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Abstract

Network embedding is to learn low-dimensional vector rep-

resentations for nodes of a given social network, facilitating

many tasks in social network analysis such as link predic-

tion. The vast majority of existing embedding algorithms

are designed for unsigned social networks or social networks

with only positive links. However, networks in social me-

dia could have both positive and negative links, and little

work exists for signed social networks. From recent findings

of signed network analysis, it is evident that negative links

have distinct properties and added value besides positive

links, which brings about both challenges and opportunities

for signed network embedding. In this paper, we propose

a deep learning framework SiNE for signed network embed-

ding. The framework optimizes an objective function guided

by social theories that provide a fundamental understanding

of signed social networks. Experimental results on two real-

world datasets of social media demonstrate the effectiveness

of the proposed framework SiNE.

1 Introduction

The increasing availability of large-scale social media
networks has greatly advanced social network analy-
sis; and network embedding, which aims to learn low-
dimensional vector representations for nodes, has been
proven to be useful in many tasks of social network
analysis such as link prediction [1], community detec-
tion [2], node classification/clustering [3, 4, 5] and visu-
alization [6]. The vast majority of existing algorithms
have been designed for social networks without sign
or only with positive links. However, social networks
can contain both positive and negative links, and such
signed social networks are present on a variety of social
media sites, such as Epinions with trust and distrust
links, and Slashdot with friend and foe links. The work
on signed network embedding is rather limited.

The availability of negative links in signed networks
challenges some principles that explain the formation
and properties of links for unsigned social networks;
and principles for signed social networks can be sub-
stantially different from that of unsigned network [7, 8].
For example, homophily effects and social influence for
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unsigned networks may not be applicable to signed net-
works [9]. Therefore, signed network embedding can-
not be carried out by simply extending embedding al-
gorithms for unsigned social networks. Recent research
on mining signed social networks suggests that negative
links have added value over positive links in various an-
alytical tasks. For example, a small number of negative
links can significantly improve positive link prediction
performance [10], and they can also improve recommen-
dation performance in social media [11]. While signed
network embedding is challenging, the results of such an
approach have the potential to greatly advance tasks of
mining signed social networks such as link prediction.

In this paper, we investigate the problem of signed
network embedding in social media. To achieve this
goal, we need (1) an objective function for signed net-
work embedding since the objective functions of un-
signed network embedding cannot be applied directly;
and (2) a representation learning algorithm to optimize
the objective function. Social theories distilled from so-
cial sciences provide fundamental understandings about
signed social networks and have powered various tasks
of mining signed social networks [12], while deep learn-
ing techniques provide powerful tools for representa-
tion learning which have enhanced various domains such
as speech recognition, natural language processing and
computer vision [13]. This motivates the proposed deep
learning framework SiNE for signed network embedding.
SiNE learns low-dimensional vector representations of
nodes while preserves the fundamental understanding
about signed social networks from a social theory. The
major contributions of this paper are as follows:

• Design an objective function for signed social net-
work embedding guided by social theories;

• Propose a deep learning framework SiNE for signed
network embedding, which learns low-dimensional
vector representations for nodes by optimizing the
objective function; and

• Conduct experiments on two signed social networks
from social media to demonstrate the effectiveness
of the proposed framework SiNE.

The rest of the paper is organized as follows. In
Section 2, we review related work. In Section 3, we
introduce the proposed framework SiNE with the details



about the embedding objective function, the proposed
framework SiNE and the training algorithm with time
complexity analysis. In Section 4, we show empirical
evaluation with discussion. In Section 5, we present the
conclusion and future work.

2 Related Work

Network embedding or network representation learning
is to learn low-dimensional vector representations for
nodes of a given network. It has been proven to be
useful in many tasks of network analysis such as link
prediction [1], community detection [2], node classifica-
tion [3] and visualization [6]. Data sparsity is the com-
mon problem faced by these tasks. To address the spar-
sity issue, network embedding encodes and represents
each node in a unified low-dimensional space, which fa-
cilitates us to better understand the semantic related-
ness and further alleviates the inconveniences caused by
sparsity [14]. Network embedding has attracted increas-
ing attention and various methods have been proposed
for unsigned network embedding [15, 16, 1, 6, 14, 17].
For example, in [16], spectral analysis is performed on
Laplacian matrix and the top-k eigenvectors are used as
the representations of nodes of the network. Similarity
scores measured by unsigned network analysis methods
such as Adamic/Adar and Katz are used in [1] to rep-
resent nodes for unsigned link prediction; t-SNE [6] em-
beds the weighted unsigned network to low dimension
for visualization by using stochastic neighbor embed-
ding; DeepWalk [14] introduces the idea of Skip-gram,
a word representation model in NLP, to learn node rep-
resentations from random walk sequences in social net-
works; node2vec [18] extends DeepWalk by defining a
flexible notion of a node’s network neighborhood and
designing a biased random walk procedure; HOPE [19]
studies the network embedding for directed network.

However, the aforementioned algorithms are de-
signed for unsigned network and don’t take negative
links into consideration, while negative links have been
proven to have distinct properties and added value over
positive links [10, 20]. The majority of network em-
bedding algorithms ,such as spectral analysis, t-SNE,
DeepWalk and node2vec, utilize the homophily effects
or social influence that two linked nodes are likely to be
similar and so as their vector representations. However,
this is not true for signed network due to the existence of
negative links, which are usually used to denote distrust
or foe relationship between two nodes. Thus, signed
network embedding cannot be carried out by simply ex-
tending embedding algorithms for unsigned social net-
works. In addition, negative links have added value over
positive links in various analytical tasks. For example, a
small number of negative links can significantly improve
positive link prediction performance [10], and they can

also improve recommendation performance in social me-
dia [11]. Though negative links are valuable, the work
on signed network embedding is limited. In [10], degree
based features such as the number of incoming posi-
tive and negative links of a node and triad based fea-
tures that include the structure information of a triad
are defined manually and extracted from the network
to represent the nodes for sign prediction in signed net-
work. Another work in [21] extends spectral analysis for
signed network. In this paper, we study the novel prob-
lem of learning embedding for signed social network by
utilizing social theory. In particular, we propose a novel
framework SiNE, which models the extended structural
balance theory and optimizes a deep network based ob-
jective function to learn signed network embedding au-
tomatically.

3 Signed Network Embedding

Before introducing details about the proposed frame-
work, we first introduce the notations used in this pa-
per. Throughout this paper, matrices are written in
boldface capital letters and vectors are denoted as bold-
face lowercase letters. For an arbitrary matrix M, Mij

denotes the (i, j)-th entry of M while mi and mj mean
the i-th row and j-th column of M, respectively. The
i-th element of a vector m is denoted as mi. ‖M‖F is
the Frobenius norm of M. The transpose of a matrix
M and a vector m is denoted as MT and mT , respec-
tively. Capital letters in calligraphic math font such
as V are used to denote sets and |V| is the cardinal-
ity of V. Let G = {V, E} be a signed network where
V = {v1, v2, . . . , vm} is a set of m nodes and E ⊂ V × V
is a set of links. Particularly, any link eij ∈ E can be 1
or -1 where eij = 1 denotes a positive link between vi
and vj , while eij = −1 denotes a negative link. Next
we will first introduce the objective function for signed
network embedding, and then detail the deep learning
framework SiNE and the training algorithm.

3.1 An Objective Function for Signed Network
Embedding Recent research about signed social net-
works suggests that negative links present distinct prop-
erties from positive links, and the fundamental princi-
ples that drive the formation of links for signed and
unsigned social networks are very different [9, 22, 7].
This suggests that we need a new objective function
for signed network embedding because we cannot apply
those for unsigned social networks directly on signed
social networks.

Social theories are developed by social scientists to
explain social phenomenon in signed social networks and
they provide fundamental understandings about signed
social networks. Social theories have been widely ex-
ploited in various tasks of mining signed social networks
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Figure 1: Three Types of Triplets of Users.

such as link prediction [7] and community detection [23].
The successful experiences on exploiting social theories
in mining signed social networks suggest that social the-
ories may guide us to develop objective functions for
signed network embedding. Actually, social theories for
unsigned social networks have been widely used to de-
sign objective functions for unsigned social network em-
bedding. For example, social correlation theories such
as homophily [24] and social influence [25] suggest that
two connected users are likely to share similar interests,
which are the foundations of many objective functions
of unsigned network embedding [16, 15]. Inspired by the
success of applying social theories in unsigned network,
we seek social theories on signed network for signed net-
work embedding. Among the social theories, structural
balance theory is one of the most important and pop-
ular theories for signed social networks. Thus, in this
work we develop an objective function for signed net-
work embedding based on it.

Structural balance theory was originally proposed
in [26] at the individual level, generalized by Cartwright
and Harary [27] in the graph-theoretical formation at
the group level and then was developed to the concept
of clusterizable graph in [28]. It is recently extended
by [29] as: a structure in signed social network should
ensure that users should be able to have their “friends”
closer than their “foes”, i.e., users should sit closer
to their “friends” (or users with positive links) than
their “foes” (or users with negative links). In other
words, the key idea of extended structural balance
theory suggests that a user should be more similar
to her friends than her foes. The extended structural
balance theory provides us a guidance to model signed
social network for learning network embedding. We will
now introduce the detail of how we model signed social
network based on extended structural balance theory.

Let P be a set of triplets (vi, vj , vk) as shown in
Figure 1(a) from a given signed social network G, where
vi and vj have a positive link while vi and vk have a
negative link. Formally, P is defined as:

P = {(vi, vj , vk)|eij = 1, eik = −1, vi, vj , vk ∈ V},

The extended structural balance theory in [29] suggests
that with a certain similarity measurement, for a triplet
(vi, vj , vk) ∈ P, vi is likely to be more similar to the user
with a positive link, i.e. vj , than a user with a negative
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Figure 2: Adding a Virtual Node.

link, i.e. vk, which can be mathematically modeled as:

(3.1) f(xi,xj) ≥ f(xi,xk) + δ,

where xi, xj and xk are the d-dimensional vector
representations of vi, vj and vk respectively, which we
need to learn by the proposed embedding framework. In
f(xi,xj), f is a function that measures the similarity
between xi and xj . We will discuss more details
about the function f in the proposed framework in the
following subsection. The parameter δ is a threshold
that is used to regulate the difference between these two
similarities. A large δ will push vi, vj more close and
vi, vk more far away. The range of δ will be discussed
in experimental analysis section.

In a real-world signed network, the objective func-
tion in Eq. (3.1) has no effect on those nodes whose
2-hop networks1 have only positive or negative links.
That is to say, we cannot learn the d-dimensional vec-
tor representations for those nodes because there are
no triplets in P that contains them. Those nodes are
involved in triplets as shown in Figures 1(b) and Fig-
ures 1(c). According to a recent study [9], the cost of
forming negative links is higher than that of forming
positive links in social media. Therefore, in a signed
social network, positive links are denser than negative
links. This determines that there are many nodes whose
2-hop networks have only positive links while very few
nodes whose 2-hop networks have only negative links.
Therefore, next we only consider handling nodes whose
2-hop networks have only positive links although a sim-
ilar solution can be applied to dealing with the other
type of nodes.

We first introduce a virtual node v0 and then create
a negative link between v0 and each node whose 2-hop
network has only positive links. In this way, an original
triplet (vi, vj , vk) in Figure 2(a) (or Figure 1(b)) will
lead to two triplets (or (vi, vj , v0) and (vi, vk, v0)) as
shown in Figures 2(b) and 2(c). Let P0 be the set
of triplets (vi, vj , v0) where vi and vj have a positive
link while vi and v0 have a negative link, and a similar
objective function as Eq. (3.1) can be developed as:

(3.2) f(xi,xj) ≥ f(xi,x0) + δ0,

1vi’s 2-hop network is defined as the network formed by vi,
users whose distance from vi is within 2 hops and links among
them.



where δ0 is a threshold to regulate the similarities. The
reason of using δ0 in Eq.(3.2) and δ in Eq.(3.1) is that
we can have more flexibility to distinguish triplets with
or without the virtual node by tuning δ and δ0. By
adding the virtual node, we can make a node vi whose
2-hop network contains only positive links closer to their
neighbors.

3.2 The Proposed Framework SiNE Based on
Eq.(3.1) and (3.2), the objective function for signed so-
cial network embedding guided by the extended struc-
tural balance theory can be written as:
(3.3)

min
X,x0,θ

1

C

[ ∑
(xi,xj ,xk)∈P

max(0, f(xi,xk) + δ − f(xi,xj))

+
∑

(xi,xj ,x0)∈P0

max(0, f(xi,x0) + δ0 − f(xi,xj))
]

+α
(
R(θ) + ‖X‖2F + ‖x0‖22

)
,

where C = |P| + |P0| is the size of the training
data and X = {x1,x2, . . . ,xm} is the low-dimensional
representation of the m nodes, and θ is a set of
parameters to define the similarity function f . R(θ) is
the regularizer to avoid overfitting and α is a parameter
to control the contribution of the regularizers.

3.3 The Architecture of SiNE With the objective
function given above, the task now is to find a function
f that is able to give good similarity measure and learn
good representations of nodes in signed network. One
choice of f is non-linear functions, which have shown to
be superior than linear functions for similarity measure
and representation learning [30]. Among various non-
linear functions, deep learning has been proven to be
the state-of-the-art and very powerful for nonlinear
representation learning [31, 30]. This suggests us to
utilize the power of deep learning for learning nonlinear
embedding of the nodes. In particular, we design a
deep learning framework SiNE, which defines f with
θ and optimizes the objective function in Eq. (3.3).
To help better understand SiNE, we first work on an
illustrative example of the architecture of the proposed
deep learning framework with 2 hidden layers (see
Figure 3) and then generalize it to N layers. Note that
we do not show bias in the figure. The input to the
framework is the set of triplets extracted from the signed
social network as (vi, vj , vk) with eij = 1 and eik = −1.
The model is composed of two deep networks that share
the same parameters. The outputs of the first hidden
layer of the two deep networks (or “1st Hidden Layer ”
in Figure 3) are given as:

z11 = tanh(W11xi + W12xj + b1)

z12 = tanh(W11xi + W12xk + b1)
(3.4)

Figure 3: An Illustration of the Architecture of the Pro-
posed Deep Learning Framework SiNE with 2 Hidden
Layers.

where tanh is the hyperbolic tangent function, which
is one of the most widely used activation function in
deep networks. W11 and W12 are the weights of the
first hidden layer and b1 is the bias. z11 and z12 are
then used as inputs to the second hidden layer (or “2nd
Hidden Layer” in Figure 3) of the two deep networks,
separately. Similarly, the outputs of the second layer are
z21 = tanh(W2z11 + b2) and z22 = tanh(W2z12 + b2).
f(xi,xj) and f(xi,xk) are the output of the two deep
networks:

(3.5)
f(xi,xj) = tanh(wT z21 + b)

f(xi,xk) = tanh(wT z22 + b)

which are the terms in Eq. (3.3) and the vector w is
the weights and the scalar b is the bias2. With the
illustration of the proposed framework with 2 hidden
layers, we can see that the similarity function f is
defined by the deep network with a set of parameters
as shown in Figure 3. Particularly, in Figure 3, θ
is defined as θ = {W11,W12,W2,w,b1,b2, b} and
correspondingly we define R(θ) as:

(3.6)
R(θ) =‖W11‖2F + ‖W12‖2F + ‖W2‖22

+‖w‖22 + ‖b1‖22 + ‖b2‖22 + b2

Note that we can also choose other regularizers for θ
such as those based on `1-norm and we would like to
leave it as one future work.

We now extend the 2 hidden layer example
to a N layer deep network. For a N layer
deep network, the parameters are X, x0 and
θ = {W11,W12,W2, . . . ,WN ,b1 , . . . ,bN ,w, b} where
Wn are the weights for the n-th layer and bn is the bias
for n-th layer with 1 < n ≤ N . The input to the first
hidden layer is triplet (vi, vj , vk), i.e., xi,xj ,xk. And
the input to the n-th layer, 1 < n ≤ N , is the output

2Note that for the proposed framework SiNE, the weights
and bias to generate output f(xi,xj) are a vector and a scalar,
separately



of the (n − 1)-th layer, i.e., z(n−1)1 and z(n−1)2. The
output of the first layer is given by Eq. (3.4) and the
output of the n-th layer, 1 < n < N is given as:

(3.7)
zn1 = tanh(Wnz(n−1)1 + bn)

zn2 = tanh(Wnz(n−1)2 + bn)

And the output of the N -th layer is given as

(3.8)
f(xi,xj) = tanh(wT zN1 + b)

f(xi,xk) = tanh(wT zN2 + b)

3.4 Optimization of SiNE Following the common
way, we employ the backpropagation to optimize the
deep network for SiNE. The key idea of backpropagation
is to update the parameters in a backward direction by
propagating ”errors” backward to efficiently calculate
the gradients. Basically, we want to optimize Eq. (3.3)
w.r.t to X, x0 and θ. The key step of optimizing
Eq. (3.3) is to get the gradient of max(0, f(xi,xk) +
δ− f(xi,xj)) and max(0, f(xi,x0) + δ− f(xi,xj)) with
respect to the parameters, X,x0 and θ. With the
gradient, we then can update the parameters using
gradient descent method. The details of how to derive
the derivatives for backpropagation can be found in
Appendix 3.

3.5 Training SiNE We train SiNE based on mini-
batch stochastic gradient descent with respect to the
parameters of the deep network, i.e. θ, the signed
network embedding X and the virtual node embedding
x0. It is well known that for signed social networks in
social media, the number of links of nodes follows power-
law distributions, i.e., many nodes have only a small
number of links while only a small number of nodes
have a large number of links. This will cause some
nodes to have a large number of training triplets. To
save computational cost, following the same idea used in
word embedding [32], for a node that has a large number
of training triplets, we randomly sample a subset of the
training triplets for training. The size of the subset
is chosen as S = 300. In other words, each node has
at most 300 training triplets. The initialization of the
parameters of the deep network follows the approach
introduced in [33]. Specifically, we initialize the weights
of hidden layer i by a uniform sampling from the interval[
−
√

( 6
di−1+di

),
√

( 6
di−1+di

)
]
, where di−1 is number of

units in the (i − 1)-th layer and di is the number of
units in the i-th layer. The signed network embedding
X is initialized as a zero matrix. The training algorithm
for the proposed framework SiNE is summarized in
Algorithm 1. From line 1 to line 9, we prepare the

3Available on http://www.public.asu.edu/ swang187/

Algorithm 1 Signed Network Embedding

Require: Signed social network G = {V, E}, d, δ, α
Ensure: vector representation of nodes X

1: Initialize P and P0 as P = ∅ and P0 = ∅
2: for i=1:n do
3: if vi whose 2-hop networks have only positive

links then
4: extract triplets with virtual nodes and put

them into P0 (sample some if necessary)
5: else
6: extract triplets and put them in P (sample

some if necessary)
7: end if
8: end for
9: prepare mini-batch from P and P0

10: initialize the parameters of the deep network and
signed network embedding

11: repeat
12: for each mini-batch do
13: Forward propagation
14: for n = 1:N do
15: calculate zn1, zn2

16: end for
17: Backpropagation
18: Update w and b
19: for n= N:1 do
20: update Wn, bn (or W11,W12 if n = 1)
21: end for
22: update related X and x0

23: end for
24: until Convergence
25: return X

mini-batch training triplets. In line 10, we initialize the
parameters of the deep network and the low-dimensional
representations and we train the deep network from line
11 to line 24.

3.6 Time Complexity Let d be the dimension of the
embedding and dn, 1 ≤ n ≤ N, be the number of nodes
in the n-th layer of the deep network. For a triplet,
the computational cost of forward propagation in the n-
th layer, i.e., the computation of zn1, zn2, is O(di−1di)
and the computational cost of back-propatgation in the

n-th layer, i.e. the computation of ∂f(xi,xk)
∂Wn , is also

O(di−1di). Thus, the cost of forward and backward

propagation for one triplet is O(dd1 +
∑N
n=1 di−1di).

Since for each node, we sample no more than S =
300 training triplets, the total number of triplets for
training, i.e., C = |P| + |P|0, is approximately O(m ·
S), where m is number of nodes. Thus, the overall
computational cost for training SiNE is O(tmS(dd1 +∑N
n=1 di−1di)), where t is number of epochs it takes to



converge. And in our experiments, t is about 100 for
the datasets used.

4 Experimental Results

In this section, we conduct experiments to evaluate
the effectiveness of the proposed framework SiNE and
factors that could affect the performance of SiNE. We
begin by introducing datasets. We then analyze the
embedding learned by SiNE. To measure the quality
of the embedding, we use the embedding for signed
link perdition with comparisons with state-of-the-art
baseline methods. Further experiments are conducted
to study the effects of the dimension of the embedding
on SiNE, parameters δ and δ0 and number of layers N .

4.1 Datasets The experiments are conducted on two
real-world signed social network datasets, i.e., Epinions4

and Slashdot5. Epinions is a popular product review
site in which users can create both trust (positive) and
distrust (negative) links to other users. Slashdot is a
technology news platform where users can create friend
(positive) and foe (negative) links to other users. For
both datasets, we filter out users who have no links,
which leaves us 27,215 users for Epinions dataset and
33,407 users for Slashdot dataset. Some key statistics
of the two datasets are summarized in Table 1. It is
evident from the table that (1) both networks are very
sparse; (2) positive links are denser than negative links.

Table 1: Statistics of the Datasets

Dataset # users # pos links # neg links
Epinions 27,215 326,909 58,695
Slashdot 33,407 477,176 158,104

4.2 Analysis of the Embedding In this subsec-
tion, we would like to check whether the embedding
learned by the deep learning framework SiNE can pre-
serve the principle suggested by the extended structural
balance theory - users are likely to be more similar to
their friends than their foes. Specifically, we first train
the model on the two datasets and learn the signed net-
work embedding. In the experiment, we set d as 20,
α = 0.0001 and N = 3 with all the hidden layer dimen-
sion as 20. We will discuss the effects of d and N in
detail later. Since we use tanh as the activation func-
tion whose range is (1,−1), from Eq.(3.8), we have that
f(xi,xj) ∈ (−1, 1) and f(xi,xk) ∈ (−1, 1). In order to
let f(xi,xj) ≥ f(xi,xk)+δ be valid, δ should be within
the range (0, 2). The same holds for δ0. We empirically
set δ = 1 and δ0 = 0.5. Then for each triplet (vi, vj , vk)

4http://www.epinions.com/
5http://slashdot.org/

Table 2: Average Distance between Users and Their
Friends and Foes.

Dataset Dis. to Friends (+) Dis. to Foes (-)
Epinions 0.0584±0.0275 0.1195±0.0335
Slashdot 0.0538±0.0245 0.1028±0.0254
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Figure 4: A Case Study of Signed Network Embedding.
Note that red lines denote positive links and blue lines
denote negative links.

where vi and vj have a positive link while vi and vk have
a negative link, we calculate the Euclidean distance for
pairs of (vi, vj) and (vi, vk) and the average Euclidean
distance (with standard deviation) are demonstrated in
Table 2. From the table, we note that after embedding,
nodes are indeed closer to their friends (positive link)
than their foes (negative link), which suggests that the
embedding from SiNE can perverse the principle sug-
gested by the extended structural balance theory.

A case study of the embedding distance between a
user (or node 2) and his/her friends and foes is shown
in Figure 4. The red lines denote positive links and
the blue lines denote negative links. We use the length
of the line to represent the embedding distance of two
nodes. The longer the line is, the larger the embedding
distance is. We observe from the figure that node 2 is
likely to be closer to his/her friends than his/her foes.

4.3 Signed Link Prediction in Signed Social
Networks The learned signed network embedding can
benefit various mining tasks of signed social networks.
In this subsection, we check whether the learned signed
network embedding can improve the performance of link
prediction for signed social networks. For both datasets,
we randomly select 80% links as training set and the
remaining 20% as test set. We use the training set to
learn the signed network embedding. With the learned
signed network embedding, we train a logistic regression
classifier on training dataset. Then we predict link



Table 3: AUC Comparison of Signed Link Prediction
on Epinions and Slashdot

Dataset SC FExtra MF SiNE/P0 SiNE
Epinions 0.8527 0.8626 0.8879 0.8845 0.9242
Slashdot 0.8495 0.8536 0.8725 0.8701 0.8979

Table 4: F1 Comparison of Signed Link Prediction on
Epinions and Slashdot

Dataset SC FExtra MF SiNE/P0 SiNE
Epinions 0.9089 0.9178 0.9343 0.9306 0.9622
Slashdot 0.8792 0.8839 0.8952 0.8924 0.9149

on the test set with the logistic regression classifier.
In real-world signed social networks such as Epinions
and Slashdot, positive links are often much denser than
negative links; hence positive and negative links are
imbalanced in both training and testing sets. Therefore,
following the common way to evaluate the signed link
prediction problem [10, 34], we use AUC and F1 instead
of accuracy to assess the performance. The random
selection is carried out 5 times independently and the
average AUC and F1 are reported in Table 3 and 4. The
baseline methods in the tables are defined as:

• SC [21]: A spectral clustering algorithm is proposed
where a signed version of Laplacian matrix is de-
fined. In this experiment, for the link prediction
purpose, we choose the top-d eigen-vetors corre-
sponding to the smallest eigenvalues of the signed
Laplacian matrix as the low dimensional vector rep-
resentations of nodes.

• FExtra [10]: This method extracts features from
signed social networks. For each pair (vi, vj), the
extracted features include degree based and triad
based features. Degree based features contain the
degree information such as the number of incoming
positive and negative links of vi, the number of
outgoing positive and negative links of vj and so
on. Triad based features include the structure
information of the triad that contains vi and vj .

• MF [35]: Matrix factorization based method which
factorizes the adjacency matrix into two low rank
latent matrices and predicts the links by the matrix
reconstructed by the two low rank matrices.

• SiNE/P0: a variant of the proposed framework
SiNE without considering virtual nodes. In other
words, for SiNE/P0, we set P0 = ∅ in Eq.(3.3).

For SC, FExtra and the proposed framework SiNE, we
first obtain the new representations and then choose lo-
gistic regression as the basic classifier for a fair compari-
son. 5-fold cross validation is performed on the training
set to select the parameters for SC, FExtra and MF.

For SiNE, we empirically set d = 20 δ = 1, δ0 = 0.5
and N = 3 with all hidden layer dimension as 20. More
details about parameters of SiNE will be discussed in
the following subsection. From the Table 3 and 4, we
make the following observations:

• The performance of the proposed framework SiNE
is much better than FExtra. FExtra uses fea-
ture engineering to extract features manually; while
SiNE learns the representations from the data au-
tomatically. These results suggest that the repre-
sentations learned by SiNE can greatly improve the
performance of link prediction; and

• The performance of SiNE outperforms SC and
MF. SC designs a signed Laplacian to preserve
pair-wise relations of nodes, while SiNE preserves
the principle suggested by the extended structural
balance theory, which supports the capability of the
objective function of signed network embedding.

• SiNE outperforms SiNE/P0 because without con-
sidering the virtual node, the representation of
nodes whose 2-hop networks have only negative
links cannot be well trained. Since such nodes are
few, the performance decrease is not much without
considering virtual node.

We perform t-test on comparisons and it is evident
from t-test that the improvement of SiNE compared to
baseline methods is significant. In summery, the repre-
sentations learned by the proposed framework SiNE can
significantly improve the performance of link prediction
in signed social networks.
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Figure 5: Convergence of SiNE on Epinions & Slashdot

4.4 Convergence Analysis The objective function
of SiNE in Eq.(3.3) is non-negative. Thus, by mini-
mizing it using gradient descent and choosing a proper
learning rate, the objective function will reach a local
optimal point and converge. We plot the value of the
objective function in each training epoch for both Epin-
ions and Slashdot in Figure 5. From the figure, we can
see that the value of the objective function decreases
fast at the first 10 iterations and then gradually con-
verges. For both datasets, it takes about 100 epochs to
converge.
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Figure 6: The Impact of Embedding Dimension d on
SiNE for Signed Link Prediction

4.5 Parameter Analysis In this subsection, we in-
vestigate the impact of embedding dimesnion d, δ, δ0
and number of layers N on the performance of link pre-
diction. Throughout the experiments for parameter sen-
sitively analysis, we randomly select 80% links as train-
ing set and the remaining 20% as test set. The random
selection is repeated 5 times and the average AUC will
be reported.

4.5.1 Impact of d: To investigate the sensitivity of
SiNE on d, we fix δ = 1, δ0 = 0.5 and N = 3. We
then vary d as {5, 10, 20, 50, 100, 200}. The average
AUC for signed link prediction on both datasets are
shown in figure 6(a) and 6(b), respectively. From the
two figures, we note that with the increase of d, the
signed link prediction performance first increases and
then decreases after certain values. When d is small, we
may lose too much information and embeddings do not
have enough representation capacity. When d is large,
the embedding tends to overfit. A value of d around
20 gives relatively good performance, which eases the
parameter selection for d.
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Figure 7: The Impact of δ and δ0 on SiNE for Signed
Link Prediction.

4.5.2 Impact of δ and δ0: As shown in Eq.(3.3), δ
and δ0 controls the similarity of a node with its friend
and the node with its foe. To investigate the impact of
δ and δ0, we fix the dimension d to be 20 and N = 3.
We then vary both δ and δ0 as {0.1, 0.5, 1, 1.5}. The
results in terms of AUC under different combinations of
δ and δ0 are shown in Figure 7. From the figure, we note
that: (i) As the increase of δ, the performance generally

Table 5: AUC of SiNE on Signed Link Prediction with
Different Number of Layers N

Dataset N = 2 N = 3 N = 4 N = 5 N = 6
Epinions 0.9124 0.9242 0.9278 0.9297 0.9254
Slashdot 0.8817 0.8979 0.9048 0.9044 0.9027

increases. This is because when δ is large, we enforce
a friend to sit closer to its friends and sit more far
away from his foes, which help us to learn high quality
embedding for signed link prediction; and (ii) When δ0
is large and δ is small, e.g., δ0 = 1.5 and δ = 0.1, the
performance is relatively bad. A combination of (δ0, δ)
chosen from [0.5, 1] generally result in good embedding
for signed link prediction.

4.5.3 Impact of N: To investigate the effects of N ,
we first fix d to be 20, δ to be 1 and δ0 to be 0.5. We then
vary N as 2, 3, 4, 5, 6 with all the hidden dimensions as
20. The results in terms of AUC are reported in Table 5.
From the table, we can see that as the network becomes
deeper, the performance increases first then the increase
become small, which suggests that by setting N = 2 or
N = 3, we can learn a relatively good embedding and
at the same time save computational cost.

5 Conclusion

Most of the existing network embedding algorithms are
designed for unsigned networks; while little work exists
for signed social networks. Though signed network em-
bedding is inherently challenging due to the availability
of negative links, it can benefit various tasks of min-
ing signed social networks. In this paper, we study the
problem of signed network embedding. In particular,
we introduce a new objective function for signed net-
work embedding guided by extended structural balance
theory and propose a deep learning framework SiNE to
optimize this objective function. Via experiments on
two signed networks in social media, we demonstrate
(1) the learned embedding can preserve the principle
of signed social networks indicated by extended struc-
tural balance theory; and (2) the embedding learned by
SiNE can significantly improve the link prediction per-
formance compared to representative baseline methods.

There are several directions needing further inves-
tigation. First, the proposed framework SiNE can only
deal with undirected signed social networks and we
would like to investigate how to extend it for directed
signed social networks. Second, in this work we demon-
strate that the embedding can improve the performance
of link prediction in signed social networks; hence we
will investigate how the embedding benefits other signed
network mining tasks such as node classification, senti-
ment analysis [36] and multitask learning [37]. Finally,
in addition to the structural balance theory, there are



other social theories for signed social network such as
status theory; hence in the future, we will investigate
how to develop objective functions for signed network
embedding based on those social theories.
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