N

7i(x). (20)

i=1

1
y:

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 6, Article 69. Publication date: October 2018.



Random-Forest-Inspired Neural Networks 69:11

As there is only one path activated for forward and backward propagation, the time complexity
of NNREF for regression is O (trdnN), where t is number of epochs for training each neural network.
The number of parameters of NNRF for regression is O(2¢*1r), where d is usually chosen within
3 and 6.

5 EXPERIMENTAL RESULTS

In this section, we conduct experiments to evaluate the effectiveness of the proposed framework
NNREF for classification and regression. We begin by introducing datasets and the experimental
setting, and then we compare NNRF with state-of-the-art classifiers to demonstrate the effective-
ness of NNRF for classification. We also compare NNRF with classical and representative regres-
sion methods to show the effectiveness of NNRF for regression. Further experiments are con-
ducted to investigate the effects of the hyper-parameters on NNRF for classification and regression,
respectively.

5.1 Datasets and Experimental Settings

The classification experiments are conducted on 13 publicly available benchmark datasets, which
includes 8 UCI! datasets, i.e., forest type mapping (ForestType), speech record of 26 alphabets
(Isolet), sonar signals of mines vs. rocks (Sonar), chemical analysis of wines (Wine), Wisconsin
diagnostic breast cancer (wdbc), Vehicle Silhouettes (Vehicle), hill valley (Valley) and sensorless
drive diagnosis (DriveDiagnosis), three image datasets, i.e., images of 20 objects (COIL-20)?, images
of handwritten digits (USPS),® images of faces (MSRA),* one bioinfomatics dataset (Bioinformat-
ics) [19], and one hand movement dataset (Movement)®. We include datasets of different domains
and different format so as to give a comprehensive understanding of how NNRF performs with
datasets of various domains and format. The statistics of the datasets used in the experiments
are summarized in Table 1. From the table, we can see that these datasets are small datasets with
different number of classes. Deep-learning algorithms with large amounts of parameters may not
work well on these datasets.

The regression experiments are conducted on seven publicly available benchmark datasets,
which includes five UCI® datasets, i.e., community crime (Crime), Acetone, blog feedback (Blog),
Wisconsin prognostic breast cancer (Wpbc) and relative location of CT slices (CTSlices), one cpu
activity dataset (CompActiv),” and one structure activity dataset (Triazines).® Crime is to predict
the community crime ratio. Acetone is a subset of the UCI Gas Sensor Array Drift Dataset. The
UCI Gas Sensor Array Drift Dataset is to predict concentration level of six chemical compounds
at which the sensors were exposed. We select the subset that predict concentration level of Ace-
tone. Blog is to predict the number of comments the blog will get in the next 24 hours. Wpbc is
to predict the time it takes to recur. CTSlices is to estimate the relative location of the CT slice
on the axial axis of the human body. ComActiv is to predict cpu activity level from system per-
formance measurements. And Triazines is to predict the inhibition of dihydrofolate reductase by
pyrimidines. The statistics of the datasets used in the experiments for regression are summarized
in Table 2. The last column of the Table 2 gives the range of the target value, i.e., the minimal and

1All eight UCI datasets for classification are available at https://archive.ics.uci.edu/ml/datasets.html.
Zhttp://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
Shttp://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/multiclass.html#usps.
4http://www.escience.cn/system/file?fileld=82035.
Shttp://sci2s.ugr.es/keel/dataset.php?cod=165#sub2.

S All five UCI datasets for regression are available at https://archive.ics.uci.edu/ml/datasets.html.
"http://www.cs.toronto.edu/delve/data/datasets.html.
8https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/regression.html.
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Table 1. Statistics of the Datasets for Classification

Dataset Number of Samples | Number of Feature | Number of Class
COIL20 1,440 1,024 20
ForestType 523 26 4
Isolet 7,797 617 26
Bioinformatics 391 20 3
Sonar 208 60 2
USPS 9,298 256 10
Wine 178 13 3
Movement 360 90 15
MSRA 1,799 256 12
wdbc 569 30 2
Vehicle 946 18 4
Valley 1,212 100 2
DriveDiagnosis 58,509 48 11
Table 2. Statistics of the Datasets for Regression
Dataset Number of Samples | Number of Feature | Target Range
Crime 1,094 127 [0.0, 1.0]
Acetone 1,558 128 [12.0, 500.0]
wpbc 194 32 [1.0, 125.0]
Blog 3,000 281 [0.0, 796.0]
Triazines 186 60 [0.1,0.9]
CompActiv 8,192 26 [0.0, 99.0]
CTSlices 53,500 385 [1.74, 97.49]

maximal value for the target to be predicted. This is included to give a sense about the scale of
RMSE and MAE for each dataset. Similarly, from the table, we can see that these datasets are small
datasets from different domains, and deep-learning algorithms usually cannot be well trained for
such small datasets.

To evaluate the classification ability of the proposed framework NNRF, two widely used classi-
fication evaluation metrics, i.e., Micro-F1 and Macro-F1, are adopted. The larger the Micro-F1 and
Macro-F1 scores are, the better the classifier is.

To evaluate the regression performance of the proposed framework NNRF, we use root mean
square (RMSE) and mean absolute value (MAE), which are classical evaluation metrics for measur-
ing the quality of regression. The smaller RMSE and MAE are, the closer the predicted numerical
value is to the ground-truth value.

5.2 Classification Performance Comparison
We compare the proposed framework NNRF with other classical and state-of-the-art classifiers to
evaluate the classification ability of NNRF. The details of these classifiers are listed as follows:

e LR: Logistic regression [18], also known as maximum entropy classifier, is a popular gener-
alized linear regression model used for classification. We use the implementation by scikit-
learn [28].
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e SVM: Support vector machine [5] is a classical and popular classifier that tries to find the
best hyperplane that represents the largest margin between classes. We use the well-known
libsvm [5] with rbf kernel for classification.

e NN: This is a one hidden-layer feed forward neural network [3] with softmax as the output
layer and cross-entropy as the classifier. We use the implementation of Keras [6], which is
a popular deep-learning and neural networks toolbox.

e DBN: Deep belief network [15] is a popular deep generative neural network that is com-
posed of multiple hidden layers with the top layer as restricted Boltzmann machine. It’s able
to extract hierarchical features. Following the common way of using DBN for classification,
a softmax classifier is added on top of DBN and the weights of DBN are fine-tuned together
with the softmax classifier.

e DNN: This is a four-layer deep neural network. We use ReLu as activation function, as
it can alleviate the gradient vanishing problems in deep neural networks [13]. We adopt
ADAM [21] for stochastic optimization. The number of hidden nodes in each layer are tuned
via cross validation.

e RF: Random forest [4] is a classical and popular ensemble-based method that aggregate
independent decision trees for classification. It is one of the most powerful classifiers [8].
We use the implementation by scikit-learn.

e gcForest: gcForest [45] stacks a set of RFs as stacking hidden layers in NNs. The outputs of
several RFs in one layer is concatenated with the original features and then are used as the
input to the next level RFs. It is a proposed as an alternative of deep nets for classification.
We use the implementation from the author.’

For each classifier, there are some parameters to be set. In the experiment, we use 10-fold cross
validation on the training data to set the parameters. Note that no test data are involved in the
parameter tuning. Specifically, for NNRF, we empirically setr = [{m 1,d = [log, C] + 1, N = 150,
and a = 0.00005. The sensitivity of parameters r,d, and N on the classification performance of
NNRF will be analyzed in detail in Section 5.5. The experiments are conducted using 5-fold cross
validation and the average performance with standard deviation in terms of Macro-F1 and Micro-
F1 are reported in Tables 3 and 4, respectively. From the two tables, we make the following
observations:

e Generally, the seven compared classifiers, i.e., LR, SVM, NN, DBN, DNN, RF, and gcFor-
est have similar performances in terms of Macro-F1 and Micro-F1 on most of the datasets
used. They all performs well on most of the datasets used. Observation in Reference [8]
that generally RF achieves the best performance on the majority of the datasets among 179
classifiers.

e The performance of NN and DNN are very close. On datasets such as ForestType, Isolet,
Sonar, and Movement, NN is slightly better than DNN, which suggests that going deeper
does not necessary gives better results on small datasets.

e NNRF outperforms the compared classifiers on the majority of the datasets. Although NNRF
also has a tree structure like RF, it exploits a more powerful neural network in each node
to make decisions, i.e., linear combination of features followed by a non-linear function.
Furthermore, the back-propagation algorithm receives feedback from the leaf nodes, and
therefore, it inherently constructs the “splits” at the internal nodes with a deeper under-
standing of the training data. Thus, it is able to make better decisions than RF and gives
better performance.

“https://github.com/kingfengji/gcForest.
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Table 3. Classification Results(Macro-F1%z+std) of Different Classifiers on Different Datasets

Dataset LR SVM NN DBN DNN RF gcForest NNRF
COIL20 96.07£1.09 | 97.97£1.25 | 98.11£1.07 | 99.01£0.42 | 99.39+0.32 | 99.93+0.13 | 99.66+0.16 | 99.93+0.12
ForestType 88.24+3.11 | 88.81+2.07 | 89.51+2.49 | 89.05+3.12 | 88.81+3.91 | 90.95+£1.89 | 87.36+2.79 | 91.56+2.01
Isolet 95.49+0.51 | 95.68+0.48 | 95.65+0.72 | 95.23+0.52 | 95.37%0.50 | 94.34+0.39 | 95.38+0.56 | 95.72+0.51
Bioinfomatics | 78.89+6.74 | 81.32+5.47 | 73.57+6.94 | 74.63+4.98 | 76.30+4.45 | 70.73+4.47 | 65.63+4.97 | 82.98+4.94
Sonar 75.96+£7.04 | 80.78+3.24 | 82.74+4.51 | 80.35+£4.67 | 82.21+£5.25 | 84.92+6.00 | 90.65+5.42 | 86.12+4.98
USPS 93.45+0.37 | 94.86%0.27 | 94.21+0.43 | 93.78+0.39 | 94.90+0.20 | 95.10+0.34 | 95.52+0.31 | 95.60+0.36
Wine 59.61+£3.96 | 70.82+3.67 | 68.11+5.62 | 67.88+4.99 | 68.32+4.83 | 66.87+2.44 | 70.27+3.69 | 71.10+3.19
Movement 68.94+2.91 | 76.41+4.16 | 82.10+3.81 | 80.64+4.08 | 81.54£3.96 | 82.12+2.74 | 80.68+3.12 | 83.02+2.96
MSRA 99.71+£0.23 | 1000.00 100+0.00 | 99.92+0.05 | 99.95+0.10 | 99.47+0.19 100+0.00 100+0.00
Wdbc 97.68+1.23 | 97.14+1.81 | 98.30+1.52 | 97.64+1.98 | 97.95+1.36 | 98.67+2.03 | 98.12+0.82 | 99.9+0.09
Vehicle 80.27+3.12 | 76.99+2.78 | 80.54+2.66 | 81.01£3.87 | 81.57£3.60 | 73.92+2.94 | 81.39+3.18 | 85.12+2.87
Valley 62.59+2.51 | 59.24+1.45 | 61.23+2.25 | 62.89+2.16 | 61.43+2.54 | 64.23+1.94 | 68.35+2.32 | 68.90+1.98
DriveDiagnosis | 75.22+0.54 | 97.00+0.05 [ 99.07+0.10 | 99.09+0.14 | 99.13+0.15 | 99.65+£0.04 | 99.67+0.04 | 99.71+0.04

Table 4. Classification Results(Micro-F1%=std) of Different Classifiers on Different Datasets

Dataset LR SVM NN DBN DNN RF gcForest NNRF
COIL20 96.13£1.04 | 97.95+1.23 | 98.18+1.10 | 99.00+0.41 | 99.39+0.32 | 99.93+0.13 | 99.66+0.16 | 99.94+0.14
ForestType 89.62+2.15 | 89.62+1.94 | 90.57+1.83 | 89.99+2.98 | 89.81+3.39 | 91.51+1.85 | 88.68+2.68 | 92.45+1.90
Isolet 95.51£0.51 | 95.70+0.49 | 95.66+0.56 | 95.22+0.61 | 95.38+0.50 | 94.35+0.39 | 95.39+0.56 | 95.79+0.43
Bioinfomatics | 82.50+4.11 | 85.01£2.92 | 80.09+4.13 | 80.79+3.27 | 82.25+2.42 | 78.75+3.15 | 77.50+3.39 | 86.25+3.02
Sonar 75.96+7.04 | 80.78+3.24 | 82.74+4.51 | 80.32+4.59 | 82.32+4.30 | 84.92+6.00 | 90.69+5.43 | 86.12+4.98
USPS 94.11£0.33 | 95.17+0.25 | 94.89+0.31 | 93.89+0.40 | 95.10+0.19 | 95.62+0.32 | 96.06+0.30 | 96.01+0.33
Wine 70.35+1.32 | 70.814+3.15 | 69.19£5.29 | 67.92+4.67 | 69.38+3.67 | 69.19+1.32 | 71.12+2.87 | 71.38+2.78
Movement 70.13£1.81 | 77.33+3.92 | 82.67+3.61 | 80.78+3.74 | 82.13+3.22 | 82.68+2.43 | 81.33+2.96 | 84.01+2.68
MSRA 99.734£0.21 | 100+0.00 | 100£0.00 | 99.93+0.05 | 99.94+0.10 | 99.45+0.22 | 100+0.00 100+0.00
Wdbc 97.68+1.23 | 97.14+1.81 | 98.30+1.52 | 97.64+1.98 | 98.09+1.28 | 98.67+2.03 | 98.26+0.80 | 99.9+0.09
Vehicle 80.35+3.22 | 77.78+2.78 | 80.63+2.85 | 81.07+4.02 | 81.52+3.44 | 73.92+3.00 | 81.28+3.07 | 85.38+2.91
Valley 66.53£1.97 | 64.21+0.72 | 62.79+2.11 | 64.06+1.97 | 63.27+2.16 | 64.31+1.94 | 70.61+2.08 | 71.07+1.82

DriveDiagnosis | 75.40+0.66 | 97.00+0.06 | 99.08+0.09 | 99.09+0.14 | 99.14+0.14 | 99.65+0.04 | 99.67+0.04 | 99.71+0.04

In summary, the proposed framework can achieve better classification result by combining the
power from random forest structures and power from activation functions of neural networks.

Running time comparison: We report the running time of NNRF and the compared methods.
Since the running time of NNRF and RF are dependent on the number of trees, for fair comparison,
we choose the number of trees of both NNRF and RF to be 150. It is noteworthy that trees of NNRF
can be parallelly trained. Thus, the running time of each decision-tree-structured neural network
(NNDT) of NNRF are more important. Therefore, we also report the average running time of NNDT.
The results on Valley and Isolet are shown in Figure 4. From the figure, we can observe: Though
the running time of NNRF is larger DNN, it is noteworthy that the average running time of decision-
tree-structured neural network in NNRF is much smaller than DNN. Thus, if we run these 150 trees in
parallel on a machine with many CPU cores, the running time of NNRF can be significantly reduced.
In addition, NNRF belongs to neural networks, which suggests that the training time can be further
reduced if we run NNRF on GPUs.
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Fig. 4. Running time comparison for classification on Valley and Isolet.

5.3 Regression Performance Comparison

To evaluate the regression ability of NNRF, we compare the proposed framework with other clas-
sical and state-of-the-art regression models. The details of these regression methods are listed as
follows:

e RR:Ridge regression [17] is a linear regression model whose loss function is the linear least
squares function, and the regularization is given by the 12-norm. It is a popular method used
for regression. We use the implementation by scikit-learn.

e SVR: Support vector regression [34] is an extension of SVM proposed for regression. We
use the implementation of libsvm.

e NN: This is a one hidden-layer feedforward neural network [3] with linear regression as
the output layer and Euclidean distance as loss function.

e DBN: This is a three layer deep belief network. We add a linear regression on top of DBN
for regression during fine-tuning.

e DNN: This is a four layer deep neural network. Instead of using softmax, we use a linear
regressor for regression task.

e RF: Random forest [4] is a classical and popular ensemble-based method that aggregate
independent decision trees for regression, where the loss function is the Euclidean distance
between the predicted values and the target value. We use the implementation by scikit-
learn.

e NRF: Neural random forest [2] first constructs random forests on the dataset up front and
then try to simulate this specific instantiatiation of the RF with a neural network. It is pro-
posed for regression task. We use the implementation form the authors.!’

For each regressor, there are some parameters to be set. In the experiment, we adopt 10-fold
cross validation on the training data to tune the parameters. Note that no test data are involved
in the parameter tuning. Specifically, for NNRF, we empirically set r = [v/m 1,d = 3, N = 100, and
a = 0.00005. The sensitivity of parameters r, d, and N on the regression performance of NNRF will
be analyzed in detail in Section 5.5. The experiments are conducted using 5-fold cross validation
and the average performance with standard deviation in terms of RMSE and MAE are reported in
Tables 5 and 6, respectively. Note that for different datasets, RMSE and MAE have different scale,
which is because the scale of the target values for different datasets are different. From the two
tables, we make the following observations:

Ohttps://github.com/JohannesMaxWel/neural_random_forests.
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Table 5. Regression Results (RMSE+std) of Different Regression Methods on Different Datasets

Dataset RR SVR NN DBN DNN RF NRF NNRF
Crime 0.143+0.014  0.182+0.013  0.145+0.009  0.159+0.011 0.162+0.010  0.139+0.011  0.138+0.013  0.132+0.011
Acetone 17.41+1.69 12.24+3.73 15.96+1.85 13.66+2.57 11.78+1.16 11.54+1.99 12.04+2.18 10.91+2.02
wpbc 34.34+2.11 33.67£2.96  34.36 £2.39  35.28+3.08 37.67+4.17 32.92+3.05 33.00+3.14 31.52+3.18
Blog 21.70x1.42 23.51x1.77 22.28+3.76 23.49+3.34 23.83+2.03 21.08+3.15 20.09+3.87 20.51+3.68
Triazines  0.125+0.020  0.122+0.027  0.134+0.020  0.128+0.022 0.150+0.009 0.114+0.019  0.119+0.023  0.108+0.020
CompActiv. 9.617+0.415  9.377+£0.445 3.475+0.135 3.925+0.146 2.820+0.114 2.508+0.091 2.557+0.109  2.448+0.087
CTSlices 9.254+0.162  8.745%0.139  1.734+0.087 1.364+0.079 1.194+0.057 1.258+0.049 1.316+0.059 1.186+0.055

Table 6. Regression Results (MAExstd) of Different Classifiers on Different Datasets

Dataset RR SVR NN DBN DNN RF NRF NNRF
Crime 0.100+0.007  0.135%0.007  0.103+£0.004 0.109+0.006 0.111%0.005 0.096+0.004  0.095+0.004 0.093+0.005
Acetone 11.13+£0.49  4.037+£0.591 8.878+0.743  6.826+0.775 5.633+£0.559  3.580+0.434 3.932+0.429 3.275+0.442
wpbc 28.27+1.44  27.88+1.89  28.98+2.02  29.18+0.775  30.62%2.57 29.21+2.14 27.10+2.28 25.03+2.17
Blog 7.362+0.353  5.193+0.403  11.84+0.73 10.23+0.82  9.188+0.856  5.150+0.53  5.985+0.786 5.120+0.524
Trianzines  0.096+0.012  0.091+0.017 0.102+0.013  0.099+0.017 0.108+0.007  0.080+0.007  0.087+0.009  0.080+0.008
CompActiv  5.933+£0.044 3.430+0.125 2.329+0.041 2.496+0.038 1.931+£0.093 1.769+0.031 1.897+0.097 1.674+0.030
CTSlices 6.650+0.136  4.973+0.107 1.241£0.072  0.974+0.066 0.830+0.051 0.796+0.042 0.896+0.048  0.829+0.050

e Compared with RR, SVR, NN, DBN, and DNN, random forest generally has slightly better
performance. This observation shows the effectiveness of random forest in regression for
small datasets; and

e Though both NRF and NNREF try to take advantage of neural networks and random forest,
NNRF outperforms NRF. This is because NRF first learn random forest up front and then
train neural networks to simulate the specific instantiation of the RF with a neural network;
while NNRF designs a random forest-structured neural network that inherently integrated
random forest and neural networks.

e The proposed framework NNRF outperforms the compared regressors on the majority of
the datasets used in terms of RMSE and MAE, which implies the effectiveness of NNRF for
regression. In particular, though NNRF and RF are both ensemble methods based on tree-
structured models, NNRF outperforms RF, because the decision making in each node of
NNRF uses more complex nonlinear function, which is able to make better decision than RF.

In summary, by combining the power from random forest and neural networks, the proposed
framework NNRF has better regression ability.

Running time comparison: Similarly, we report the running time of NNRF and the compared
methods on regression in Figure 5, where the number of trees for RF and NNRF are both 150.
NNDT means the average running time of neural network-structured decision tree in NNRF. From
the figure, we can also observe that the training of each decision-tree-structured neural network
is very efficient. Thus, if we can run these 150 tree-structured neural networks in parallel on a
machine of many CPU cores, then the running time of NNRF can be significantly reduced.

5.4 Affects of Activation Functions on NNRF

Activation function is very important in NNRF, because it affects which path to go in each node.
We adopt Leaky ReLu, because it is effective for alleviating gradient exploding or the vanishing
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Fig. 5. Running time comparison for regression.

Table 7. Affects of Different Activation Functions
on NNRF for Classification

Dataset ForestType Movement
Metrics Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1
Sigmoid 0.9048 0.9151 0.8102 0.8193
ReLu 0.9109 0.9212 0.8285 0.8367
Leaky ReLu 0.9156 0.9245 0.8302 0.8401

Table 8. Affects of Different Activation Functions
on NNRF for Regression

Dataset Acetone CompActiv
Metrics RMSE | MAE | RMSE | MAE
Sigmoid 11.38 | 3.381 | 2.472 |1.702
ReLu 11.25 | 3.318 | 2.465 |1.680
Leaky ReLu | 10.91 | 3.275 | 2.448 |1.674

problem for deep nets. In this section, we investigate the effects of different activation functions
on NNREF for classification and regression. For classification, we empirically set r = [Vm1,d=
llog, C] + 1, N = 150, and a = 0.00005. For regression, we keep the other settings the same as that
for classification but set d = 3. We try three popular activation functions, which includes sigmoid,
ReLu, and Leaky ReLu. The results for classification on ForestType and Movement and the results
for regression on Acetone and CompActiv are reported in Table 7 and Table 8, respectively. From
these two tables, we observe that, (i) generally, Leaky ReLu slightly outperforms ReLu. This is
because ReLu is a special case of Leaky ReLu by replacing 0.2 in Equation (2) by 0. In this sense,
Leaky ReLu provides more information than ReLu, and (ii) Both Leaky ReLu and ReLu outperform
sigmoid. This is because, compared with sigmoid, Leaky ReLu or ReLu can alleviate the gradient
vanishing problem and thus can help train the neural networks better.

5.5 Parameter Analysis of NNRF for Classification

The proposed framework for classification has three important parameters, i.e., N, r, and d, where
N is the number of neural networks, r is the size of the randomly selected features in each node, and
d is the depth of each neural network. In this section, we investigate the impact of the parameters
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Fig. 6. Macro-F1 of RF and NNRF with different number of trees on ForestType, Vehicle, MSRA, and Wdbc.

N, r, and d on the classification performance of the proposed framework NNRF. Throughout the

experiments, « is set to be 0.00005.

5.5.1

Effect of the Number of Trees N on Classification. To investigate the effects of number of

trees, N, on classification performance, we first fix r to be [v/m ] and d to be [log, C| + 1. We then
vary the values of N as {1, 5, 10, ..., 195, 200}. We only show the results in terms of Macro-F1 on
ForestType, Vehicle, MSRA, and Wdbc as we have similar observations for the other datasets and
the evaluation metric Micro-F1. For comparison, we also conduct experiments with random forest.
The experiments are conducted via fivefold cross validation and the average Macro-F1 for the four
datasets are shown in Figure 6. From the figure, we make the following observations:

e For both RF and NNREF, the classification performance generally improves with the number
of trees N, although increasing beyond a certain point leads to diminishing returns. There
are also some random fluctuations in some datasets. From the point of view of tradeoffs
between training cost and performance, setting N to be a value within [50, 150] seems like

a reasonable point; and

From the point of view of the comparative performance of RF and NNRF, NNRF tends to

consistently outperform RF when N increases. This is because of the more powerful model
in NNRF both in terms of the functions at the individual nodes and the less myopic way in
which these functions are trained with back-propagation.

5.5.2  Effect of the Number of Features r on Classification. To investigate the effects of the size of
randomly selected features, r, on classification performance, we first set d as [log, C] + 1 and N to
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Table 9. Macro-F1 of RF and NNRF with Different r

Dataset | Algorithm [log,m  +m [ z
Movement RF 0.795 0.821 0.764 0.733
NNRF 0.825 0.830 0.819 0.810
USPS RF 0.940 0.951 0.932 0.925
NNRF 0.945 0.956 0.941 0.928

Table 10. Micro-F1 of RF and NNRF with Different r

Dataset | Algorithm [log,m m a =
Movement RF 0.797 0.827 0.771 0.743
NNRF 0.835 0.841 0.825 0.818
USPS RF 0.943 0.956 0.939 0.929
NNRF 0.951  0.960 0.945 0.933

- -+~ Macro-F1 - + - Macro-F1
0.94 - o - Micro-F1[{ 088 - © - MicroF1
e~ 084t g--- PR e ----__ y
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Fig. 7. Macro-F1 and Micro-F1 of NNRF with different d on ForestType and Movement.

be 150. We then vary r as {log, m, ym, 2, Z}. Note that if any of {log, m, v/m, &, 2} is non-integer,
we round it to the nearest integer. We only show the results in terms of Macro-F1 and Micro-F1 on
Movement and USPS as we have similar observations on the other datasets. We conduct fivefold
cross validation and the average Macro-F1 and Micro-F1 are reported in Tables 9 and 10. From the
two tables, we make the following observations:

e Generally, for both RF and NNREF, the classification performance is better when r is chosen
as log2 m or \/_ than when r is chosen as 2 or 2. This is because log, m or y/m is smaller
than 2 T or 7, and thus we introduce more randomness and diversity into the model and
can thus learn a model with better generalization [1]; and

e Comparing RF and NNRF, NNRF is more robust and outperforms RF for different r, which

shows the effectiveness of NNRF.

5.5.3  Effect of the Neural Network Depth d on Classification. To investigate the effects of the
neural network depth d, we first set r as [\/m ]. We then vary d as {2, 3,4, 5, 6} for ForestType and
{3,4,5,6,7} for Movement, which is because Forest has 4 classes while Movement has 15 classes.
We conduct fivefold cross validation on ForestType and Movement. The average performance in
terms of Macro-F1 and Micro-F1 is shown in Figure 7. From the figure, we make the following
observations: (i) Generally, as d increases, the performance first increases and then converges or
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Fig. 8. RMSE of RF and NNRF with different number of trees on datasets.

decreases a little, and (ii) when d is chosen as [log, C] + 1, the performance is relatively good.
For example, for Movement, [log, C] + 1 is 4 and it already achieves good performance. On the
contrary, when d is chosen less than [log, C|, the performance is not satisfactory. This is because
when d is small, the number of leaves in one tree, i.e., dimension of p, is 24 < C and does not have
enough representation capacity to make good classification.

5.6 Parameter Analysis of NNRF for Regression

Similarly, NNRF for regression also has three important parameters, i.e., N, r, and d. In this section,
we investigate the impact of the parameters N, r, and d on the regression performance of the
proposed framework NNRF. Throughout the experiments, « is set to be 0.00005.

5.6.1 Effect of the Number of Trees N on Regression. To investigate the effects of number of trees,
N, on regression performance, we first fix r to be [4/m ] and d to be 3. We then vary the values of
N as {1,5,10,...,195,200}. We only show the results in terms of RMSE on Acetone, CompActiv,
Crime, and Wpbc as we have similar observations for the other datasets and the evaluation metric
MAE. For comparison, we also conduct experiments with random forest. The experiments are
conducted via fivefold cross validation and the average RMSE for the four datasets are shown in
Figure 8. From the figure, we make the following observations:

e Similarly to the observation for classification performance, the regression performance of
RF and NNRF also improves with the number of trees N and increasing beyond a certain
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Table 11. RMSE of RF and NNRF with Different r

Dataset | Algorithm [log,m  +m [ z
Crime RF 0.1408 0.1386 0.1299  0.1352
NNRF 0.1395 0.1320 0.1258  0.1265
Triazines RF 0.1176  0.1140 0.1105 0.1116
NNRF 0.1095 0.1079 0.1048 0.10598

Table 12. MAE of RF and NNRF with Different r

Dataset | Algorithm [log,m  Vm z z

RF 0.1053  0.0960 0.0917  0.0969

NNRF 0.1012  0.0935 0.0860 0.0868
RF 0.0838 0.0801 0.0793 0.0817

NNRF 0.0813 0.0801 0.0789 0.0794

Crime

Triazines

point leads to diminishing returns. For the tradeoffs between training cost and performance,
a value of N within [50, 100] seems to be a reasonable choice; and

e Compared with RF, NNRF tends to consistently outperform RF when N increases, which is
because of the more powerful model in NNRF both in terms of the functions at the individual
nodes and the less myopic way in which these functions are trained with back-propagation.

5.6.2  Effect of the Number of Features r on Regression. To investigate the effects of the size of
randomly selected features, r, on regression performance, we first set d as 3 and N to be 100. We
then vary r as {log, m,\m, 2, Z}. We round r to the nearest integer if any of {log, m, \m, 2, 2
is non-integer. We only show the results in terms of RMSE and MAE on Crime and Triazines as
we have similar observations on the other datasets. We conduct fivefold cross validation and the

average RMSE MAE are reported in Table 11 and 12. From the two tables, we observe that:

e Generally, for both RF and NNREF, the regression performance is better when r is chosen
as Vm or % than when r is chosen as log, m or % which is different than classification
where or log, m and ym give better classification result. This is for regression; we need
more features to predict a numerical value. log, m gives too few features to make good
prediction, while 7 introduce too many features and reduces the randomness and diversity
in the model. Generally, 2 or v/m is between log, m and 2, which can give a good tradeoff
between enough prediction capability and randomness and diversity in the model, and

e Comparing RF and NNRF, NNRF is more robust and outperforms RF for different r, which
shows the effectiveness of NNRF.

5.6.3  Effect of the Neural Network Depth d on Regression. To investigate the effects of the neu-
ral network depth d on the regression performance, we first set r as [y/m ]. We then vary d as
{3,4,5,6,7}. We conduct fivefold cross validation on Crime and CompActiv. The average perfor-
mance in terms of RMSE and MAE are shown in Figure 9. From the figure, we observe that, gen-
erally, as d increases, the performance first increases then converges or decreases a little. This is
because when d is not too large, increasing d increases the learning capacity of NNRF and thus is
able to make better prediction. However, when d is too large, the model becomes too complex and
may not be well trained on small datasets.
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6 RELATED WORK

In this section, we will briefly review related work on neural networks, random forest, and effects
in combing these two.

6.1 Neural Networks

Neural networks (NN) are very powerful in learning or extracting nonlinear features for many
machine-learning and data-mining tasks when abundant training data are given. It has achieved
great success in computer vision, speech recognition, and natural language processing. For ex-
ample, in computervision, convolutional neural networks (CNN) have become the state-of-the-art
model for image classification [12, 23], semantic segmentation [26], image representation learn-
ing [30], and image generation [31]. Similarly, in natural language processing, LSTM has shown its
great ability in sentence classification [44], sentence generation [36], and machine translation [42].
Despite the success of neural networks in specific domains, the success of neural networks are not
universe across all domains. First, neural networks, especially deep nets, have massive weights
that need a large number of datasets to train and are prone to overfitting on small datasets. Thus,
for domains with small datasets, neural networks usually do not work well, while domains with
small datasets such as bioinformatics are pervasive. Second, the success of current deep nets such
as CNN and LSTM actually rely on the domain insights to design specific structure to reduce the
parameters to alleviate overfitting. For example, CNN uses convolution layers and max pooling
layers for reducing parameters and learning translation-invariant features from images. Similarly,
LSTM shared the weights in each cell to reduce the parameter and designs the forget gate to cap-
ture the long-term dependency. However, for general domains whose domain insights are not clear
or difficult to be integrated to neural networks, deep nets may not work well. Therefore, design-
ing neural networks that work well on general domains with small datasets is important. Random
forest, which is robust to overfitting on small datasets, is a good choice to inspire design, which
will be discussed in the next subsection.

6.2 Random Forests

Random forest [4] (RF) is an ensemble-based method that aggregates the results of many deci-
sion trees. Generally, each decision tree is a binary tree that decides which path to take based
on an input feature at each node. It has been successfully applied in various domains such as
bioinformatics [9, 29], remote sensing [27], and compound classification [37]. It is considered a
generalist method, which has been demonstrated to beat even the best classifiers on small datasets
for general domains [8]. For example, Delgado et al. [8] compared 179 classifiers on the entire UCI
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collection of datasets and found that, overall, random forests perform the best. In addition to clas-
sification, random forest is also very powerful for regression. Random forest is less likely to overfit
than neural network because of the ensemble, bootstrap, and randomized feature sampling used in
each decision, which introduces diversity to the model to reduce overfitting. However, unlike neu-
ral networks, which learn powerful features by applying nonlinear activation function on input
features, RFs only uses one feature to make decision at each node. In this sense, Random forest is
not as powerful as neural network. Therefore, it is natural to combine the learning ability of NNs
and the ability of reducing overfitting of random forests by designing a random forest-structured
neural network.

6.3 Using an NN to Simulate an RF

There are several methods proposed to simulate the output of a decision tree (or random forest)
algorithm on a specific dataset once it has already been constructed [2, 33]. These methods first
construct the decision tree (or random forests) on the dataset up front and then try to simulate
this specific instantiation of the RF with a NN. Thus, the constructed random forest is itself an
input to the algorithm. Such an approach defeats the purpose of a neural network in the first
place, because it now has to work with the straitjacket of a specific instantiation of the random
forest. That is, it is hard to learn a model that is much better than the base random forest model,
even with modifications. Recently, Zhou et al. [45] proposed gcForest by stacking a set of RFs as
stacking hidden layers in NNs. The outputs of several RFs in one layer is concatenated with the
original features and then are used as the input to the next level RFs. This approach does not take
advantage of the feature-learning ability of neural networks, as in each node of the RF, the decision
is still made by one feature.

In this article, we propose a fundamentally different approach to design a basic architecture of
the neural network, so that it has the property of random forests and has reduced overfitting. We
design the decision-making function based on linear combination of input features followed by
activation function and thus is more powerful in making decisions.

7 CONCLUSION

In this article, we propose a novel random forest-structured neural network architecture NNRF
inspired by random forest. Like random forest, for each input datum, NNRF only has one path acti-
vated and thus is efficient to perform forward and backward propagation. In addition, the one-path
property also makes the NNRF able to deal with small datasets as the parameters in one path is rel-
atively small. Unlike random forests, NNRF learns complex multivariate functions in each node to
choose relevant paths, and is thus able to learn more powerful classifiers. We further extend NNRF
for regression by replacing the softmax layer with linear regression layer and using the Euclidean
distance as loss function. Extensive experiments on real-world datasets from different domains
demonstrate the effectiveness of the proposed framework NNRF for both classification and clus-
tering. Further experiments are conducted to analyze the sensitivity of the hyper-parameters for
classification and regression, respectively.

There are several interesting directions that need further investigation. First, in this work, we
conduct experiments to demonstrate the effectiveness of NNRF for classification and regression. A
detailed theoretical analysis of NNRF, such as its rate of convergence and representation capacity, is
worth pursuing. Second, in this article, as an initial attempt of designing random forest-structured
neural network, we have not tried the widely adopted tricks such as batch normalization [20] or
dropout [35], which has been proven to be very useful for deep nets. Thus, another direction is to
introduce these tricks into NNRF for training deeper decision-tree-structured neural networks.
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