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Abstract Privacy leakage is an important issue for social relationships-based recommender
systems (i.e., social recommendation). Existing privacy preserving social recommendation
approaches usually allow the recommender to fully control users’ information. This may
be problematic since the recommender itself may be untrusted, leading to serious privacy
leakage. Besides, building social relationships requires sharing interests as well as other pri-
vate information, which may lead to more privacy leakage. Although sometimes users are
allowed to hide their sensitive private data using personalized privacy settings, the data being
shared can still be abused by the adversaries to infer sensitive private information. Support-
ing social recommendation with least privacy leakage to untrusted recommender and other
users (i.e., friends) is an important yet challenging problem. In this paper, we aim to achieve
privacy-preserving social recommendation under personalized privacy settings. We propose
PrivSR, a novel privacy-preserving social recommendation framework, in which user can
model user feedbacks and social relationships privately. Meanwhile, by allocating differ-
ent noise magnitudes to personalized sensitive and non-sensitive feedbacks, we can protect

A preliminary version of this article was published in AAAI ’18.

This article belongs to the Topical Collection: Special Issue on Social Computing and Big Data
Applications
Guest Editors: Xiaoming Fu, Hong Huang, Gareth Tyson, Lu Zheng, and Gang Wang

� Yujun Zhang
mxyenguing@qq.com

Xuying Meng
mengxuying@ict.ac.cn

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2 Department of Computer Science, Arizona State University, Tempe, AZ, USA

3 Department of Computer Science, Michigan Technological University, Houghton, MI, USA

4 University of Chinese Academy of Sciences, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0620-z&domain=pdf
mailto: mxyenguing@qq.com
mailto: mengxuying@ict.ac.cn


World Wide Web

users’ privacy against untrusted recommender and friends. Theoretical analysis and experi-
mental evaluation on real-world datasets demonstrate that our framework can protect users’
privacy while being able to retain effectiveness of the underlying recommender system.

Keywords Differential privacy · Social recommendation · Ranking · Personalized privacy
settings

1 Introduction

A recommender system has become an imperative component of myriad online commer-
cial platforms. With increasing popularity of social networks, recommender systems now
can take advantage of these rich social relationships to improve recommendation effective-
ness [34, 37, 43]. This new type of social relationships-based recommender system (i.e.,
social recommendation for short), however, suffers from a new source of privacy leakage.
For example, by observing a victim user’s feedbacks on products such as adult or medical
items, the adversary may infer the victim’s private sex inclination or health condition [8],
and may further abuse the private information for financial benefits [29].

In practice, a privacy-preserving social recommender system, which can utilize social
relationships to produce more accurate recommendation results without sacrificing privacy
of users being involved, is very necessary. There were a few mechanisms designed for this
purpose. However, they are all problematic as analyzed in the following. First, a few existing
efforts [13, 22] heavily rely on an assumption that the recommender is fully trusted. They
neglect the fact that the recommender itself may be untrusted and may conduct malicious
behaviors, causing serious privacy leakage. Second, a few works [11, 38] rely on cryp-
tography to prevent users’ exact inputs from being leaked to the untrusted recommender.
Nonetheless, it has been shown that attackers can still infer sensitive information about the
victim users based on their influence on the final results [25]. In addition, the cryptographic
process is usually expensive and may bring large computational overhead. Third, a few
works [12, 13, 24] rely on friends’ history feedbacks to make recommendations, but do not
differentiate sensitive and non-sensitive feedbacks and simply treat them equally. In prac-
tice, social media sites such as IMDB and Facebook (Figure 11) allow users to specify the
visibility of their feedbacks on products. Treating all the feedbacks as equally sensitive and
not exposing non-sensitive feedbacks for security, will make it difficult to attract common-
interest friends and make effective recommendations, sacrificing user experience in the long
run.

Resolving all the aforementioned defects is necessary for building an effective privacy-
preserving social recommender system, which however is a very challenging task due to
the following reasons: First, to relax the assumption that a recommender is fully trust-
ful, we need to change the recommender system from a fully centralized manner to a
semi-centralized manner. In other words, instead of fully relying on the recommender, we
now allow users and the recommender to collaborate with each other for recommendation.
Specifically, users can have access to both the sensitive and the non-sensitive feedbacks,

1Facebook provides public pages for products, e.g., https://www.facebook.com/pages/Google-Earth/
107745592582048

https://www.facebook.com/pages/Google-Earth/107745592582048
https://www.facebook.com/pages/Google-Earth/107745592582048
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Figure 1 An example of personalized privacy settings from Facebook

while the recommender can only have access to the non-sensitive feedbacks, and they
interact to make the final recommendation. In such a semi-centralized manner, private infor-
mation may still be leaked during each interaction between the recommender and the user,
and eliminating such leakage is necessary yet challenging. Second, to avoid using expensive
cryptographic techniques, differential privacy [5] can be used to provide provable pri-
vacy guarantee with a small computational overhead. However, differential privacy requires
adding noise which may degrade recommendation effectiveness. This will be exacerbated
when the non-sensitive feedbacks are exposed and used as background knowledge to infer
sensitive feedbacks. Third, users are usually allowed to configure their privacy settings in
practice. Due to idiosyncrasy of different users, their personalized privacy settings could be
quite diverse. Protecting sensitive feedbacks based on those personalized diversified privacy
settings is not straightforward.

In this work, we initiate the study of privacy-preserving social recommendation based
on personalized privacy settings. In particular, we propose a novel framework, PrivSR, that
can protect sensitive feedbacks of users from being leaked to untrusted recommender and
friends while retaining the effectiveness of recommendation. Our design is mainly based
on matrix factorization-based social recommendation, a popular social recommendation
approach. Our basic idea is three-fold: 1) We divide the learning process of user latent
vectors into small components for each specific user, and utilize objective perturbation to
provide privacy guarantee under differential privacy. 2) We categorize feedbacks into sensi-
tive and non-sensitive feedbacks, and attach sensitive feedbacks with small privacy budgets,
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i.e., big magnitude noises. In this way, the non-sensitive feedbacks’ modeling will not be
significantly affected, which can help retain recommendation effectiveness. 3) We decouple
the components of noise perturbation into small pieces each of which can be independently
processed by individual users. In this way, each user can decide his/her own noise magnitude
locally.

There are not just explicit feedbacks like numerical ratings, but also implicit feed-
backs like click, consuming and browse behaviors. We thus extend PrivSR to support
implicit feedbacks with a flexible range of feedback values. In addition, there are not
just exact preferences, i.e., ratings, but also relative preferences, i.e., rankings. There-
fore, the extend PrivSR is designed based on ranking-based recommendation model, which
can simultaneously protect sensitive feedbacks while maintaining social recommendation
effectiveness.

Contributions We summarize the contributions in the following:

– We are the first to study the problem of privacy-preserving social recommendation
under personalized privacy settings.

– We propose a novel social recommendation framework PrivSR. PrivSR works in a
semi-centralized manner, and relies on differential privacy with well-balanced privacy
budgets to handle untrusted recommender and friends while retaining recommendation
effectiveness.

– We extend PrivSR to support ranking-based model with implicit feedbacks.
– We theoretically prove that both the PrivSR and the extended PrivSR can satisfy

ε-differential privacy, and empirically validate their effectiveness using real-world
datasets. The results are encouraging: both PrivSR and its extension provide a good
balance between privacy protection and recommendation accuracy.

The rest of the paper is organized as follows. We outline the related work in Section 2
and introduce the background knowledge in Section 3. In Section 4, we formally define the
problem. We describe the technical details of PrivSR and its extension in Section 5, and
formally prove that the framework can achieve privacy guarantee in Section 6, respectively.
In Section 7, we experimentally demonstrate the effectiveness of our framework on real-
world datasets. We conclude in Section 8.

2 Related work

In this section, we summarize the related work, which includes privacy-preserving social
recommendation and personalized privacy settings.

2.1 Privacy-preserving social recommendation

Most of the current privacy protection mechanisms for social recommender systems fully
trust the recommender and hence all the data are disclosed to the recommender [13, 22, 24].
Their common goal is to ensure that the recommendation results generated by the recom-
mender is non-sensitive to any single feedbacks or single social relationship such that any
other users cannot infer whether the target feedbacks or social relationships are in the input
or not.

Some attempts have been made to protect privacy leakage to untrusted recommender [12,
45], but they cannot fit in social recommendation as we require more exposure for social



World Wide Web

regulation that may leak user privacy. For example, Xin et al. [45] were the first to deal with
untrusted recommender with noise perturbation. However, their approach requires a group
of public users to share all their feedbacks, which is not fulfilled in our scenario that offers
all users privacy protection on their sensitive feedbacks. In addition, their approach is not
provably secure. Hua et al. [12] proposed to protect users’ feedbacks in the recommender
systems. They require users to keep all their feedbacks locally, which is acceptable for the
traditional recommender systems. However, it fails to handle new challenges brought by
social recommendation: 1) how to locally utilize sensitive feedbacks to improve recommen-
dation performance; 2) how to get users’ similarity without privacy leakage; and 3) how to
protect users’ non-sensitive feedbacks from the exposure of sensitive feedbacks. To tack-
led these challenges, it requires social relationship involvement and well-balanced privacy
design to make improvement on both recommendation effectiveness and privacy protection.

To utilize social relationships without privacy leakage under untrusted recommender,
some works try to utilize cryptographic techniques [11, 38]. They prevent users’ exact
inputs from being leaked to the untrusted recommender, which provide no help for attacks
we faced: 1) With inference attack, attackers can still infer users’ exact feedbacks based
on their influence on the final results [25]. 2) With reconstruction attack, the information
the reconstruction attack required is the public feedbacks and final results, thus no matter
how these approaches hide feedbacks, once the final results are accurate and they do not
attach noise, the final privacy protection results will not be satisfactory. Thus, besides expen-
sive cryptographic overheads, those works may still leak users’ privacy since the untrusted
recommender can still obtain the final accurate calculation results.

2.2 Personalized privacy settings

Personalized privacy preferences have received increasingly attention [10, 21, 22, 28]. Li et
al. [21] proposed a semantics-based privacy configuration system to automatically recom-
mend personalized privacy settings. Liu et al. [22] computed users’ privacy score to indicate
potential privacy risk caused by personalized privacy settings.

The majority of existing works mainly focus on recommending personalized privacy
settings and evaluating privacy risks caused by inappropriate personalized privacy set-
tings. However, little attention has been paid to handle the hidden potential privacy leakage
from those personalized privacy settings [1]. Zhang et al. [1] attempted to implement an
information-theoretic privacy-utility framework preventing inference attack on users’ pri-
vate attribute from released feedbacks, which can only protect users’ private profile but
ignore that some released feedbacks are sensitive. Moreover, attackers can conduct recon-
struction attack by exploiting the released model to predict the sensitive input feedbacks of
a target victim based on some background input (e.g. non-sensitive feedbacks) and the cor-
responding output from the model [8, 15]. In order to protect users’ privacy, Fredrikson et
al. showed that differential privacy mechanisms can prevent model inversion attacks when
the privacy budget is very small [8]. However, the small privacy budget will significantly
degrade the model’s utility. Therefore, it is a great challenge to protect personalized privacy
while retaining the effectiveness of social recommendation.

3 Background knowledge

This section outlines preliminary knowledge about social recommendation, differential
privacy and potential privacy attacks.
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3.1 Social recommendation

The matrix factorization model represents a matrix as the product of two lower-rank matri-
ces [18, 32], which is widely used for recommendation. Let U = {u1, . . . , un} be a set of
n users and V = {v1, . . . , vm} be a set of m items. We denote the feedback from user ui

to item vj as Rij . There are different kinds of feedbacks, such as explicit feedback (e.g.,
ratings) and implicit feedback (e.g., consume, click and browse etc.), which can be used to
determine the range of Rij . If we observed a feedback from ui to vj , we set Iij = 1; other-
wise Iij = 0. The matrix factorization objective function over the observed feedbacks can
be written as

min
U,V

n∑

i=1

m∑

j=1

Iij (Rij − uT
i vj )

2 + λ�(U,V) (1)

where U = [ui]i∈[n] ∈ R
K×n and V = [vj ]j∈[m] ∈ R

K×m are latent matrix for users and
items, K is the number of latent factors, λ is a scalar to control relative contribution, and
�(U,V) is the regularization term to avoid overfitting.

Social regularization represents the social constraints on recommender systems based
on the assumption that every user’s taste is close to the average taste of this user’s
friends [23]. Considering users’ preferences are similar or influenced by their socially con-
nected friends, social relationships are widely employed in designing social regularization
term

∑n
i=1

∑
f ∈Fi

Sif ||ui − uf ||2F to constrain the matrix factorization objective function
of recommender systems. We use Fi to represent the set of user ui’s friends. Then we
can mathematically define the social recommendation algorithm over the observed social
relationships and the observed feedbacks as:

min
U,V

n∑

i=1

m∑

j=1

Iij (Rij − uT
i vj )

2 + α

n∑

i=1

∑

f ∈Fi

Sif ||ui − uf ||2F + λ�(U,V) (2)

where || · ||2F denotes the Frobenius norm, Sif is the cosine similarity between feedbacks
of ui and uf on the same items, and α is the scalar to control the contribution of social
regularization.

3.2 Differential privacy

Differential privacy [5] is a popular privacy-preserving technique, which effectively per-
turbs the raw datasets by injecting noise and ensures that the output is not significantly
affected by removal/addition of a single rating [2, 36]. Considering its provable pri-
vacy guarantee with light computational overhead, we will use differential privacy in our
proposed framework.

Definition 1 ε-Differential Privacy [5]: A randomized algorithm f satisfies ε-differential
privacy, if for any two datasets D1 and D2 which differ at most one rating, and for any
possible anonymized output dataset D̃ ∈ Range(f ),

Pr[f (D1) = D̃] ≤ eε × Pr[f (D2) = D̃] (3)
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where Range(f ) denotes the output range of algorithm f .

The probability is taken over the randomness of f , and the privacy budget ε defines the
magnitude of privacy being achieved, where ε is a positive real number and the smaller the
ε, the harder to infer users’ privacy.

Laplace mechanism [5] is commonly used to satisfy ε-differential privacy by adding
i.i.d. noise from Lap(GS(D)/ε) to each output, where the global sensitivity GS(D) is the
maximal change to which any single rating in the input D can affect the output.

Considering the rare characteristics of Laplace distribution compared with normal distri-
bution, researchers proposed an effective way [6, 19] to transfer it into the combination of
exponential and normal distribution:

Lemma 1 If a random number h ∼ Exp(1), a random number c ∼ N(0, 1), then for any
real number b > 0, there is b

√
2hc ∼ Lap(b).

3.3 Inference and reconstruction attack

Inference attack is always conducted to infer whether an individual rating is included in
the training set [33], while differential privacy is widely used to defend against inference
attack [25, 38, 46] by adding noise to perturb and reduce each individual’s impact on the
trained model.

Reconstruction attack is conducted to predict exact value of some sensitive features about
a target victim based on some background information. A few existing works explored
how to reconstruct model to predict users’ sensitive information [9, 14, 15]. For example,
Komarova et al. [15] attempted to infer the sensitive features of an individual given fixed
statistical estimate from combined public and private sources. Fredrikson et al. [8] demon-
strated that differential privacy mechanisms can mitigate reconstruction attacks only when
the privacy budget is very small, which unfortunately will significantly degrade the effec-
tiveness of the model. Wang et al. [41] were the first to propose to balance the utility and
privacy from regression model based on functional mechanism [47].

However, the existing proposed mechanisms can not be applied to handle the recon-
struction attack in social recommendation since the way to reconstruct the recommendation
model is completely different, where the attackers can utilize non-sensitive ratings to
inversely predict a victim user’s latent features, reconstructing the user’s sensitive ratings
by matrix factorization [18].

4 Problem statement

In social recommendation, there are three types of actors, namely, users, friends and rec-
ommender. Among them, the friends and the recommender may be not fully trusted (more
strictly speaking, semi-trusted, since they are curious about users’ sensitive feedbacks but
still honestly follow the protocol to provide recommendation).

We use a concrete example (as shown in Figure 2) to show some potential privacy leak-
age, where we represent user feedbacks as ratings although it’s the same case for other kinds
of feedbacks. To model history ratings in matrix factorization-based social recommenda-
tion, the victim user u1 is required to share some processed outputs with the recommender
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Non-sensitive Ratings

Figure 2 The figure gives an example of user’s privacy attacks in social recommendation from the perspec-
tive of victim user u1. Assume there’s six items, u1 has rated four with personalized sensitivity. In order to
learn social recommendation model, u1 exposes processed outputs S1, S2, S3 and S4 to the recommender and
to his friends u2, u3 and u4. The black arrows show the exposure directions. However, attackers, who are col-
ored red, utilize the exposed information to conduct attacks to obtain u1’s sensitive ratings. The attacks are
shown in gray boxes with utilized information. For example, u3 utilize u1 and V to conduct inference attack.
We also color the process of attacks with red dashed arrows

and friends u2, u3, u4. However, the attackers can manage to learn sensitive informa-
tion from the exposed outputs in the learning process: (1) To update vj , the recommender
requires user u1 who has rated item vj to share S1, which is calculated by a rating R1j ,
user latent vector u1 and item latent matrix V. However, with a non-sensitive rating R1j ,
the recommender can directly compute an accurate u1, which then further leaks sensitive
ratings R11 and R13 by uT

i V; (2) With the exposed non-sensitive ratings, the recommender
can conduct reconstruction attack to infer a proximate latent vector ũ1, by which u1’s all
ratings may be disclosed by computing ũT

i V; and (3) The malicious friend u3 requires
user latent vector u1 for social regularization, by which u3 may learn u1’s ratings by
u1 and V.

To formally define our problem, we first describe the notations used in this paper. When
the user ui give feedbacks to item vj (i.e., Rij ), ui will specify his/her privacy setting
on Rij as private, sharing within friends, or public. We use Fij = 1 to indicate that Rij

is a sensitive feedback, and only visible to user ui due to privacy concerns; otherwise
Fij = 0. Similarly, Gij = 1 indicates that Rij is a non-sensitive feedback, and visible
to friends/public; otherwise Gij = 0. As Fij = 1 and Gij = 1 are mutually exclusive,
we have Iij = Fij + Gij for all observed feedbacks. Then we define the set of sensitive
feedbacks as Rs = {Rij |∀(i, j) s.t. Fij = 1}, and the set of non-sensitive feedbacks as
Rn = {Rij |∀(i, j) s.t. Gij = 1}. With these definitions, our privacy-preserving social
recommendation problem can be formally defined as:

Given the observed values in R, the set of friends F , a set of sensitive feedbacksRs ,
as well as a set of non-sensitive feedbacksRn, we want to infer the missing values in
R without privacy leakage ofRs .

5 Privacy-preserving social recommendation

Our proposed framework, PrivSR, aims to allow recommender systems to incorporate social
relationships without leaking sensitive feedbacks to untrusted recommender and friends.
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To achieve this goal, we perform the following: First, we incorporate social relationships
into traditional recommender systems with consideration of both non-sensitive and sen-
sitive feedbacks. We divide the entire framework into users’ feedbacks component and
social relationships component (Figure 3), and keep balanced noise perturbation on sen-
sitive and non-sensitive feedbacks in users’ feedbacks component, and meanwhile, only
utilize non-sensitive feedbacks to model social similarity with untrusted friends in the social
relationships component. Second, to remove the centralized control of the untrusted rec-
ommender or any third parties, we involve users during the recommendation, making the
recommender and users collaborate to perform recommendation, such that processing of
sensitive data can be performed by users’ side, and remaining processing are left to be per-
formed by the recommender’s side. We allocate different resources to the recommender and
individual users as shown in the green part of Figure 3, in which the recommender can only
have access to non-sensitive feedbacksRn and share the updated item latent matrix V with
everyone for recommendation purpose. Except public information, every user holds his/her
private information, including all his/her feedbacks Ri and friends set Fi , in local machines
(which can be mobile phones or personal computers). In particular, since the user latent
vector ui can be used to obtain sensitive feedbacks (e.g., by computing uT

i V), ui should be
also kept locally.

5.1 Modeling sensitive and non-sensitive feedbacks

A non-trivial task for our PrivSR design is to model feedbacks without leakage of sensi-
tive feedbacks, especially in face of personalized privacy settings and public non-sensitive
feedbacks, which may be used by the adversary as the background information to infer
the sensitive feedbacks. We present the basic model based on matrix factorization model
[18, 27, 40]. Based on (1) and Iij = Fij + Gij , the objective function can be written as
follows:

min
U,V

n∑

i=1

m∑

j=1

(Fij + Gij )(Rij − uT
i vj )

2 (4)

To conduct recommendation in a semi-central manner and protect privacy from untrusted
recommender, we utilize gradient descent to decouple and update each latent vector ui of
each user. Because the gradient of (4) w.r.t. ui is

∑m
j=1 2(Fij +Gij )(uT

i vj −Rij )vj , which
only involves ui and V, then each ui can be updated locally with the shared V, and can be
kept private.

On the other hand, to update vj, the gradient of (4) w.r.t. vj is
∑n

i=1 2(Fij +Gij )(uT
i vj −

Rij )ui , which requires each user (e.g., ui) who has rated vj to submit a copy of σ i
j =

2(Fij + Gij )(uT
i vj − Rij )ui to the recommender, whereas the individual submission may

raise great privacy concerns: Attackers can directly obtain the accurate ui when Gij =
1, then all sensitive feedbacks are exposed by uT

i V. Although encryption techniques may
solve this problem and ensure the recommender only knows the final summation but not the
exact value from each user, the untrusted recommender can still conduct inference attack
from the contribution of a particular user ui , and obtain the accurate ui [25]. To tackle all
these problems, we apply the objective perturbation method [3] with ε-differential privacy,
and perturb individual’s involvement by adding noise into the objective function. We then
introduce noise to (4) as:

min
U,V

n∑

i=1

m∑

j=1

(
(Fij + Gij )(Rij − uT

i vj )
2 + vT

j o
i
j

)
(5)
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Figure 3 The proposed framework – PrivSR

where oj = ∑
i o

i
j ∈ R

K×1 is a noise vector, and each user ui protects σ i
j by adding oi

j in
the derivative w.r.t. vj .

Then there comes the second privacy concern that attackers can still obtain proximate
users’ sensitive feedbacks with the exposed non-sensitive feedbacks by performing recon-
struction attack. This can be prevented only when privacy budget ε for noise sampling
is extremely small [8], whereas, small privacy budgets will lead to large noise magni-
tude and the recommendation effectiveness will degrade. Thus the unified noise oj without
considering personalized privacy settings, will definitely reduce the effectiveness of rec-
ommendation. To protect users’ privacy while retaining recommendation effectiveness, we
allocate balanced privacy budgets for sensitive and non-sensitive feedbacks as:

min
U,V

n∑

i=1

m∑

j=1

Fij

(
(Rij − uT

i vj )
2 + vT

j x
i
j

)

+
n∑

i=1

m∑

j=1

Gij

(
(Rij − uT

i vj )
2 + vT

j y
i
j

) (6)

where xj = ∑
i x

i
j ∈ R

K×1, yj = ∑
i y

i
j ∈ R

K×1 are noise vectors for
∑

i σ i
j with sensitive

and non-sensitive feedbacks respectively. We allocate a much smaller privacy budget εs for
sensitive feedbacks and a larger εn for non-sensitive ones where εs = βεn and the domain
of β is (0, 1] which is used to control the relative noise magnitude. Then sensitive feedbacks
can receive better privacy protection with the small privacy budget εs . We set the privacy
budget of the derived V as ε = βεn

1+β
.
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Since εn > εs , Theorem 1 shows that our model can effectively protect sensitive
feedbacks while retaining recommendation effectiveness with balanced privacy budgets.
However, it is difficult for users to independently select yi

j and achieve
∑

i y
i
j ∼

Lap(2�
√

K/εn). It is similar for xi
j , and we use yi

j as an example. Although the sum of
numbers from Laplace distribution does not follow Laplace distribution anymore, the sum-
mation of numbers from normal distribution can still follow normal distribution. According
to Lemma 1, the recommender first construct hj ∈ R

K , where each element of hj is ran-
domly and independently picked from Exp(1). Then the recommender shares hj to users
in Rn,j , where we define Rn,j (or Rs,j ) as the set of users who gave vj non-sensitive
(or sensitive) feedbacks. After that, each user selects cijn

∈ R
K , where each element

in cijn
is randomly and independently picked from N(0, 1/|Rn,j |). Then σ i

j can be pro-

tected using noise 2�
√
2Khj cijn

/εn based on hj and cijn
, and the summation of noise∑

i∈Rn,j
(2�

√
2Khj cijn

/εn) ∼ Lap(2�
√

K/εn).

Theorem 1 Let � denotes the difference between the maximal rating and the minimum rat-

ing. If each element in xj and yj is independently and randomly selected from Lap( 2�
√

K
εs

)

and Lap( 2�
√

K
εn

), the derived V satisfies ε-differential privacy.

Proof See Section 6.1 for the detailed proof.

User involvement Note that the user only needs to decide if a rating is sensitive or not
(i.e., a simple 0 or 1 decision). After receiving the user’ decision, the local machine will take
care of calculating the corresponding privacy budget (εs or εn) based on the user’s decision.
The user interface should be simple rather than complicate. In addition, for a rational user,
we believe the decision should be straightforward, rather than “chaotic”.

5.2 Modeling social relationships

Social relationships can be formulated as
∑n

i=1
∑

f ∈Fi
Sif ||ui −uf ||2F [23], which requires

calculating similarity Sif for all the sensitive and non-sensitive feedbacks between user ui

and uf , and exchanging friends’ very sensitive information, i.e., latent vectors uf . With-
out a fully trusted recommender, this sensitive information may be leaked in the course of
optimization.

To protect sensitive feedbacks from untrusted friends, we only utilize non-sensitive feed-
backs for the calculation of Sif . Also, to protect each friend’s uf from the optimization of∑n

i=1
∑

f ∈Fi
Sif ||ui − uf ||2F with gradient descent, we first calculate the gradient w.r.t ui

as 2Sif ui − ∑
f ∈Fi

2Sif uf , where we set σ
f
i = 2Sif uf . To protect friends from sharing

uf to user ui , we also propose the perturbation terms to hide friends’ user latent vector uf

min
U,V

n∑

i=1

∑

f ∈Fi

(
Sif ||ui − uf ||2F + uT

i q
f
i

)
(7)
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where qi = ∑
f qf

i ∈ R
K×1 is the noise vector, and each qf

i is from friend uf for derived
ui . In order to make uf help his friend ui locally to learn ui while not leaking uf from

the submission of σ
f
i , we add noise in (7). In this way, each friend can send the perturbed

value qf
i − σ

f
i to user ui .

Theorem 2 ensures
∑

f qf
i ∼ Lap(2

√
K/ε), thus we demand each user constructs

hi from Exp(1), and shares hi with all his/her friends. All the friends will also ran-
domly and independently select cif from N(0, 1/|Fi |). Then σ

f
i can be protected

by noise 2
√
2Khicif /ε, and the summation of noise

∑
f ∈Fi

(2
√
2Khicif /ε) ∼ Lap

(2
√

K/ε).

Theorem 2 If each element in qi is independently and randomly selected from Lap( 2
√

K
ε

),
the derived U satisfies ε-differential privacy.

Proof See Section 6.2 for the detailed proof.

5.3 The proposed framework–PrivSR

To protect users’ privacy from untrusted recommender with sensitive and non-sensitive
model component, and from untrusted friends with social relationships model compo-
nent, the final objective function of PrivSR to protect sensitive feedbacks while retaining
recommendation effectiveness is to solve the following optimization problem:

min
U,V

J = ∑n
i=1

∑m
j=1 Fij

(
(Rij − uT

i vj )
2 + vT

j x
i
j

)

+∑n
i=1

∑m
j=1Gij

(
(Rij − uT

i vj )
2 + vT

j y
i
j

)

+α
∑n

i=1
∑

f ∈Fi

(
Sif ||ui − uf ||2F + uT

i q
f
i

)

+λ(||U||2F + ||V||2F )

(8)

where α and λ are scalars to control relative contribution, and ||U||2F + ||V||2F is the reg-
ularization term to prevent overfitting. We use gradient descent to minimize the objective
function. The gradients of (8) w.r.t. ui and vj are given as follows:

∂J
∂vj

=
n∑

i=1

Fij

(
2(uT

i vj − Rij )ui + xi
j

)
(9)

+
n∑

i=1

Gij

(
2(uT

i vj − Rij )ui + yi
j

)
+ 2λvj

∂J
∂ui

= 2
m∑

j=1

Iij (uT
i vj − Rij )vj + 2α

∑

f ∈Fi

Sif (ui − uf )

+ α
∑

f ∈Fi

qf
i + 2λui (10)
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To address the challenge of protecting sensitive feedbacks against untrusted recom-
mender and friends, we conduct objective perturbation with balanced privacy budgets in a
semi-centralized way, which is described in Algorithm 1. To preserve privacy, item latent
matrix is updated in the recommender’s side with perturbed information from users, and
user latent vectors are updated in each user’s side individually with shared V and perturbed
friends’ user latent vectors. Next, we briefly describe Algorithm 1. In order to help the rec-
ommender to update vj in lines 4 through 11 with (9), users send the recommender the
required information individually with different privacy budget εn or εs . To help user ui

update ui in lines 14 through 18 with (10), each of ui’s friends sends perturbed results
with independent and random noise qf

i . After the algorithm converges, we can obtain the
predicted result R̂ by the optimized U and V.

During the learning process, the time complexity for both the recommender and individ-
ual users are acceptable. In each iteration of the learning process: 1) on the recommender’s
side, it is O(K|R|) to learn the item latent matrix, where |R| is the number of observed
feedbacks; 2) on each user’s side, it isO(K|Ri∗|) to learn the user latent vector, where |Ri∗|
denotes the number of feedbacks from user ui , and it is O(K|Fi |) to help optimize the user
latent vector, where |Fi | is the number of friends for user ui . To decrease the complexity,
we can use sub-gradient descent. Thus, in the whole learning process, the time complexity
is O(NK|R|/M) for the recommender, and O(NK(|Ri∗|+|Fi |)/M) for each user, where
N is the number of iterations, M is the number of batches.

Note that statistical information from users’ submission in each iteration may be utilized
by attackers. For example, to obtain a targeted sensitive rating Rij , the untrusted recom-
mender can collect σ̃ i

j (t) = σ i
j (t) + xi

j in t-th iteration, where σ i
j (t) = 2Fij (uT

i (t)vj (t) −
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Rij )ui (t). Based on σ̃ i
j (t)− σ̃ i

j (t −1) = σ i
j (t)−σ i

j (t −1), the impact of noise is eliminated.

Therefore, we need to ensure xi
j is randomly sampled in each iteration to eliminate the influ-

ence of statistics [30]. Similarly, yi
j and q

f
i will also be updated in each iteration. Theorem 3

confirms us that PrivSR can achieve the desired security. After Algorithm 1 converges, our
model can satisfy ε-differential privacy against untrusted recommender and friends.

Theorem 3 PrivSR can satisfy ε-differential privacy.

Proof See Section 6.3 for the detailed proof.

Discussion PrivSR is a static recommender system which does not involve time dimen-
sion. We slightly discuss the dynamic recommender system which involves time dimension
here. For such a dynamic recommender system, we have two cases: (1) There are temporal
correlations of ratings among different time slots. We do not discuss this case further due
to its high complication. (2) There are no temporal correlations of ratings among different
time slots. We further analyze this case as follows. To update latent vectors based on εt -
differential privacy, we can either utilize the new ratings in the t-th time slot or repeatedly
utilize the entire dataset (i.e., from time slot 0 to t). If we only utilize the new ratings, the
computation results on the disjoint inputs can satisfy maxεt -differential privacy based on
parallel composition [25]. If we repeatedly utilize the entire dataset to update latent vec-
tors, the computation results on non-disjoint inputs can satisfy (

∑
t εt )-differential privacy

based on sequential composition [25]. This may have better recommendation effectiveness
but higher computation complexity and privacy leakage.

5.4 Extend PrivSR to support ranking-based recommendation

User preferences on items usually include exact preferences, i.e., ratings, and relative prefer-
ences, i.e., rankings [20, 48]. Also, since feedbacks include explicit feedbacks (e.g., ratings)
and implicit feedbacks (e.g., consume, click, browse, etc.), the ranking-based recommenda-
tion model only requires relative preferences which makes it naturally support both types
of feedbacks. As the PrivSR is designed for rating-based recommendation model, rather
than ranking-based model, therefore, we further extend PrivSR to support the ranking-based
model.

It is challenging to extend PrivSR to the ranking-based model, because: in the ranking-
based model, items can be classified into different types in order to express users’ relative
preferences on these items. For example, there are 4 items v1, v2, v3 and v4, in which u1
has consumed v1 (or gave feedbacks to v1) and u1’s friend u2 has consumed v2, thus the
relative preferences of u1 on these items should be v1 > v2 > v3 (or v4). To summarize,
we have three types of items in a ranking-based recommendation model: items with feed-
backs from users themselves (e.g., v1), items with feedbacks from friends only (e.g., v2),
and items without any feedbacks from both friends and users themselves (e.g., v3 and v4).
Therefore, unlike the rating-based recommendation model which only contains items from
users themselves, we can simply classified the item as sensitive and non-sensitive based on
the feedbacks; in the rankings-based model however, besides the items with feedbacks from
users themselves, we also need to consider the other two types of items, which requires
more complicate noise perturbation to simultaneously satisfy differential privacy and retain
recommendation effectiveness.
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For items with feedbacks from users themselves, the feedbacks can be classified as sen-
sitive and non-sensitive. For other two types of items, the feedbacks are all non-sensitive.
The sensitive feedbacks can be easily handled with privacy consideration following the idea
in PrivSR. However, the non-sensitive feedbacks in the three types of items are from dif-
ferent preference ranges which will affect privacy protection during the ranking modeling
process. Our idea for resolving the aforementioned issue is to normalize the relative prefer-
ences on the three types of non-sensitive feedbacks into the same range. In this way, we can
attach them with noises of a unified global sensitivity to simplify the entire model.

Our extended PrivSR is built on top of SBPR [48], one of the most popular ranking-
based social recommender system.2 Based on the assumption that, for a given user ui , items
ui has consumed (denoted as set Pi) should be ranked higher than items ui’s friends have
consumed (denoted as set Fi), and items ui’s friends have consumed should be ranked
higher than items neither ui nor ui’s friends have consumed (denoted as set Ni), we then
define the set of triples DPF = {(i, j, k)|j ∈ Pi ∧ k ∈ Fi}, and DFN = {(i, j, k)|j ∈
Fi ∧ k ∈ Ni}. The objective function J1 of ranking for social recommendation can be
formalized as

max
U,V

∑

(i,j,k)∈DPF

lnφ(uT
i vj − uT

i vk) +
∑

(i,j,k)∈DFN

lnφ(uT
i vj − uT

i vk) + λ�(U,V) (11)

which utilizes ranking form objective function to model relative preferences based on social
relationships. Since the range of sigmoid function 1

1+e−x and the range of sigmoid function’s

derivative is (0, 1) no matter what x is, then we define φ(x) = 1
1+e−x to simplify the later

noise perturbation.
Since we will face the similar attacks as shown in Figure 2, to protect privacy in the

learning process of U and V, we will adopt the semi-centralized framework as Figure 3
for ranking in social recommendation, where the recommender can only have access to V
and non-sensitive feedbacks Rn, and users locally preserve their individual ui and conduct
recommendation with shared V. We first obtain the gradient of (11) w.r.t. ui as

∂J1

∂ui

=
∑

(i,j,k)∈DPF

ψijk(vj − vk) +
∑

(i,j,k)∈DFN

ψijk(vj − vk) (12)

where ψijk = 1

1+e
(uT

i
vj −uT

i
vk )

, and (12) only involves ui and V, then each ui can be updated

locally and privately, just like what we have done for (4). Similarly, the gradient of (11)
w.r.t. vj is

∂J1
∂vj

= ∑
(i,j,k)∈DPF

ψijkui − ∑
(i,k,j)∈DPF

ψikjui

+ ∑
(i,j,k)∈DFN

ψijkui − ∑
(i,k,j)∈DFN

ψikjui

(13)

where each user will choose the corresponding terms according to how they treat item
vj based on Pi , Fi and Ni , i.e., for users who have consumed vj , they would sub-
mit

∑
i:(i,j)∈Pi

σ iP
j = ∑

(i,j,k)∈DPF
ψijkui ; for users who have friends have consumed

vj , they would submit
∑

i:(i,j)∈Fi
σ iF

j = −∑
(i,k,j)∈DPF

ψikjui + ∑
(i,j,k)∈DFN

ψijkui ;
and for users neither themselves nor their friends have consumed vj , they would submit∑

i:(i,j)∈Ni
σ iN

j = − ∑
(i,k,j)∈DFN

ψikjui . Since sensitive feedbacks are only visible to user
themselves, Fi only contains items which ui’s friends regard as non-sensitive. Based on
Sections 5.1 and 5.2, we can propose similar framework of the extended PrivSR to protect

2The idea presented in the extended PrivSR can also be applied to other ranking-based social recommender
systems [42] after slight modifications.
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privacy for SBPR. Thus for a user ui , to protect his/her sensitive feedbacks in Pi , we will
propose the objective function of the extended PrivSR with perturbed noises as,

max
U,V

J2 = ∑
(i,j,k)∈DPF

Fij (lnφ(uT
i vj − uT

i vk) + vT
j x

′i
j ) + λ�(U,V)

+ ∑
(i,j,k)∈DPF

Gij (lnφ(uT
i vj − uT

i vk))

+ ∑
(i,j,k)∈DFN

(lnφ(uT
i vj − uT

i vk)) + ∑n
i=1

∑m
j=1 I (Fij 
= 1)vT

j y
′i
j

(14)

where x′
j = ∑

i x
′i
j ∈ R

K×1 helps protect ui’s submission containing sensitive feedbacks

on vj with a relatively small privacy budget εs when calculating Fij σ
iP
j , and y′

j = ∑
i y

′i
j ∈

R
K×1 provides protection on submission without sensitive feedbacks on vj with a relatively

large privacy budget εn when calculatingGij σ
iP
j , σ iF

j and σ iN
j . We then select noises based

on the similar procedures of (6) and (7). According to Theorem 4, we can protect sensitive

feedbacks with random noises from Lap(
√

K
εs

) and Lap(
√

K
εn

).

Theorem 4 If each element in x′
j and y′

j is independently and randomly selected from

Lap(
√

K
εs

) and Lap(
√

K
εn

), the extended PrivSR can satisfy ε-differential privacy.

Proof See Section 6.4 for the detailed proof.
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We can perform gradient descent overU andV iteratively to learn the maximum J2. In each
iteration of learning process: 1) on the recommender’s side, it is O(K(|DPF | + |DFN |))
to optimize item latent matrix for items in sets DPF and DFN ; 2) on each user’s side,
it is O(K|Di

PF | + |Di
FN |) to learn the user latent vector. Calculating a full gradient will

be too slow or even infeasible, therefore, we can utilize a stochastic learning scheme and
randomly sample a subset of DPF and DFN [35], then in the whole learning process, the
time complexity is around O(NKa) for the recommender and O(NKb) for each user,
where a � |DPF | � |DFN | and b ≈ |Ri∗| � |Di

PF | � |Di
FN |. We describe our extended

PrivSR in Algorithm 2, where the recommender updates vj in line 4 through 14 referring to
(13) with corresponding personalized noises, and users update ui in line 17 through 18 with
(12) since ∂J2

∂ui
= ∂J1

∂ui
.

6 Analysis of privacy guarantee

The detailed proofs for Theorems in Section 5 are shown in the following.

6.1 Proof of Theorem 1

Consider the characteristic of normal distribution that the sum of variable from normal dis-
tribution is also distributed as normal distribution [7], it is obvious that both of

∑
i∈Rs,j

cij s

and
∑

i∈Rn,j
cijn

are distributed as N(0, 1). Then based on Lemma 1, we know
∑

i∈Rs,j
xi
j

and
∑

i∈Rn,j
yi
j are distributed as Lap( 2�

√
K

εs
) and Lap( 2�

√
K

εn
).

Let εs = (1+β)ε, εn = ( 1
β

+1)ε, and c is distributed as N(0, 1). Since every user keeps
the same hj when updates vj in each iteration, the summation of these random noise vector
for sensitive and non-sensitive feedbacks can be calculated as

pj =
∑

i∈Rs,j

xi
j +

∑

i∈Rn,j

yi
j

= 2�
√
2Khj

εs

∑

i∈Rs,j

cij s
+ 2�

√
2Khj

εn

∑

i∈Rn,j

cijn

= 2�c
√
2Khj (

1

εs

+ 1

εn

)

= 2�c
√
2Khj

(
1

(1 + β)ε
+ 1

( 1
β

+ 1)ε

)

= 2�
√

K

ε

√
2hj c

Then each element in pj = {pj1, pj2, ..., pjl, ..., pjK } is distributed as Lap( 2�
√

K
ε

) based

on Lemma 1, which is equal to that we randomly picked each pjl from the Lap( 2�
√

K
ε

)

distribution, whose probability density function is Pr(pjl) = ε

4�
√

K
e
− ε|pjl |

2�
√

K .

Let D1 and D2 be two datasets only differ from one record Rab and R̃ab, which can be
sensitive or non-sensitive. From the different inputs D1 and D2, we obtain the same output,
i.e., the same derived V. Since the derived V are the optimized result after convergence, we
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then have ∂J (D1)
∂vj

= ∂J (D2)
∂vj

= 0 as (9), which then can be formulated as,

2
n∑

i=1

Iij (uT
i vj − Rij )ui + pj = 2

n∑

i=1

Iij (uT
i vj − R̃ij )ui + p̃j (15)

As feedbacks in D1 and D2 only differs from Rab and R̃ab, then we can get

pj − p̃j = 2ui (Rab − R̃ab).

Considering |Rab − R̃ab| ≤ � and ||ui || ≤ 1, it’s obvious ||pj − p̃j || ≤ 2�.
We then formulate the probability that we get the same derived V with the different

datasets D1 and D2 after convergence. For each vector vj of V, we have

Pr[vj |D1]
Pr[vj |D2] =

∏
l∈{1,2,...,K} Pr(pjl)∏
l∈{1,2,...,K} Pr(p̃jl)

= e
− ε

∑
l |pjl |

2�
√

K /e
− ε

∑
l |p̃j l |

2�
√

K = e

ε
∑

l (|pjl |−|p̃j l |)
2�

√
K

≤ e

ε
√

K
∑

l (pj l−p̃j l )
2

2�
√

K = e

ε
√

K||pj −p̃j ||
2�

√
K ≤ eε

(16)

So, we obtain the conclusion.

6.2 Proof of Theorem 2

With the characteristic of normal distribution and Lemma 1, we know 2
∑

f ∈Fi
qf

i ∼
Lap( 2

√
K

ε
).

Let D1 and D2 be two datasets only differ from one record uf
i and ũf

i . From the different
inputs D1 and D2, we obtain the same output, i.e., the same derived U. Since the derived
U is the optimized results after convergence, then we know ∂J (D1)

∂ui
= ∂J (D2)

∂ui
= 0 as (10),

which can be formulated as,

qf
i + 2

∑

f ∈Fi

Sif (ui − uf ) = q̃f
i + 2

∑

f ∈Fi

Sif (ui − ũf ) (17)

As there’s only one difference forD1 andD2, then we can get q
f
i −q̃f

i = 2
∑

f ∈Fi
Sif (uf −

ũf ). Considering |Sif − S′
if | ≤ 1 and ||uf || ≤ 1, it’s obvious ||qf

i − q̃f
i || ≤ 2.

We then formulate the probability that we get the same derived U with the different
datasets D1 and D2. Similar to (16), for each ui of U, we have

P [ui |D1]
P [ui |D2] ≤ eε . So, we obtain

the conclusion.

6.3 Proof of Theorem 3

We combine the rating model and social relation model together in (8). Since we don’t
jointly optimize (8) w.r.t. V and U, we then optimize (8) w.r.t. V and U separately with (9)
and (10).

For V, the only difference of derivative of (6) and (9) w.r.t. vj is the regularization 2λvj .
Then we should add 2λvj on both sides of (15). Since both datasets get the same vj , then
the results won’t change. The derived V still satisfies ε-differential privacy.

For U, because of the difference of derivative and (7) and (10) w.r.t. ui , we need to add
2

∑m
j=1 Iij (u

T
i vj −Rij )vj +2λui on both sides of (17). Since D1 and D2 are only different
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at uf and ũf , then ||qf
i − q̃f

i || won’t change, thus the derived U still satisfies ε-differential
privacy.

In conclusion, Algorithm 1 satisfies ε-differential privacy, which means attackers can’t
learn users’ sensitive feedbacks or other user’ latent profile in the whole process.

6.4 Proof of Theorem 4

Similar to Section 6.1, each element in pj = ∑
i x

′i
j + ∑

i y
′i
j is distributed as Lap(

√
K
ε

).

Then letD1 andD2 be two datasets only differ from one feedbackRij and R̃ij , which can be
sensitive or non-sensitive. From the different inputs D1 and D2, we obtain the same output,
i.e., the same derived V. Since the derived V are the optimized result after convergence, we
then have ∂J2(D1)

∂vj
= ∂J2(D2)

∂vj
= 0. Suppose the different feedbacks are from Pi , which then

can be formulated as,

∑

i:(i,j)∈Pi

σ iP
j +

∑

i:(i,j)∈Fi

σ iF
j +

∑

i:(i,j)∈Ni

σ iN
j + pj =

∑

i:(i,j)∈Pi

σ̃ iP
j +

∑

i:(i,j)∈Fi

σ iF
j +

∑

i:(i,j)∈Ni

σ iN
j + p̃j

(18)

As feedbacks in D1 and D2 only differs from σ iP
j and σ̃ iP

j , then we can get

pj − p̃j = σ̃ iP
j − σ iP

j .

It is the similar case if the different feedbacks are from Fi or Ni . As
∑

i:(i,j)∈Pi
σ iP

j =
∑

(i,j,k)∈DPF
ψijkui ,

∑
i:(i,j)∈Fi

σ iF
j = − ∑

(i,k,j)∈DPF
ψikjui + ∑

(i,j,k)∈DFN
ψijkui and∑

i:(i,j)∈Ni
σ iN

j = − ∑
(i,k,j)∈DFN

ψikjui , considering |ψ̃ijk −ψijk| < 1 and ||ui || ≤ 1, it’s
obvious ||pj − p̃j || ≤ 1.

We then formulate the probability that we get the same derived V with the different
datasets D1 and D2 after convergence. Similar to (16), for each vector vj of V, we have
Pr[vj |D1]
Pr[vj |D2] ≤ eε . Then similar to Section 6.3, we obtain the conclusion.

7 Experimental evaluation

In this section, we conduct experimental evaluation to validate the effectiveness of PrivSR.
We aim to answer two questions:

– Can PrivSR improve recommendation effectiveness by incorporating social relation-
ships?

– Can it protect sensitive feedbacks under reconstruction attack while retaining recom-
mendation effectiveness?

In the following, we first introduce our datasets and experimental settings, then we conduct
experimental evaluation followed by parameter sensitivity analysis.
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Table 1 Statistics of the datasets
Dataset Ciao Epinions

# of users 7,193 17,950

# of items 21,889 49,760

# of ratings 183,415 508,936

# of relationships 28,513 14,017

7.1 Datasets and experimental settings

Two publicly available datasets Ciao3 and Epinions4 are used for evaluation. For both
datasets, users feedbacks are ratings although we can have the similar results with other
kinds of feedbacks. Users’ ratings are from 1 to 5 and users can establish social relations
with others. Detailed statistics of these two datasets are shown in Table 1. These two datasets
possess social relations of different sparsity which can help validate effectiveness and gener-
ality of PrivSR. For each dataset, to simulate the setting of personalized privacy preferences,
we randomly select x percent of the ratings as sensitive ratings and the remaining 100 − x

as non-sensitive ratings. We vary x as {0, 10, . . . , 50} and use five-fold cross validation for
the following experiments.

To evaluate the performance of recommendation and reconstruction attack, we use the
two popular metrics Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).
The MAE is defined as

MAE =
∑

(i,j)∈R |R̂ij − Rij |
|R| (19)

where R̂ij is the predicted rating from ui to vj . The RMSE is defined as

RMSE =
√∑

(i,j)∈R(R̂ij − Rij )2

|R| (20)

For recommendation, smaller MAE denotes better performance. For reconstruction attack
on sensitive rating, larger MAE means better protection performance. Note that previous
work demonstrated that small improvement in MAE/RMSE terms can have a significant
impact on the quality of the top-few recommendation [16]. We compare among three
representative state-of-the-art recommender systems:

– MF: matrix factorization tries to decompose the user-item rating matrix into two
matrices for recommendation [18].

– SoReg: this method incorporates social regularization on matrix factorization to
represent the social constrains on recommender systems [23].

– DPMF: differential private matrix factorization [12] treats all ratings private and uses
equally perturbed noise for latent matrix learning.

For each mechanism, the parameters are tuned via cross-validation on training data, we then
set γ = 10−4, λ = 10−3, α = 10−2 and the dimension d = 10. For convenience, we fix
β = 0.1 for PrivSR in the first two experiments, and accordingly εs = 1.1ε and εn = 11ε.

3http://www.ciao.co.uk/
4http://www.epinions.com/

http://www.ciao.co.uk/
http://www.epinions.com/
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(a) Similarity on Ciao (b) Similarity on Epinions

Figure 4 Friends similarity with non-sensitive data and the whole dataset

More details about parameter selection for the proposed framework will be discussed in the
following subsections.

7.2 Feasibility analysis

Since nobody except users themselves can get the sensitive ratings, we calculate the simi-
larity between friends with only non-sensitive datasets. Figure 4a and b show that within an
appropriate range, the difference between similarity calculated by the whole datasets and
by only non-sensitive data is acceptable, which also meets the statistic that users set around
10% of their posts private in the real-world social networks.5

To better understand the proposed model, we also plot the CDF of each iteration in
Figure 5a and b. From intuition, since we add noise in each iteration, it seems that the more
iterations, the worse recommendation performance. However, Figure 5a and b indicate the
iterations help the model converge and offer smaller prediction errors.

7.3 Recommendation effectiveness comparison

To answer the first question, we evaluate the recommendation effectiveness on the test
datasets. To provide a fair comparison on these approaches, we provide the same input rat-
ings to these baselines no matter whether or not they can protect users’ privacy. The average
MAE and RMSE results are shown in Figures 6 and 7, from which we observe:

– When x = 0, PrivSR with ε = 0.1 can perform almost as good as SoReg, which
confirms that noise perturbation on non-sensitive ratings will not significantly affect
recommendation effectiveness.

– SoReg consistently provides the best recommendation effectiveness, showing that
social relationships can help increase recommendation performance.

– In general, PrivSR with ε = 0.1 slightly inferior than SoReg but outperforms other
methods though we attach great noises, which shows the tradeoff between recommen-
dation effectiveness and privacy protection, and also proves the effectiveness of the
well-balanced privacy budgets for sensitive and non-sensitive ratings.

5https://techcrunch.com/2009/10/05/twitter-data-analysis-an-investors-perspective-2

https://techcrunch.com/2009/10/05/twitter-data-analysis-an-investors-perspective-2
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(a) CDF on Ciao (b) CDF on Epinions

Figure 5 CDF of prediction error with varying iterations

– Although the privacy budget of PrivSR with ε = 0.05 is much smaller than DPMF
with ε = 0.1, the corresponding recommendation effectiveness of PrivSR is better
than DPMF when the percentage of private ratings is not too large. In real world, the
percentage of sensitive ratings is usually around 10% [39], thus PrivSR with ε = 0.05
can still achieve very good recommendation effectiveness in practical.

Based on the aforementioned observations, we conclude that PrivSR can improve recom-
mendation effectiveness by utilizing rich social relationships and designing well-balanced
privacy budgets for sensitive and non-sensitive ratings.

7.4 Privacy protection comparison

To answer the second question, we simulate the reconstruction attack. There are mul-
tiple options for conducting reconstruction attack [9]. We conduct it using the matrix
factorization-based model. Since attackers can obtain both V andRn, they can infer a rough

(a) MAE on Ciao (b) MAE on Epinions

Figure 6 Recommendation performance comparison in terms of MAE



World Wide Web

(a) RMSE on Ciao (b) RMSE on Epinions

Figure 7 Recommendation performance comparison in terms of RMSE

user latent profile ũi of the victim ui by solving the following equation:

min
Ũ

n∑

i=1

m∑

j=1

Gij (Rij − ũT
i vj )

2 (21)

By using gradient descend, all the sensitive ratings can be obtained by Ũ and V. We
want to protect sensitive ratings, such that prediction of sensitive ratings is inaccurate, and
a larger MAE/RMSE value on sensitive ratings represents a better privacy protection. From
Figures 8 and 9, we can obtain the following observations:

– Noise perturbation helps increase the level of privacy protection against reconstruction
attacks.

– With the similar privacy budget, the level of privacy protection provided by PrivSR
and DPMF are similar. However, PrivSR can achieve better recommendation effective-
ness with different privacy budgets for sensitive and non-sensitive ratings. We perform
t-test on recommendation effectiveness of PrivSR and DPMF with the same privacy
budgets for sensitive ratings. The test results show that the improvement is statistically

(a) MAE on Ciao (b) MAE on Epinions

Figure 8 Privacy protection comparison in terms of MAE
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(a) RMSE on Ciao (b) RMSE on Epinions

Figure 9 Privacy protection comparison in terms of RMSE

significant. These results indicate PrivSR can achieve a better balance between privacy
protection and recommendation effectiveness in practical.

– PrivSR with a lower privacy budget can significantly increase the level of privacy pro-
tection while being able to retain a good recommendation effectiveness, especially
when the percentage of private ratings x is smaller than 20% which can still meet the
users’ needs of privacy protection in real world [39].

Based on the aforementioned observations, we conclude that PrivSR outperforms the
state-of-the-art recommender systems on privacy protection while retaining great recom-
mendation effectiveness.

7.5 Impact of parameters ε and β

For simplification, we set x = 10 in the following experiments, based on the real-world
statistical results [39]. We randomly select 10% ratings of the entire datasets as the sensi-
tive rating set. To understand the impact of ε and β, we change ε from {0.01, 0.05, 0.1, 0.5,
1} with fixed β = 1. Also, we vary β from {0.01, 0.05, 0.1, 0.5, 1} with fixed ε = 0.01.
The results are shown in Figures 10 and 11, from which we observe that: 1) Larger privacy

(a) Performance with (b) Performance with

Figure 10 Performance with varying parameters in terms of MAE
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(a) Performance of (b) Performance of

Figure 11 Performance with varying parameters in terms of RMSE

budget indicates less noise, resulting in better recommendation effectiveness and worse pri-
vacy protection. This is a common observation about the trade-off between privacy and
utility [18, 26, 41]. 2) With fixed ε, the recommendation effectiveness stays the same, while
larger β indicates larger privacy budget for sensitive data and smaller for the non-sensitive,
which makes the privacy protection decrease on the sensitive ratings.

7.6 Evaluating the extended PrivSR

For ranking formed matrix factorization to model implicit feedbacks, similar to (21), attack-
ers can obtain V and Rn, and then they can also infer a rough user latent profile ũi of the
victim ui though by solving the following equation:

max
Ũ

∑

(i,j,k)∈D

lnφ(ũT
i vj − ũT

i vk) (22)

where D = {(i, j, k)|Gij = 1 ∧ Gik 
= 1}. Following the common way [4, 31, 42,
44, 48], we remove all negative rating feedbacks (less than 4 stars) of Ciao dataset and
treat remaining observed ratings as positive implicit feedbacks of “like” or “purchase”. We
conduct experiments, setting β = 1 and ε = 0.1, with baseline schemes BPR [31] and

(a) (b)

Figure 12 Recommendation performance comparison of the extended PrivSR
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(a) (b)

Figure 13 Privacy protection comparison of the extended PrivSR

SBPR [48]. To evaluate precision and recall of top k results from implicit feedbacks, we use
two broadly used metrics precision@k and recall@k, where we set k to be 5. Note that
a higher precision@k and recall@k indicate a better recommendation effectiveness and
worse privacy protection.

The experimental results are shown in Figures 12 and 13: 1) Based on the the recommen-
dation effectiveness and privacy protection of SBPR and BPR, we can observe that social
relationships help increase top k recommendation effectiveness but involve in more poten-
tial privacy leakage. 2) Compared to BPR, the extended PrivSR can effectively increase
the level of privacy protection while can even achieve better recommendation effectiveness
when percentage of sensitive feedbacks is less than 30%, which shows the extended PrivSR
can achieve a good balance between privacy protection and recommendation effectiveness.
3) Compared to SBPR, the extended PrivSR can outperform on privacy protection but not on
recommendation performance, which proves that there is tradeoff between recommendation
effectiveness and privacy protection.

In real world, users are more likely to regards some types of items as sensitive, such as,
items in “health”, “adult products” and “family” categories. In dataset Ciao, we select sensi-
tive feedbacks in two ways: 1) selection based on selected item types, i.e., set items in these
three categories as sensitive; and 2) randomly selection, i.e., randomly select feedbacks and
set them sensitive. We conduct experiments with the same number of sensitive feedbacks,

(a) (b)

Figure 14 Comparison of different sensitive feedbacks selection
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and the results are shown in Figure 14. We can observe that: compared to randomly selec-
tion, selection based on selected item types can achieve similar recommendation effective
but obtain much better privacy protection, which proves that our PrivSR can even perform
better in practical.

8 Conclusion and future work

In this paper, we study the problem of privacy-preserving social recommendation with per-
sonalized privacy settings. We propose a novel differential privacy-preserving framework
in a semi-centralized way which can protect users’ sensitive ratings while being able to
retain the effectiveness of recommendation. Theoretic analysis and experimental evalua-
tion on real-world datasets demonstrate the effectiveness of the proposed framework for
recommendation and privacy protection.

There are several directions can be further investigated. First, in this paper, we build
our model based on traditional machine learning methods. We would like to study privacy
preserving social recommendation with deep learning techniques. Second, in this paper, we
only consider static recommender systems. We would like to investigate privacy preserving
issue for temporal and dynamic data [17] as well.
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