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S1 Optimization of SiNE

Following the common way, we employ the backpropa-
gation to optimize the deep network for SiNE [1]. The
key idea of backpropagation is to update the param-
eters in a backward direction by propagating ”errors”
backward to efficiently calculate the gradients. Basi-
cally, we want to optimize Eq. (3.3) w.r.t to X, x0

and θ. The key step of optimizing Eq. (3.3) is to get
the gradient of max(0, f(xi,xk) + δ − f(xi,xj)) and
max(0, f(xi,x0) + δ− f(xi,xj)) with respect to the pa-
rameters, X,x0 and θ. With the gradient, we then can
update the parameters using gradient descent method.
Let’s first analyze max(0, f(xi,xk) + δ − f(xi,xj)).

• If max(0, f(xi,xk) + δ − f(xi,xj)) = 0, or equiv-
alent, f(xi,xk) + δ − f(xi,xj) ≤ 0, the pa-
rameters have already been optimized for the in-
puts xi and xj . In other words, the gradi-
ent of max(0, f(xi,xk) + δ − f(xi,xj)) is 0 when
f(xi,xk) + δ − f(xi,xj) ≤ 0.

• If max(0, f(xi,xk) + δ − f(xi,xj)) > 0,
max(0, f(xi,xk) + δ − f(xi,xj)) is equal to
f(xi,xk) + δ − f(xi,xj).

The same idea can be applied to max(0, f(xi,x0) +
δ0 − f(xi,xj). Based on the aforementioned analysis,
we only need to take gradient of f(xi,xj) w.r.t the
parameters. Then we are able to get the gradient of
Eq. (3.3) with some calculations. We will start from
the parameters of the N -th layer and go backward to
get derivatives for other layers. First, using Eq (3.8),
the derivative of f(xi,xj) w.r.t w is given as
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and similarly, the derivative of f(xi,xj) w.r.t b is
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Next, the gradient of f(xi,xj) w.r.t zN1 is given as
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Let δN1 be a vector with its s-th element δN1
s defined

as
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where zN1
s is the s-th element of zN1. δN1 is the “error”

generated by the output layer and will propagate back
to the N -th layer as shown later. Using the chain rule
and Eq. (3.7), the derivative of f(xi,xj) w.r.t. WN is
given as:
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With Eq. (S4), the above equation is simplified as
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Similarly, the derivative of f(xi,xj) w.r.t. bN is given
as:
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From Eqs (S6) and (S7), we can see that the ”error”
δN1 is propagated backwards, i.e., it is used for the
calculation of the gradients of the parameters for the
N -th layer.

Generally, the “error” for the n-th layer is denoted
as δn1, 1 ≤ n < N , with it’s s-th element defined as
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where the derivative of f(xi,xj) w.r.t zn1 is given as
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Thus, we have

(S10) δn1s = [1−(zn1s )2]
∑
k

δ
(n+1)1
k W

(n+1)
ks , 1 ≤ n < N

It is clear from the above equation that the “error”

δ
(n+1)1
k from the (n + 1)-th layer is back propagated

to the n-th layer for the calculation of δn1s . With δn1s ,
the derivative of f(xi,xj) w.r.t Wn and bn is given as
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The derivative of f(xi,xj) w.r.t W11 and W12 are
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Finally, the derivative of f(xi,xj) w.r.t xi is
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and the derivative of f(xi,xj) w.r.t xj is

(S16)
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Similarly, for f(xi,xk) = tanh((wN+1)T zN2 + bN+1),
we define δn2s as

(S17) δn2s =
∂f(xi,xk)
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With the same procedure as f(xi,xj), we can get the
derivatives of f(xi,xk) w.r.t the parameters. We omit
the details here and just

With these derivatives, it’s easy to get the deriva-
tives of the objective in Eq (3.3) w.r.t to the parameters.
We denote the objective as L(X,x0, θ). In each itera-
tion, the parameters are updated using gradient descent.
Taking x0 as an example, the update rule is given as

(S18) x0 ← x0 − γ
∂L(X,x0, θ)

∂x0

where γ is the learning rate.

S2 Summary of Derivatives

In this section, we summarize the derivatives. For
f(xi,xj) = tanh(wT zN1 + b), we have
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and the derivatives of f(xi,xj) w.r.t θ are given as
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the derivatives of f(xi,xj) w.r.t xi,xj are given as
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For f(xi,xk) = tanh(wT zN2 + b), we have
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and the derivatives of f(xi,xk) w.r.t θ are given as
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the derivatives of f(xi,xk) w.r.t xi,xk are given as
(S24)
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