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S1 Optimization of SiNE

Following the common way, we employ the backpropa-
gation to optimize the deep network for SiNE [1]. The
key idea of backpropagation is to update the param-
eters in a backward direction by propagating ”errors”
backward to efficiently calculate the gradients. Basi-
cally, we want to optimize Eq. (3.3) w.r.t to X, xg
and 6. The key step of optimizing Eq. (3.3) is to get
the gradient of max(0, f(x;,x%) + 0 — f(xi,%;)) and
max(0, f(x;,%0) + 6 — f(x;,%;)) with respect to the pa-
rameters, X, xg and §. With the gradient, we then can
update the parameters using gradient descent method.
Let’s first analyze max(0, f(x;,xx) + 0 — f(xi,X;j)).

o If max(0, f(x;,xx) + 9 — f(x4,%x;)) = 0, or equiv-
alent, f(x;,xx) + 0 — f(xi,%x;) < 0, the pa-
rameters have already been optimized for the in-
puts x; and x;. In other words, the gradi-
ent of max(0, f(x;,xx) + 0 — f(x4,%;)) is 0 when
f(xi,xk) +6 — f(x4,%x5) <0.

o If max(O,f(xi,Xk) + 6 — f(Xi,Xj)) > 0,
max(0, f(x;,xx) + 0 — f(xi,%x;)) is equal to
f(xisxp) + 0 — f(xi,%5).

The same idea can be applied to max(0, f(x;,xg) +
do — f(xi,x;). Based on the aforementioned analysis,
we only need to take gradient of f(x;,x;) w.r.t the
parameters. Then we are able to get the gradient of
Eq. (3.3) with some calculations. We will start from
the parameters of the N-th layer and go backward to
get derivatives for other layers. First, using Eq (3.8),
the derivative of f(x;,x;) w.r.t w is given as
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and similarly, the derivative of f(x;,x;) w.r.t bis
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Next, the gradient of f(x;,x;) w.r.t zV! is given as
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Let 6™ be a vector with its s-th element 6! defined
as
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where 2V is the s-th element of zV!. §™V! is the “error”

generated by the output layer and will propagate back
to the N-th layer as shown later. Using the chain rule
and Eq. (3.7), the derivative of f(x;,x;) w.r.t. W% is
given as:
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With Eq. (S4), the above equation is simplified as
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Similarly, the derivative of f(x;,x;) w.r.t. b" is given
as:
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From Egs (S6) and (S7), we can see that the ”error”
oM s propagated backwards, i.e., it is used for the
calculation of the gradients of the parameters for the
N-th layer.

Generally, the “error” for the n-th layer is denoted
as 6™,1 < n < N, with it’s s-th element defined as
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where the derivative of f(x;,x;) w.r.t z"! is given as
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Thus, we have
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It is clear from the above equation that the “error”

6,(Cn+1)1 from the (n + 1)-th layer is back propagated
to the n-th layer for the calculation of 67!, With §71,
the derivative of f(x;,x;) w.r.t W™ and b" is given as
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The derivative of f(x;,x;) w.r.t W and W2 are
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Finally, the derivative of f(x;,x;) w.r.t x; is
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and the derivative of f(x;,x;) w.r.t x; is
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Similarly, for f(x;,x) = tanh((w™N+1)TzV2 4 pN+1),
we define 072 as
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With the same procedure as f(x;,x;), we can get the
derivatives of f(x;,xj) w.r.t the parameters. We omit
the details here and just

With these derivatives, it’s easy to get the deriva-
tives of the objective in Eq (3.3) w.r.t to the parameters.
We denote the objective as L(X,xp,0). In each itera-
tion, the parameters are updated using gradient descent.
Taking xo as an example, the update rule is given as
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where 7 is the learning rate.

S2 Summary of Derivatives

In this section, we summarize the derivatives. For
f(xi,x;) = tanh(wTzM +b), we have
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and the derivatives of f(x;,x;) w.r.t 6 are given as
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the derivatives of f(x;,x;) w.r.t x;,x; are given as
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For f(x;,x;) = tanh(wz™? + b), we have
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and the derivatives of f(x;,xx) w.r.t 6 are given as
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the derivatives of f(x;,xx) w.r.t x;, X are given as
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