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ABSTRACT
Feature engineering has found increasing interest in recent years be-
cause of its ability to improve the e�ectiveness of various machine
learning models. Although tailored feature engineering methods
have been designed for various domains, there are few that sim-
ulate the consistent e�ectiveness of kernel methods. At the core,
the success of kernel methods is achieved by using similarity func-
tions that emphasize local variations in similarity. Unfortunately,
this ability comes at the price of the high level of computational
resources required and the in�exibility of the representation as it
only provides the similarity of two data points instead of vector
representations of each data point; while the vector representa-
tions can be readily used as input to facilitate various models for
di�erent tasks. Furthermore, kernel methods are also highly sus-
ceptible to over��ing and noise and it cannot capture the variety
of data locality. In this paper, we �rst analyze the inner working
and weaknesses of kernel method, which serves as guidance for
designing feature engineering. With the guidance, we explore the
use of randomized methods for feature engineering by capturing
multi-granular locality of data. �is approach has the merit of being
time and space e�cient for feature construction. Furthermore, the
approach is resistant to over��ing and noise because the random-
ized approach naturally enables fast and robust ensemble methods.
Extensive experiments on a number of real world datasets are con-
ducted to show the e�ectiveness of the approach for various tasks
such as clustering, classi�cation and outlier detection.
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1 INTRODUCTION
Machine learning algorithms are highly sensitive to the speci�c
feature representation of the data used [3]. Selecting the proper
feature representation is important because a good set of features
enables the use of fast and simple models, whereas overly compact
representations o�en necessitate the use of complex models that
are slow to train and semantically opaque. For example, a well-
chosen set of features can o�en be used in conjunction with a
linear support vector machine, which can be trained in time that is
linear in the size of the input [14]. �e importance of the speci�c
representations has been pointed out quite forcefully [9]: “At the
end of the day, some machine learning projects succeed and some
fail. What makes the di�erence? Easily the most important factor
is the features used.” �erefore, our �rst goal of feature engineering
is to design discriminative engineered features which can enable the
use of fast and simple models.

Kernel methods [1, 2, 11, 22, 30, 32] are among the most popularly
used feature transformation methods, which have been successfully
incorporated in di�erent algorithms for be�er performance such as
kernel SVMs for classi�cation [20], kernel PCA for dimensionality
reduction [17] and kernel K-means for clustering [7]. �e essential
idea of kernel methods is to transform a non-linearly separable data
to a discriminative and linearly separable feature space, in which
the discriminative nature of the feature space is primarily ensured
by tuning the parameters of the kernel.

Kernel methods use an implicit transformation by working with
the similarity of the data points in the input space, but not the
explicit representation in the transformed feature space. Explicit
features can be readily used as input for o�-the-shelf methods, such
as linear SVMs for classi�cation and k-means for clustering. On the
other hand, customized kernel algorithms need to be developed for
di�erent tasks, such as kernel SVMs for classi�cation and kernel
K-means for clustering. �us, the second goal of feature engineering
is to construct/learn explicit features to enable wider applicability
across many problems.

Kernel algorithms could also be interpreted as a two-step ap-
proach of �rst learning explicit features and then applying simple
models on the features. However, such an explicit approach is not
practical. Consider a data set X ∈ Rn×d containing n data points
and d dimensions. Let S ∈ Rn×n be the kernel similarity matrix
with the (i, j )-th entry equal to the kernel similarity between the ith
and jth data points, i.e., Si j = k (xi , xj ), where k (·, ·) is the kernel
function such as RBF. �en, any kernel SVM can be implemented
using the following two-step process:

• Diagonalizing the positive semi-de�nite similarity matrix
S as S = QΣ2QT , where Q is an n×n matrix with orthonor-
mal columns and Σ2 contains the non-negative eigenvalues.



�en, an n-dimensional embedding of the data is given by
QΣ; and

• Applying a linear SVM on training data with features as
QΣ, and class labels in the n-dimensional vector y.

�e dual problem of linear SVMs is to maximize∑ni=1 ai−
1
2
∑n
i=1
∑n
j=1

aiajyiyjqiΣ(qjΣ)T , where ai are the Lagrange multipliers and qi
is the i-th row of Q. It is evident that qiΣ(qjΣ)T = qiΣ2qTj =
k (xi , xj ), and thus the above two-step process is equivalent to ker-
nel SVMs. Furthermore, one can also make a similar argument
about the kernel k-means algorithm [7, 8].

�e transformed features QΣ in the two-step approach are ex-
plicit features, which is also referred to as the data-speci�c Mercer
kernel map. �e explicit features QΣ provide several advantages,
such as the ability to manipulate explicit features, drop irrelevant
features from QΣ, provide be�er interpretability, or be used as in-
put to di�erent models for di�erent tasks. �ese �exibilities are
not available when using the kernel trick. However, calculating
QΣ is rarely used in kernel SVMs or kernel PCAs because of (i)
the large dimensionality of the matrix QΣ, which is potentially as
large as the number of training points n; and (2) the large computa-
tional cost, which is of O (n3+n2d ). �e fact that the n-dimensional
transformation is so cumbersome and space-ine�cient limits its
practical usage. Furthermore, kernel transformations have several
weaknesses from a modeling point of view, such as its sensitivity
to the multi-locality of the data and noise [23], which will be dis-
cussed in detail in Section 2. �us, our third goal is to design a feature
engineering method that is space and time e�cient, and robust to
noise.

�erefore, in this paper, we investigate the problem of designing
explicit robust engineered features with lower space and time re-
quirements, which can capture multi-granular locality of the data
and thus facilitate classi�cation and clustering with simple models
such as linear SVM and K-means. �e main contributions of the
paper are as follows:

• We investigate the inner working and weaknesses of ker-
nel methods, which inspires a principled way to design
engineered features;

• We propose a novel feature engineering method with low
space and time requirement called RandLocal, which learns
robust features that capture multi-granular locality and is
e�cient for various tasks with simple models; and

• We conduct extensive experiments to demonstrate the ef-
fectiveness of the proposed framework for tasks such as
clustering, classi�cation and outlier detection.

�e rest of the paper are organized as follows. In Section 2, we
investigate inner working and weaknesses of kernel methods. In
Section 3, we introduce the proposed framework RandLocal with
time/space complexity and connection to nearest neighbor based
methods. In Section 5, we conduct experiments to show e�ective-
ness of RandLocal. In Section 6, we conclude with future work.

2 THE INNERWORKING OF A KERNEL
TRANSFORMATION AND ITS WEAKNESSES

In this section, we introduce the working and weaknesses of a
kernel transformation, which serves as a guidance for designing
RandLocal.

2.1 Inner Working of Kernel Transformations
At its core, a kernel method uses a similarity function between
two points that is more sensitive to data locality than the dot
product. For example, when one uses a Gaussian kernel with
small bandwidth h (relative to average inter-point distance), i.e.,
k (xi , xj = exp−‖xi−xj ‖

2
2/h , the similarities between many pairs of

points are nearly 0 because of the exponential drop-o� in similarity
with inter-point distance. However, this decay is relatively slow for
distances that are much smaller than the bandwidth. It is not the
case with the dot-product, which is linearly related to the squared
distance between points. �erefore, in high-dimensional embed-
dings, pairwise kernel similarity is o�en extremely sensitive within
small data localities of the original representation (depending on the
parameters of the kernel such as bandwidth), whereas it is extremely
insensitive outside that small locality.

For example, consider the 9 clusters which belongs two classes
illustrated in Figure 1(a). In this case, it is evident that the two
classes are perfectly separable using a nonlinear boundary, but they
cannot be separated with a linear boundary. �is is because the
class distributions are localized into small clusters that cannot be
linearly separated from one another. However, if we used a Gauss-
ian kernel with bandwidth of about half the radius of each cluster,
the resulting embedding, i.e., QΣ, would be such that the dot prod-
ucts across clusters would be nearly zero, except at the boundary
regions. �is can be approximately achieved in a non-negative em-
bedding in which the top-9 components of this representation will
be dominated by points from the nine di�erent clusters. In other
words, points from each cluster will have a signi�cantly positive
component only along one of these nine features and will have zero
values across the other eight features. However, to achieve this goal,
one has to increase the dimensionality of the original data from
two features to nine features in sparse format. �is observation is
important and therefore we emphasize it below:

Increasing the similarity sensitivity to data local-
ity in a kernel function o�en creates new features
that describe the behavior of small data localities.
One can simulate this type of pairwise similar-
ity with feature engineering by de�ning features
speci�c to small data localities. �e feature val-
ues are set to 0 (or roughly constant values) if the
data point lies outside that locality.

Parameters such as the kernel bandwidth implicitly control the
size of this locality in kernel transformations. �e aforementioned
feature engineering creates a sparse data representation that is sen-
sitive to data locality. Co-incidentally, this type of sparse transfor-
mation also makes the data linearly separable by a support-vector
machine because the linear SVM is now able to put together the
small local pieces represented by each feature on the appropriate
side of the linear separator (irrespective of the shape of the original
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Figure 1: Examples of di�erent localities of data points

decision boundary). For example, if we create a 3× 3 grid of regions
in Figure 1(a), such that each region of the grid contains one of
the clusters, then we can create nine binary features depending
on the presence or absence of a point in each cluster. It can be
easily shown that this binary representation is linearly separable.
Although this particular example is a li�le too clean as compared
to real se�ings, it nevertheless sets up the intuition we need for the
feature engineering step.

2.2 Weaknesses of Kernel Transformations
With knowing the working of kernel transformations, we will now
discuss what they lack. Some key weaknesses are in addition to the
space- and time-ine�ciency of kernel methods.

2.2.1 Inflexibility in Locality of Representation. �e most impor-
tant problem with kernel representations is that one cannot control
the granularity of the resulting data locality because it is “baked
into the cake” once the parameters of the kernel (e.g., Gaussian
bandwidth) have been chosen. In many cases, di�erent bandwidths
are more appropriate for di�erent data localities, and kernel func-
tions cannot fully express these factors. An example is illustrated
in Figure 1(b), in which a smaller kernel bandwidth is appropriate
for the data points on the le�, and a larger kernel bandwidth is
appropriate for data points towards the right. Choosing a small
kernel bandwidth will cause over��ing in some parts of the data,
whereas choosing a large kernel bandwidth will cause under��ing
in other parts of the data. �erefore, one of our goals will be to
design a sparse representation of the data with randomized feature
engineering, which is sensitive to data-locality in a multi-granular
way. As we will see later, this type of �exibility is one of the major
advantages that explicit feature engineering methods have over
kernel transformations, because the learning algorithm can now
pick and choose the relevant granularity of feature representation
in each data locality, rather than an opaque use of all transformed
features with the kernel method. Although some recent methods
partially address this problem [5], they are highly prone to over�t-
ting, which is common with kernel methods.

2.2.2 Irrelevant Input Features and the Curse of Dimensionality.
Kernel methods are not immune to the curse of dimensionality.
Even though the margin-based approach of an SVM can reduce the

impact of irrelevant features in the transformed space, the transfor-
mation itself includes the impact of irrelevant features in the input
space. O�en small subsets of (input) features may be relevant for
various data localities in which the remaining features may not add
much information. In fact, it has been shown [4] that the Gaussian
kernel, which uses the squared distance in its exponent, is suscepti-
ble to poor results with an increasing number of irrelevant (input)
features. �is is because the Gaussian kernel can be expanded into
interactions of various orders between input features. It has been
shown that in many data sets, only the lower-order interactions
between features are relevant [10], and the use of all features adds
noise. For example, in Figure 1(a), if 10 noisy features are added to
the data set, a Gaussian kernel would work very poorly because of
the impact of noisy features.

2.2.3 Locally Relevant Features. �is problem of irrelevant in-
put features is particularly signi�cant when the relevant features
vary with data locality. Even though many input features may be
relevant on a global basis, only small subsets of input features are
o�en relevant when examining various data localities. For exam-
ple, rule-based classi�ers are o�en able to provide high-quality
classi�cation, even when the antecedents are allowed to contain a
maximum of two or three features. �is is primarily because rule-
based classi�ers typically model small localities of the data in their
antecedents, in which small subsets of dimensions are e�ective. A
kernel methods such as kernel SVM usually uses all the dimensions
and their higher-order interactions while computing similarities
and thus cannot capture the multi-level data locality. For sparse
representations, even the modeling of second-order interactions
is su�cient, as is evident from the recent success of second-order
factorization machines [19]. Correspondingly, we will construct a
feature representation that is able to model such lower-order inter-
actions among input features, in addition to the global pa�erns.

2.2.4 Opaque Trade-O� between Overfi�ing and Underfi�ing.
�e lack of interpretability of the kernel features makes the trade-
o� between over��ing and under��ing (with the use of parameters
such as the kernel bandwidth). As mentioned earlier, such represen-
tations are o�en inappropriately global in using a single parameter
to control the sensitivity of data locality to parameters such as
the bandwidth. On the other hand, we will show that randomized
feature engineering is able to extract a large number of features
of multiple levels of granularity. Because of the multi-granular
representation, under-��ing is always avoided in each data locality.
Furthermore, it naturally enables ensemble-centric approach to
learning, which also avoids over��ing.

2.2.5 E�iciency Issues. Kernel methods are extremely slow be-
cause they work with an n × n matrix of similarities between pairs
of points. �erefore, the complexity of a kernel method is some-
where between O (n2d ) and O (n3). �erefore, it is useful to examine
randomized feature engineering methods that can be extremely
e�cient in comparison. In fact, we will propose a method whose
complexity is linear in to number of data points.

2.2.6 Interpretability. �e features produced by a kernel method
are o�en not very interpretable. �is precludes their use to make
diagnostic inferences about speci�c predictions.



Given the inner working and weaknesses of kernel transforma-
tion, in next section, we will propose RandLocal, a more �exible
approach of feature engineering which incorporate these charac-
teristics.

3 RANDOMIZED FEATURE ENGINEERING
TO CREATE LOCAL FEATURES

As discussed in section 2, feature engineering methods can sim-
ulate greater sensitivity in pairwise similarity in small localities
by creating features that correspond to local regions de�ned by
anchor points sampled from the data set. �e basic idea is to create
a nonnegative representation of the data, in which each features
are associated with anchor points. A data point takes on a strictly
positive value for a particular feature only if it is a nearest neighbor
for that particular anchor point. Otherwise it takes on a value of 0
for that feature. �erefore, only one feature is activated by a given
data point for a particular group of anchors. Each set of anchor
points induces a Voronoi partition of the data space, and the granu-
larity of this Voronoi partition depends on the number of anchor
points. When a linear classi�er is applied to this representation, it
implicitly uses the class distribution of each of the local regions to
de�ne the relevance of that (engineered) feature to the correspond-
ing class. A larger number of anchor points helps in de�ning more
detailed decision boundaries but runs a risk of greater over��ing.

Multiple features are made to take on non-zero values by re-
peatedly sampling di�erent groups of anchor points. �e resulting
representation is sparse and nonnegative with a high degree of
local information captured by the features. �e degree of locality
(i.e., granularity) is captured by the number of anchor points. Since,
the appropriate granularity cannot be known in advance (and may,
in fact, vary with data locality), we propose to vary the number of
anchor points in the range [32, 1024] using a geometric distribu-
tion. �e overall process of creating each set of features (from a
particular anchor group) is summarized in Algorithm 1.

Algorithm 1 RandFea

Input: Dataset: X ∈ RN×d , ϵ
Output: Engineered features F

1: Sample the real number p uniformly at random between
log2 (32) = 5, and log2 (1024) = 10.

2: Set the number of anchors r to b2p c, and sample r anchors
3: Calculate the distance of N points to r anchors
4: Let the average of the r × N anchor-point distances be Davд .
5: Initialize a sparse all zero matrix F ∈ RN×r .
6: for each data point xi do
7: Let the minimum distance of xi to the r anchors be

Dmin (xi ), and the nearest anchor be k . If the nearest anchor is
xi itself, use second nearest anchor.

8: Set Fik = max{Davд − Dmin (xi ), ϵ · Davд }

9: end for
10: return the engineered feature F

In Algorithm 1, ϵ is a small number such as 0.0001, and is meant
to add regularization and smoothing to the process against the
presence of outliers. Euclidean distance is used to calculate the

anchor-point distance while other distance metrics can also be
adopted. Any data point xi that is also an anchor is always as-
signed to its nearest other anchor (in order to avoid over��ing)
and therefore the value of Dmin (xi ) is not necessarily 0. Note that
this description implicitly assumes that the data set contains sig-
ni�cantly more than 1024 points because the number of anchors
needs to be smaller than the number of points by a factor of at
least 2 or 3. To ensure that the number of anchors is signi�cantly
less than the number of points, we can set the upper limit of sam-
pling the real number p to min{log2 (N /2), log2 (1024)}. �e value
Fik = max{Davд − Dmin (xi ), ϵ · Davд } captures the locality infor-
mation, i.e., its nearest neighbor is k-th anchor and the distance to
it is Davд − Dmin (xi ). �us, the resulting feature F is informative.
�e reason we use only the nearest anchor is: (i) to make F sparse
which can reduce space requirement and advance classi�cation or
clustering models such as SVM and K-means; and (2) the nearest
anchor is more informative.

�e anchors essentially divide the data space into a set of Voronoi
regions, which also correspond to the features. Data points lying
within these Voronoi regions activate these features. When a linear
SVM is applied to this feature representation, it “pieces together”
these Voronoi regions in order to create a decision boundary. �e
Voronoi regions with the use of 50, 200, and 1000 anchor points are
illustrated in Figures 2(a), (b), and (c), respectively. In the �gure,
each dot represents an anchor point. �e line surrounding an an-
chor point forms a Voronoi region for the anchor point. Any data
point within the Voronoi region of an anchor point will be closer to
it than other anchor points. For example, if we superimposed these
Voronoi regions, with the class distributions shown in Figures 1(a)
or 1(b), the only errors would be caused by edge e�ects of the irreg-
ular Voronoi boundaries. As a result, the decision boundary would
be somewhat jagged, but would still approximate the true decision
boundary well. Clearly, a larger number of anchors provides deci-
sion boundaries that conform more closely with the training data,
but the trade-o� is that it could over�t to the speci�c vagaries of a
particular training data set. �is is the reason that we vary the num-
ber of anchors in order to provide multigranular analysis. Note that
using multiple sets of anchors will always result in a smoother deci-
sion boundary because of its implicit ensemble-centric approach in
hiding the complexity within the feature representation, but using
a low-variance linear model at the very end. �is type of feature
representation can use the features with the appropriate relevance
and granularity from each data locality. For example, if a particular
combination of low-dimensional features is relevant in a particular
data locality, the local features in the anchor points using the closest
possible combination of features will be automatically identi�ed by
a supervised learning algorithm. Of course, since sampling is used,
the precise combination of features may not be available; however,
in many cases, a close enough combination of locally engineered
features may be available for learning.

�e approach can also address the problem in a kernel SVM that it
uses a global bandwidth (and corresponding granularity of analysis)
in cases di�erent bandwidths are suitable to di�erent data localities.
For example, in the case of Figure 1(b), a linear SVM should use
coarse features to classify data points in the right-hand side of
Figure 1(b), whereas it should use �ne-grained features to classify
data points on the le�-hand side. �is is possible in the case of our
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Figure 2: �e anchors de�ne the level of granularity covered by the new feature set. �e number of anchors de�nes the trade-
o� between bias and variance of a learning method. A smaller number of anchors corresponds to larger bandwidths of the
Gaussian kernel, whereas a larger number of anchors corresponds to smaller bandwidths of the Gaussian kernel.

approach because the features are associated with anchors with
varying levels of granularity. In fact, an L1-regularization can even
be used to select the appropriate features for each data locality, since
the coe�cients of irrelevant features (in the transformed space)
would be set to 0. Note that this type of locally adaptive learning
is not possible for a kernel learning method that typically uses a
single value of the bandwidth to learn the features.

It is also noteworthy that the local regions created by the features
are highly interpretable. For example, if a particular feature has a
weight of a particular sign in the coe�cient vector of a linear SVM
(with labels +1 and −1), the sign of the coe�cient de�nes the class
a�nity of the data locality of that speci�c anchor. Similarly, if a k-
means algorithm is applied to the engineered feature representation
for clustering, it will piece together the dense regions of arbitrary
shape in the input space by using the local regions de�ned by the
various features. �e dominant features in the centroid of a cluster
de�ne the regions relevant to that cluster as well.

3.1 Addressing Locally Irrelevant Features in
the Input Space

Most kernel methods perform poorly when many features in the
input space are globally or locally irrelevant. �is is because the
kernel method uses all (input) features within the kernel similarity
function irrespective to their relevance [4, 10]. �e explicit method-
ology of feature engineering provides a natural way to sample the
input space for features, while constructing the overall feature rep-
resentation by repeated anchor sampling. While sampling each set
of anchor points, an additional step is added up front to sample
subsets of features. �en, the overall process of feature engineering
(which we refer to as RandLocal) are summarized in Algorithm 2.

In Algorithm 2, the number of sets of anchors T is an input
parameter to the algorithm. parfor means parallel for loop. �e
approach starts with a null set of features and progressively samples
anchors to add sets of sparse features forT iterations. �e value ofT
de�nes the dimensionality of the feature representation. Although
the precise dimensionality depends on the vagaries of the sampling
process, exactly T features will always be non-zero in each data
point. �erefore, the representation is very sparse. �e value ofT is

Algorithm 2 RandLocal

Input: Dataset: X ∈ Rn×d , Iterations: T
Output: engineered feature F

1: Initialize F = ∅
2: parfor t=1 to T do
3: Sample a numbermt between 1 and d
4: Create Xt ∈ R

n×mt by samplingmt features from X
5: Create engineered features as Ft = RandFea(Xt )
6: Concatenate Ft to F
7: end parfor
8: return engineered feature F

selected to be somewhere between 100 and 500. It is noteworthy that
sparse representations like text are also almost always separable
with linear SVMs and other low-variance models [14]. Although
the subspace sampling process of RandLocal is quite safe in the
supervised se�ing (because of the ability to detect the relevance
of engineered features a posteriori), one needs to be careful of
subspace sampling in the unsupervised se�ing. We discuss this
issue below.

3.1.1 Di�erence between Supervised and Unsupervised Se�ings.
�e aforementioned description of RandLocal is appropriate for
the supervised se�ing. In supervised se�ings, low-dimensional
combinations of features in the input space o�en have a high level
of predictive power because of the ability to learn them from the
labeled training data. However, in unsupervised problems, it is dif-
�cult to learn the relevance of engineered features, and randomly
sampling subspaces o�en leads to dropping relevant (input) features
that cannot be detected a posteriori. �erefore, in order to avoid
this problem, one minor change is made to the algorithm RandLocal
above to make it more appropriate for unsupervised problems. In
particular, instead of sampling between 1 and d dimensions in the
�rst step of RandLocal, we only sample between dd/2e and d dimen-
sions. �is reduces the likelihood of losing a very large proportion
of the relevant input features. �is type of subspace sampling is sim-
ilar to the feature bagging approach [15] that is commonly used in
unsupervised outlier detection (albeit in a di�erent context). In the



following, it is assumed that supervised applications of RandLocal
always sample between 1 and d dimensions, whereas unsupervised
applications of RandLocal sample between dd/2e and d dimensions.

3.2 Time and Space Complexity
Now we’ll demonstrate that RandLocal is time and space e�cient.
Time Complexity Let’s consider the t-th time we call RandLocal
with Xt ∈ R

n×mt as input. Assume that the number of anchors we
sampled is rt . �en �e complexity of calculating the distance of the
n data point to rt anchor points is O (nmt rt ). For each data point
xi , ge�ing Dmin (xi ) and se�ing the feature of xi cost O (nrt ). �us,
the total time complexity is O (∑Tt=1 nmt rt ) whereT is the number
of times we perform RandFea. Note that rt is a small number within
32 and 1024 and performing RandFea T times is embarrassingly
parallel. �erefore, RandLocal is e�cient for distributed or multi-
thread computation.
Space Complexity Similarly, for each call of RandFea with Xt ∈

Rn×mt as input, the rt ×n distance matrix takes O (nrt ) space. Since
Ft ∈ Rn×rt is very sparse, i.e., only n nonzero entries, the space
complexity of Ft is O (n). �erefore, the total space complexity of
RandLocal in Algorithm 2 is O (∑Tt=1 nrt ). �e space complexity
of the returned high-dimensional sparse engineered feature F is
O (nT ). �erefore, RandLocal is also space e�cient.

3.3 Connections with Weighted Nearest
Neighbor Methods

In addition to the aforementioned discussion, it is possible to show
another interesting connection between the feature engineering
method discussed earlier and kernel methods. Since the engineered
representation uses nearest neighbors in conjunction with anchor
points, dot products between pairs of engineered representation
can be shown to be heavily localized similarities. It is also well
known that kernel SVMs are weighted nearest neighbor classi-
�ers [31]. In other words, one can show that both kernel SVMs
and linear SVMs on the engineered representation approximately
behave like weighted nearest neighbor classi�ers in the original
input space. �e only di�erence is that the engineered method has
be�er diversity because of its ability to select di�erent numbers of
anchors in various subspaces of the input space, and it can also drop
the irrelevant (engineered and input) features in various phases of
the learning process. As a result the engineered method is more
adaptive and less prone to over��ing.

4 EXPERIMENTS
In this section, we conduct experiments to show the e�ectiveness
of the engineered features by RandLocal for di�erent tasks. Speci�-
cally, we aim to answer the following three questions:

• With the sparse representation that captures multi-locality,
can RandLocal improve classi�cation performance with
linear SVMs and clustering performance with K-means?

• How robust is RandLocal in constructing features from
noisy datasets?

• Can RandLocal construct e�ective features for detecting
outliers?

We begin by introducing the datasets and representative state-of-
the-art feature engineering methods; we then compare RandLocal

Table 1: Statistics of Datasets for Classi�cation & Clustering

Dataset IJCNN COVTYPE MNIST GISETTE
# instances 141,691 581,012 70,000 7,000
# features 22 54 780 5,000
# classes 2 7 10 2
Table 2: Statistics of Datasets for Outlier Detection

Dataset ALOI KDDCup99 SPAMBASE PB
# instances 50,000 100,655 4,601 5,473
# features 64 98 57 10
# outliers 1,508 3,377 1,813 560

with these feature engineering methods on classi�cation and clus-
tering to answer the �rst question and we investigate the ability of
RandLocal in handling noisy datasets to answer the second ques-
tion. We also study the RandLocal for outlier detection to answer
the third question. Finally, further experiments are conducted to
investigate the sensitivity of RandLocal to the parameters.

4.1 Datasets
�e classi�cation and clustering experiments are conducted on
4 publicly available benchmark datasets, which includes IJCNN,
COVTYPE, MNIST and GISETTE 1. �e statistics of the datasets are
summarized in Table 1. From the table we can see that the number of
data points varies from 7,000 to 581,012 and the features vary from
22 to 5,000. It also includes binary class and multi-class datasets. In
this way, we aim to give a comprehensive understanding of how
RandLocal performs with datasets of various conditions.

�e outlier detection experiments are conducted on 4 widely used
outlier detection benchmark datasets [6], which includes ALOI 2,
KDDCup99 3, SPAMBASE and PageBlock (PB) 4. �e statistics of
the datasets are summarized in Table 2. From the table we note
that the datasets are extremely imbalanced, and thus can check the
ability of RandLocal in dealing with extremely imbalanced datasets.

4.2 Compared Feature Engineering Methods
�e representative state-of-the-art feature engineering algorithms
RandLocal compare to are listed as follows:

• RAW: Raw features. It is a baseline to understand the
performance without feature engineering.

• RBF Kernel: We use RBF kernel transformation to learn
feature map QΣ from the RBF similarity matrix S. �is is
used as representative kernel transformation method.

• DAE: Denoising autoencoder [24] is a variant of autoen-
coder which is to learn a feature representation that is able
to reconstruct the input data. Speci�cally, DAE is trained to
reconstruct a clean “repaired” input from a corrupted ver-
sion, which makes it able to extract more robust features.
�e encoded feature is used as feature representation.

• SDAE: Stacked denoising autoencoder [25] is a deep net-
work based on stacking layers of DAE. Compared with the

1 �e 4 datasets are available from h�ps://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2h�ps://elki-project.github.io/datasets/multi view
3h�p://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch kddcup99.html
4SPAMBASE and PB are avaliable from h�ps://archive.ics.uci.edu/ml/datasets/



Table 3: Classi�cation performance comparison on four datasets in terms of Micro-F1 and Macro-F1.

Dataset IJCNN COVTYPE MNIST GISETTE
Name Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1
RAW 92.08±0.25 69.20±0.25 63.28±0.08 28.98±0.09 91.61±0.11 91.19±0.11 92.91±0.77 92.91±0.77

RBF Kernel 97.06±0.37 90.71±0.39 75.04±0.10 51.50±0.11 97.08±0.14 97.06±0.13 97.13±0.81 97.19±0.79
DAE 93.19±0.31 71.51±0.38 67.97±0.07 36.81±0.20 97.53±0.07 97.47±0.07 92.99±1.09 92.99±1.09
SDAE 93.88±0.34 72.47±0.40 66.13±0.07 41.02±0.19 97.75±0.09 97.68±0.09 94.24±1.13 94.26±1.13

RandLocal 98.84±0.27 93.80±0.35 89.52±0.06 84.78±0.20 98.02±0.05 97.98±0.05 97.60±0.96 97.60±0.97

DAE, features learned in a purely unsupervised fashion by
SDAE are higher-level and could boost the performance
of classi�cation/clustering. We used a three-layer stacked
DAE and the third layer feature representation is used for
experiments. SDAE is used as a representative deep learn-
ing algorithm for unsupervised representation learning.

4.3 Classi�cation Performance
To answer the �rst question, we �rst compare RandLocal with repre-
sentative feature engineering algorithms introduced in Section 4.2
in terms of classi�cation.

Two widely used classi�cation evaluation metrics, i.e., Micro-F1
and Macro-F1, are adopted to evaluate the classi�cation ability of
the proposed framework RandLocal. �e larger the Micro-F1 and
Macro-F1 scores are, the be�er the classi�cation results is, which
indicates the dicriminativeness of the features.

For each feature learning algorithm, we �rst learn the represen-
tation from X. We then use linear SVM to perform classi�cation
with the learned representation. We �x the classi�er to be linear
SVM as our goal is to test the dicriminativeness of the features
learned by each method, not the e�ectiveness of the classi�er. It
is noteworthy that learning RBF kernel feature QΣ (see section 1)
is intractable for large datasets due to the huge space and time
requirement of creating the RBF kernel similarity matrix and per-
forming eigen decomposition. �us, instead of explicitly learning
QΣ and applying a linear SVM, we used kernel SVMs to simulate
this two step-approach. �e equivalence of these two procedures is
well known (see section 1).

�ere are some parameters to be set for the feature engineering
methods and linear/kernel SVMs. In the experiment, we use 10-fold
cross validation on the training data to set the parameters. Note
that no test data are involved in the parameter tuning. Speci�cally,
for RBF kernel, we do a grid search of the bandwidth from [1e −
5, 1e − 4, . . . , 10]. For DAE and SDAE, we search the dimension of
latent features from [d0.1de, d0.2de, . . . , d0.6de], where d is number
of features. For RandLocal, we empirically set ϵ to be 0.0001 and T
to be 400. �e sensitivity of parameters ϵ andT on the classi�cation
performance of RandLocal will be analyzed in Section 4.7. �e
experiments are conducted using 5-fold cross validation and the
average performance with standard deviation in terms of Macro-F1
and Micro-F1 are reported in Table 3. From the table, we make the
following observations

• �e transformed features outperforms RAW feature, which
implies the importance of feature engineering; and

• Generally, RBF kernel outperforms or has close perfor-
mance with DAE and SDAE, while RandLocal outperforms
RBF kernel and the other compared method.

We also conducted the t-test on all performance comparisons
and it is evident from t-test that all improvements are signi�cant,
which indicates the e�ectiveness of RandLocal.
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Figure 3: Time cost of feature learning

Table 4: Time cost (Seconds) of training using linear SVM

Dataset GISETTE IJCNN MNIST COVTYPE
RAW 2.12 2.29 8.55 39.86

RandLocal 1.89 2.49 12.06 98.48

Running Time Comparison: As stated previously, RandLocal is
time e�cient for both feature construction and model learning.

To show the time e�ciency of RandLocal in feature construction,
we plot the time cost of learning features for RBF Kernel, DAE,
SDAE and RandLocal in Figure 3. From the �gure, we can see that:
(i) Generally, as the dataset becomes large, the time cost of RBF
kernel increases dramatically. For example, on COVTYPE, which
has around 580,000 samples, the time cost of RBF is of order 104

seconds, which is very time consuming; and (ii) Among the com-
pared methods, RandLocal is time e�cient as it’s time complexity
is linear to number of samples n and feature size d .

To show the e�ciency of running linear SVM with the sparse en-
gineered features from RandLocal, we compare the time of training
and testing linear SVM with RandLocal features and that of RAW
features in Table 4. From the table, we can see that the time cost
of training SVM for RandLocal features is similar to that of RAW.
Both of them are fast.

4.4 Clustering Performance
To further check the e�ectiveness of RandLocal, we use datasets in
Table 1 for clustering. We �rst learn features and then perform clus-
tering with K-means on learned features. Following the previous



Table 5: Clustering performance comparison (ACC±std).
N/A means the result is not available due to large memory
requirement to run RBF Kernel

Dataset COVTYPE MNIST GISETTE
RAW 0.4092±0.0239 0.4642±0.0016 0.6842±0.0014

RBF Kernel N/A 0.5329±0.0082 0.7059±0.0013
DAE 0.4214±0.0256 0.4843±0.0077 0.7027±0.0047
SDAE 0.4312±0.0267 0.5244±0.0035 0.7157±0.0036

RandLocal 0.4574±0.0198 0.6872±0.0054 0.8322±0.0163

Table 6: Clustering performance comparison (NMI±std)

Dataset COVTYPE MNIST GISETTE
RAW 0.1612±0.0136 0.4016±0.0013 0.1219±0.0010

RBF Kernel N/A 0.5017±0.0046 0.1351±0.0011
DAE 0.1746±0.0149 0.4320±0.0055 0.1311±0.0056
SDAE 0.1788±0.0157 0.4853±0.0024 0.1257±0.0045

RandLocal 0.2011±0.0129 0.6685±0.0042 0.3652±0.0409

work [27], two widely used evaluation metrics, accuracy (ACC) and
normalized mutual information (NMI), are employed to evaluate
the quality of clusters. Note that labels are only used to evaluate
the clustering results and are not used for feature construction or
parameter tuning. �e larger ACC and NMI are, the be�er the
performance is. We use grid search to select parameters for each
method and report the best results. For RandLocal, we empirically
set ϵ = 0.0001 and T = 400. Since K-means depends on initializa-
tion, we repeat the experiments 20 times and the average results
are reported in Table 5 and 6. Note that due to the large memory
requirement, we cannot learn RBF kernel features for COVTYPE
and IJCNN, which we denote as N /A. We only report the results of
COVTYPE, MNIST and GISETTE as we have similar observations
for IJCNN. From the two tables, we �nd that RandLocal signi�-
cantly outperforms RBF Kernel, DAE and SDAE, which indicates
the e�ectiveness of the features constructed by RandLocal.

�e experiments on classi�cation and clustering answers our
�rst question, i.e., by creating a sparse representation that cap-
tures multi-level granularity , RandLocal can signi�cantly improves
classi�cation/clustering performance using a simple model.

4.5 Robustness to Noise
To answer the second question, i.e., the robustness of RandLocal
to noise, we create two sets of synthetic datasets by adding and
appending noise, respectively, to IJCNN, COVTYPE, MNIST and
GISETTE. Speci�cally, for each dataset, X ∈ Rn×d , in Table 1, we
�rst create a noise matrix G ∈ Rn×d̄ by randomly sampling from
the uniform distribution [fmin , fmax ], where d̄ = d0.1de, fmin is
the minimal value in X and fmax is the maximal value. To add noise
to X, we randomly select d̄ features, which we denote as I. �en
the synthetic data is created by adding G to the selected d̄ features,
i.e., X̃ = X, X̃(:, I ) = X̃(:, I ) + G. We do this for each dataset in
Table 1, which generates four synthetic datasets. To append noise
to X, we directly concatenate G at the end of X, i.e., X̂ = [X,G],
which gives us another four datasets. With the noisy datasets, we
then learn features and use linear SVM to perform classi�cation.
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Figure 4: Outlier detection performance in terms of AUC

All the experimental se�ings and compared algorithms are the
same as Section 4.3, i.e., we use 10 fold cross validation to tune pa-
rameters and perform 5 fold cross validation for classi�cation. For
RandLocal, we set ϵ = 0.0001 and T = 400. To avoid the random-
ness of the results, the operations of adding and appending noise
are carried out 5 times for each dataset and we report the average
results. We only report the classi�cation performance in terms of
Micro-F1 as we have similar observations for Macro-F1. �e aver-
age Micro-F1 with standard deviation on the two sets of synthetic
datasets are shown in Table 7. From the table, we make the follow-
ing observations: (i) In presence of noise, the performance of all the
feature learning methods decreases, which satis�es our expectation
that noisy features will degrade the classi�cation performance; and
(ii) RandLocal outperforms the compared feature engineering meth-
ods. In addition, generally, the performance decrease of RandLocal
is smaller than that of RBF Kernle, DAE and SDAE, which shows
the e�ectiveness of RandLocal in handling noisy features. �is is be-
cause RandLocal randomly sample a subset of features to calculate
the distance to anchors, which reduces the probability of including
lots of noisy features; while the kernel methods uses all the noisy
features to calculate the distance and DAE, SDAE tries to learn
latent features that are good at reconstructing noise features, which
ampli�es the a�ects of noise. Furthermore, RandLocal repeats the
feature construction T times, which can be seen as ensembling
many feature sets and thus alleviate the problem caused by noise.

4.6 Outlier Detection
To answer the third question, we perform outlier detection using
the datasets listed in Table 2. From Table 2 we can see that the
datasets are extremely imbalanced, thus, it will be di�cult to learn
features for classes with few points. �erefore, by performing out-
lier detection, we aim to see the ability of RandLocal in learning



Table 7: Classi�cation performance in presence of noise. Note that numbers inside parentheses in the table denote the per-
formance reductions compared to the performance without noise in Table 3

Dataset Add 10% Noise Append 10% Noise
Name IJCNN COVTYPE MNIST GISETTE IJCNN COVTYPE MNIST GISETTE

SVM-linear 91.39(0.75%) 61.31(3.12%) 89.90(0.49%) 91.89(1.10%) 91.84(0.26%) 61.32(3.10%) 90.35(1.38%) 91.91(1.07%)
SVM-rbf 93.36(3.81%) 49.12(34.54%) 92.15(5.08%) 95.29(1.90%) 93.62(3.54%) 49.12(34.54%) 92.65(4.56%) 95.20(1.99%)

DAE 90.26(3.15%) 63.11(7.15%) 91.64(6.04%) 75.36(18.96%) 90.14(3.27%) 63.54(6.52%) 91.13(6.56%) 67.74(27.15%)
SDAE 90.59(3.50%) 63.08(4.62%) 85.54(12.49%) 77.30(17.98%) 90.27(3.85%) 63.04(4.67%) 83.61(14.47%) 70.31(25.39%)

RandLocal 96.00(2.88%) 80.62(9.94%) 93.63(4.47%) 96.86(0.76%) 95.62(3.26%) 78.80(11.98%) 93.80(4.30%) 96.24(1.39%)

features from imbalanced datasets. Next, we introduce experimen-
tal se�ings and performances with comparison to other feature
learning methods.

For outlier detection, we use the popular evaluation metric, ar-
eas under curve (AUC), which is a standard way to measure the
e�ectiveness of outlier detection [18].

Note that our focus is to measure the e�ectiveness of the features
for outlier detection, not the quality of outlier detection algorithms.
�us, for fair comparison, we �rst learn features using feature learn-
ing algorithms and then apply the same outlier detection algorithm
on the learned features. In the experiments, we use the popular
k-nearest neighbor distance based outlier detection [12], which
uses the distance to the k-nearest neighbor as the outlier score.
With the outlier score, we calculate AUC using the ground truth.
Due to large memory requirement in calculating RBF kernel trans-
formation on KDDCup99, we don’t compare RandLocal with it on
KDDCup99. We use grid search to tune the parameters for each
feature learning algorithm. Each experiment is conducted 10 times
and the average performance in terms of AUC is shown in Figure 4.
From the �gure, we make the following observations: (i) Generally,
SDAE and DAE outperforms RAW, which implies that SDAE and
DAE can learn useful features for outlier detection. SDAE is slightly
be�er than DAE as SDAE can learn higher level features; and (ii)
RandLocal outperforms the compared methods on the four outlier
detection datasets. Especially on ALOI, compared to SDAE, the
performance increases by more than 7.5%, which shows the strong
ability of RandLocal in handling outliers. In addition, we can see
that when K increases, the performance increase/decrease pa�ern
of RandLocal is very similar toK while DAE and SDAE has di�erent
pa�ern to DAE on spambase. �at’s because RandLocal directly
captures the multi-granularity of datasets while DAE and SDAE
transforms the raw feature to latent space.

�e result shows the strong ability of RandLocal in handling
outliers. �is is because outliers will typically be far away from
their nearest anchors, and the feature values are chosen to be
max{Davд − Dmin (xi ), ϵDavд }, �erefore, all feature values are
nonnegative, but the feature values of outliers are unusually small.

4.7 Parameter Analysis
�e proposed framework has two important parameters, ϵ and
T , where ϵ is a small number meant to add regularization and
smoothing to the process against the presence of outliers and T
is an inter speci�es the number of random feature sets we want
to get, which controls the level of granularity. In this section, we
investigate the impact of the parameters ϵ andT on the performance
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Figure 5: Parameter Analysis

of RandLocal. We only show the classi�cation results since we have
similar observations with clustering and outlier detection. We vary
the values of ϵ as {0, 1e − 5, 1e − 4, 1e − 3, 1e − 2, 0.1} and the values
of T as {50, 100, 200, 300, 400, 500, 600, 800, 1000}. For each datasets,
we �rst learn the features with RandLocal then perform 5-fold cross
validation using linear SVM on the features. �e average results
are shown in Figure 5. It can be observed from the �gure that: (i)
Generally, with the increment of α , the performance tends to �rst
increase then become stable. When we increase T from 50, each
new feature sets are likely to introduce new granularity as there are
few feature sets, which provides richer locality information that can
improve performance a lot. When T is large enough, increasing T
doesn’t help as it is more likely to provide redundant features to the
rich features we already have with largeT . A value of T around 200
to 400 can give relatively good performance and save computational
cost; and (ii) When we set ϵ = 0, max{Davд − Dmin (xi ), ϵ · Davд }

reduces to Davд − Dmin (xi ) and the performance is not as good
as the performance when ϵ is not 1e − 5, which shows that adding
ϵ can add regularization and smoothing to the process against the
presence of outliers. When we increase ϵ from 1e − 5 to 0.1, there
are slightly performance increment. In other words, RandLocal is
relatively more stable to ϵ , which eases the parameter selection.



5 CONCLUSION
�e performance of machine learning algorithms i highly sensitive
to the speci�c feature representation of the data used [3]. Good
feature representations can signi�cantly improve the machine learn-
ing and data mining performance such as classi�cation [21] and
recommender systems [13, 16, 29]. In this paper, we propose a
novel unsupervised feature engineering method, RandLocal, as an
accurate and e�cient alternative to kernel methods. RandLocal
is space and time e�cient and learns features that capture multi-
granular locality. Extensive experiments on real-world datasets
demonstrate the e�ectiveness of RandLocal for various applications
such as classi�cation and clustering. �e analysis of RandLocal
on noisy datasets and outlier detection shows the robustness of
RandLocal in dealing imbalanced datasets and noisy features. Fur-
ther experiments are conducted to analyze the sensitivity of the
hyper-parameters.

�ere are several interesting directions need further investiga-
tion. First, in this paper, we employ Euclidean distance to calculate
the distance between data points and anchor points. One direction
is to study if other distance metrics can improve the performance
of RandLocal. Second, in this paper, we randomly select subset of
features to calculate the distance between anchor points. In prac-
tice, features may have correlations [28]. For example, for image
datasets, nearby pixels are more likely to have similar values. �us,
another direction is to investigate the structures/correlations of
features to improve RandLocal performance. Finally, linked data
such as linked documents [26] are very pervasive. We also would
like to extend RandLocal to include link information.

6 ACKNOWLEDGEMENTS
�is material is based upon work supported by, or in part by, the
National Science Foundation (NSF) under the grant #1614576.

REFERENCES
[1] Charu C Aggarwal. 2015. Data mining: the textbook. Springer.
[2] Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. 2004. Multiple kernel

learning, conic duality, and the SMO algorithm. In Proceedings of the twenty-�rst
international conference on Machine learning. ACM, 6.

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
learning: A review and new perspectives. IEEE transactions on pa�ern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[4] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. 2006. �e curse of highly
variable functions for local kernel machines. Advances in neural information
processing systems 18 (2006), 107.

[5] Michael Brockmann, �eo Gasser, and Eva Herrmann. 1993. Locally adaptive
bandwidth choice for kernel regression estimators. J. Amer. Statist. Assoc. 88, 424
(1993), 1302–1309.

[6] Guilherme O Campos, Arthur Zimek, Jörg Sander, Ricardo JGB Campello,
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