
Using a Random Forest to Inspire a Neural Network and Improving on It

Suhang Wang∗† Charu Aggarwal‡ Huan Liu§

Abstract

Neural networks have become very popular in recent years

because of the astonishing success of deep learning in vari-

ous domains such as image and speech recognition. In many

of these domains, specific architectures of neural networks,

such as convolutional networks, seem to fit the particular

structure of the problem domain very well, and can there-

fore perform in an astonishingly effective way. However, the

success of neural networks is not universal across all do-

mains. Indeed, for learning problems without any special

structure, or in cases where the data is somewhat limited,

neural networks are known not to perform well with respect

to traditional machine learning methods such as random

forests. In this paper, we show that a carefully designed

neural network with random forest structure can have bet-

ter generalization ability. In fact, this architecture is more

powerful than random forests, because the back-propagation

algorithm reduces to a more powerful and generalized way

of constructing a decision tree. Furthermore, the approach

is efficient to train and requires a small constant factor of

the number of training examples. This efficiency allows the

training of multiple neural networks in order to improve the

generalization accuracy. Experimental results on 10 real-

world benchmark datasets demonstrate the effectiveness of

the proposed enhancements.

1 Introduction

Neural networks have become increasingly popular in re-
cent years because of their tremendous success in image
classification [1, 2], speech recognition [3, 4] and natural
language processing tasks [5, 6]. In fact, deep learning
methods have regularly won many recent challenges in
these domains [3, 7]. This success is, in part, because the
special structure of these domains often allows the use of
specialized neural network architectures such as convo-
lutional neural networks [3], which take advantage of the
aspects like spatial locality in images. Images, speech
and natural language processing are rather specialized
data domains in which the attributes exhibit very char-
acteristic spatial/temporal behavior, which can be ex-
ploited by carefully designed neural network architec-

∗Part of the work is done during first author’s internship at
IBM T.J Watson
†Arizona State University, suhang.wang@asu.edu
‡IBM T.J. Watson, charu.aggarwal@us.ibm.com
§Arizona State University, huan.liu@asu.edu

tures. Such characteristics are certainly not true for
all data domains, and in some cases a data set may be
drawn from an application with unknown characteristic
behaviors.

In spite of the successes of neural networks in spe-
cific domains, this success has not been replicated across
all domains. In fact, methods like random forests [8, 9]
regularly outperform neural networks in arbitrary do-
mains [10], especially when the underlying data sizes
are small and no domain-specific insight has been used
to arrange the architecture of the underlying neural net-
work. This is because neural networks are highly prone
to overfitting, and the use of a generic layered architec-
ture of the computation units (without domain-specific
insights) can lead to poor results. The performance of
neural networks is often sensitive to the specific archi-
tectures used to arrange the computational units. Al-
though the convolutional neural network architecture is
known to work well for the image domain, it is hard to
expect an analyst to know which neural network archi-
tecture to use for a particular domain or for a specific
data set from a poorly studied application domain.

In contrast, methods like decision forests are con-
sidered generalist methods in which one can take an
off-the-shelf package like caret [11], and often outper-
form [10] even the best of classifiers. A recent study [10]
evaluated 179 classifiers from 17 families on the entire
UCI collection of data sets, and concluded that ran-
dom forests were the best performing classifier among
these families, and in most cases, their performance was
better than other classifiers in a statistically significant
way. In fact, multiple third-party implementations of
random forests were tested by this study and virtually
all implementations provided better performance than
multiple implementations of other classifiers; these re-
sults also suggest that the wins by the random forest
method were not a result of the specific implementa-
tions of the method, but are inherent to the merit of
the approach. Furthermore, the data sets in the UCI
repository are drawn from a vast variety of domains,
and are not specific to one narrow class of data such as
images or speech. This also suggests that the perfor-
mance of random forests is quite robust irrespective of
the data domain at hand.

Random forests and neural networks share impor-
tant characteristics in common. Both have the ability to

model arbitrary decision boundaries, and it can be ar-
gued that in this respect, neural networks are somewhat
more powerful when a large amount of data is available.
On the other hand, neural networks are highly prone
to overfitting, whereas random forests are extremely
robust to overfitting because of their randomized en-
semble approach. The overfitting of neural networks is
an artifact of the large number of parameters used to
construct the model. Methods like convolutional neu-
ral networks drastically reduce the number of parame-
ters to be learned by using specific insights about the
data domain (e.g., images) at hand. This strongly sug-
gests that the choice of a neural network architecture
that drastically reduces the number of parameters with
domain-specific insights can help in improving accuracy.

Domain-specific insights are not the only way in
which one can engineer the architecture of a neural
network in order to reduce the parameter footprint. In
this paper, we show that one can use inspiration from
successful classification methods like random forests
to engineer the architecture of the neural network.
Furthermore, starting with this basic architecture, one
can improve on the basic random forest model by
leveraging the inherent power in the neural network
architecture in a carefully controlled way. The reason
is that models like random forests are also capable of
approximating arbitrary decision boundaries but with
less overfitting on smaller data sets.

It is noteworthy that several methods have been
proposed to simulate the output of a decision tree (or
random forest) algorithm on a specific data set, once it
has already been constructed [12, 13]. In other words,
such an approach first constructs the decision tree (or
random forests) on the data set up front, and then
tries to simulate this specific instantiation of the random
forest with a neural network. Therefore, the constructed
random forest is itself an input to the algorithm. Such
an approach defeats the purpose of a neural network in
the first place, because it now has to work with the strait
jacket of a specific instantiation of the random forest.
In other words, it is hard to learn a model, which is
much better than the base random forest model, even
with modifications.

In this paper, we propose a fundamentally differ-
ent approach to design a basic architecture of the neu-
ral network, so that it constructs a model with similar
properties as a randomized decision tree, although it
does not simulate a specific random forest. A different
way of looking at this approach is that it constructs a
neural network first, which has the property of being in-
terpreted as a randomized decision tree; therefore, the
learning process of the neural network is performed di-
rectly with backpropagation and no specific instantia-
tion of a random forest is used as input. On the other

hand, a mapping exists from an arbitrary random forest
to such a neural network, and a mapping back exists as
well. Interestingly, such a mapping has also been shown
in the case of convolutional neural networks [14, 15], al-
though the resulting random forests have a specialized
structure that is suited to the image domain [15]. This
paper will focus on designing a neural network architec-
ture which has random forest structure such that it has
better classification ability and reduced overfitting. The
main contributions of the paper are listed as follows:

• We propose a novel architecture of decision-tree
like neural networks, which has similar properties
as a randomized decision tree, and an ensemble of
such neural networks forms the proposed frame-
work called Neural Network with Random Forest
Structure (NNRF);

• We design decision making functions of the neural
networks, which results in forward and backward
propagation with low time complexity and with
reduced possibility of overfitting for smaller data
sets; and

• We conduct extensive experiments to demonstrate
the effectiveness of the proposed framework.

2 A Random Forest-Inspired Architecture

In this section, we introduce the basic architecture
of the neural network used for the learning process.
Throughout this paper, matrices are written as boldface
capital letters such as M, Wij , and vectors are denoted
as boldface lowercase letters such as p and pij . M(i, j)
denotes the (i, j)-th entry of M while M(i, :) and M(:, j)
denotes the i-th row and j-th column, respectively.
Similarly, p(i) denotes the i-th elements of p.

In conventional neural networks, the nodes in the
input layer are cleanly separated from the hidden layer.
However, in this case, we will propose a neural network
in which a clear separation does not exist between the
nodes of the input and hidden layers. The internal nodes
are not completely hidden because they are allowed to
receive inputs from some of the features. Rather, the
neural network is designed with a hierarchical architec-
ture, much like a decision tree. Furthermore, just as
a random forest contains multiple independent decision
trees, our approach will use multiple independent neural
networks, each of which has a randomized architecture
based on the randomized choice of the inputs in the
“hidden” layers. As we will see later, each neural net-
work can be trained extremely efficiently, which is what
makes this approach extremely appealing.

The total number of layers in the neural network
is denoted by d, which also represents the height of
each decision tree in the random forest that the neural

FI
N

A
L

A
G

G
R

EG
A

TO
R

(S
o

ft
m

ax
)

N11

N21

N22

N31

N32

N33

N34

𝒇11

𝒇21

𝒇22

𝒇34

𝒇31

𝑾11

𝑾21

𝑾22

𝑾31

𝑾32

𝑾33

𝑾34 𝑾

𝒒

𝒔11(2)

𝒔11(1)

𝒑31(1)

𝒑31(2)

Figure 1: An Illustration of the Decision Tree Struc-
tured Neural Network Architecture with d = 3

network is simulating. Thus, one input parameter to
the algorithm is the number of layers d of the neural
network. The neural network is structured exactly like
a binary decision tree, with each node simulating a split
and having two outputs out of which exactly one is
active. These two outputs feed into a unique node of
the next layer of the neural network. Therefore, the
number of nodes always doubles from one layer to the
next. Thus, the total number of nodes in the neural
network is given by 1+21 + . . .+2d−1, which is equal to
2d − 1. In addition, there is a special output node that
takes as its input the 2d−1 nodes in the final layer, and
combines them in order to provide a single prediction of
the class label.

Although the number of nodes might seem large, we
will see that the required value of d is often quite modest
in real settings because the neural network nodes are
able to simulate more powerful splits. Furthermore,
because of the tree structure of the neural network,
the number of parameters to be learned is quite modest
compared to the number of nodes. This is an important
factor in avoiding overfitting. Another parameter input
to the algorithm is r, which is the number of features
that are randomly selected in order to perform the split
at each node. In a traditional random forest, the bag of
features to be used for a split at each node is selected
up front. Similarly, while setting up the architecture of
each neural network, each node in the tree has a bag of
features that are fixed up front. Thus, the architecture
of the neural network is inherently randomized, based
on the input features that are selected for each node.
As we will see later, this property is particularly useful
in an ensemble setting.

The overall architecture of a 3-layer neural network
is illustrated in Figure 1. For ease of explanation, we
name the nodes asNij , which means the j-th node in the
i-th layer. A parent node Nij are connected to two child
nodes Ni+1,2j−1 and Ni+1,2j . For example, as shown in
the figure, N22 is the node 2 in layer 2 and are connected
to two child nodes N33 and N34. The network contains
three types of nodes:

• The nodes in the first layer are input nodes. These

nodes only have as input r randomly chosen fea-
tures from the input data. The node has two out-
puts, one of which is always 0 (i.e., inactive).

• The nodes in the middle layer are somewhat un-
conventional from the perspective of most neural
networks, in that they are hybrid between the hid-
den and in the input layer. They receive a single
input from an ancestor node (in the tree-like neural
structure), and also inputs from r randomly chosen
features (which were selected up front). Therefore,
the node can be viewed as a hybrid node belonging
to both the hidden layer and the input layer, since
some of its inputs are visible and one input is not.
Another important property of this node is that if
the hidden input is 0, then all outputs of this node
are 0. This is a crucial property in order to ensure
that only one path is activated by a given training
instance in the tree-like neural network structure.

• The single output node combines the outputs of all
the nodes to create a final prediction. However,
since only one path in the tree is activated at a
given time (i.e., only one of its incoming outputs is
nonzero), the output node only uses the one input
in practice.

Like a decision tree, only one path is activated in the
neural network at a given time. This particularly im-
portant, because it means that the backpropagation al-
gorithm only needs to update the weights of the nodes
along this path. This is a crucial property because it
means that one can efficiently perform the updates for
a single path. Therefore, the training phase for a single
neural network is expected to work extremely efficiently.
However, like any random forest, multiple such “minia-
ture” neural networks are used for prediction.

The overall prediction step uses an ensemble ap-
proach like a random forest. Each test instance is pre-
dicted with the different neural networks that have been
independently trained. These predictions are then av-
eraged in order to provide the final result.

A number of key properties of this type of neural
network can be observed:

• Like a decision tree, only one path in the neural net-
work is activated by a given instance. This makes
the backpropagation steps extremely efficient.

• The neural network is potentially more powerful
because the function computed at each internal
node can be more powerful than a univariate split.

• The backpropagation algorithm is more powerful
than the typical training process of a decision tree
which is very myopic at a given node. The back-
propagation effectively adjusts the split criterion

all the way from the leaf to the root, which results
in a more informed “split” criterion with a deeper
understanding of the training data.

3 Neural Network Design

Previous section gives the overall architecture of the
neural network, in this section, we give the inner
working of the neural network. We will first introduce
the inner working of decision making in each type
of node, which guarantees that only one-path will
be activated. We then introduce how to efficiently
perform back-propagation followed by time and space
complexity.

3.1 Details of the Proposed Neural Network
Let fij ∈ Rr×1 be the input features to node Nij , which
is fixed up front. Then given f11, N11 calculate the
output p11 as

(3.1) p11 = g(W11f11 + b11)

where W11 ∈ R2×r and b11 ∈ R2×1 are the weights
and the bias of N11. g(·) is the activation function
such as tanh and Leaky ReLu. Since Leaky ReLu
has the advantage of alleviating the gradient-vanishing
problem in deep nets and has been proven to outperform
tanh [16], in this work, we use Leaky ReLu. Then, g(x)
and the derivative of g(x) w.r.t x is given as
(3.2)

g(x) =

{
x, if x ≥ 0
0.2x, if x < 0

g′(x) =

{
1, if x ≥ 0
0.2, if x < 0

Since only one path will be activated, we need to decide
which path to take based on the values of p. Specifically,
we define the signal vector s11 ∈ R2×1 as

(3.3) s11(1) = I(a11(1),a11(2)) s11(2) = I(a11(2),a11(1))

where I(a, b) is an indicator function that if a ≥ b, then
I(a, b) = 1; otherwise, I(a, b) = 0. Thus, only one of
the elements in s11 will be 1 and s11(k) = 1, k = 1, 2
means that N2,k will be activated. s11(1) and p11(1)
will go to node N21, i.e., first node in layer 2; and s11(2)
and s11(2) will go to N22, i.e., 2-nd in layer 2, which
are shown in Figure 1, i.e., the black arrow with s11(k)
denote the signal s11(k) and the green line next to it is
p11(k), k = 1, 2. Then the outputs of N21 and N22 are
calculated as

p2j =

{
g
(
W2j

[
f2j

p11(j)

]
+ b11

)
if s11(j) == 1

0 ∈ R2×1, otherwise
(3.4)

s2j =

[I(p2j(1),p2j(2))
I(p2j(2),p2j(1))

]
if s11(j) == 1

0 ∈ R2×1, otherwise
(3.5)

where j = 1, 2. The idea behind Eq.(3.4) and Eq.(3.5) is
that if the input signal s11(j), j = 1, 2 is 0, then the path
to node N2,j is inactive. We just simply set the outputs
of N2,j as 0 ∈ R2×1. However, if s11(j) is 1, then we
use both p11(j) and the input feature f2j to calculate
p2j and s2j . This process guarantees that only one path
will be activated in next layer. For example, if s11(1) is
1, then s22 will be 0. And s21 will contain only one 1,
meaning that only one node will be activated in layer 3.
With the same procedure, given sij and pij , the outputs
of layer i+ 1, i = 2, . . . , d are given as

pi+1,t =

{
g
(
Wi+1,t

[
fi+1,t

pij(k)

]
+ bi+1,t

)
if sij(k) == 1

0 ∈ R2×1, otherwise

si+1,t =

[I(pi+1,t(1),pi+1,t(2))
I(pi+1,t(2),pi+1,t(1))

]
if sij(k) == 1

0 ∈ R2×1, otherwise

(3.6)

where t = 2(j − 1) + k and k = 1, 2. It is easy to verify
that Ni+1,t is connected by pij(k). Wi+1,t ∈ R2×(r+1)

is the weights of node Ni+1,t and bi+1,t ∈ R2×1 is the
corresponding bias. Eq.(3.6) shows that if sij = 0, then
none of its children are activated. Let d be the depth of
the neural network. Then the outputs pd,1, . . . ,pd,2d−1

are used as input to the final aggregator. The final
aggregator first aggregate all the inputs as one vector

For simplicity, we use p = [pT
d,1; . . . ,pT

d,2d−1]T ∈ R2d×1

to denote the aggregated vector. Then, a softmax
function is applied

(3.7) q(c) =
exp(W(c, :)p + b(c))∑C
k=1 exp(W(k, :)p + b(k))

where W ∈ RC×2d is the weights of the softmax,
b ∈ RC×1 is the bias terms and C is number of classes.
q gives the probability distribution that the input data
belongs to the C classes. For example, q(c) means the
probability that the input data sample belongs to class
c. With the estimated distribution, the cost function is
defined using cross-entropy between q and the ground-
truth distribution as follows

(3.8) L(y,q) = −
C∑
c=1

y(c) logq(c)

where y ∈ RC×1 is the one-hot coding of ground-truth
label, i.e., y(k) is 1 if the label is k, otherwise, it
is 0. By minimizing the cross-entropy, we want the
estimated distribution q to be as close as possible to
the ground-truth distribution y and thus we can train
a good neural network for prediction. Given training
data matrix X ∈ Rn×m and one-hot coding label matrix
Y ∈ Rn×C , where n is number of data samples, the

N11

𝑾11 → 𝒘1

N21

𝑾21 → 𝒘2

N32

𝑾32 → 𝑾3

FI
N

A
L

A
G

G
R

EG
A

TO
R

(S
o

ft
m

ax
)

𝑾

𝒒

𝒇11 → 𝒇1 𝒇21 → 𝒇2) 𝒇31 → 𝒇3

𝒑11(1)→ 𝑝1 𝒑21(2)→ 𝑝2

𝟎

𝟎

𝟎

Figure 2: An Example of Reduced Neural Network

objective function is written as

(3.9) min
θ
− 1

n

n∑
l=1

L(Y(l, :), T (X(l, :)) + αR(θ)

where θ = {W,b,Wij ,bij}i=1,...,n,j=1,...,2i−1 is the
set of parameters to be learned in the tree structured
neural network T and T (X(l, :)) is the estimated class
distribution of the input data X(l, :). R(θ) is the
regularizer to avoid over-fitting, which is defined as

(3.10) R(θ) = ‖W‖2F + ‖b‖2 +

d∑
i=1

2i−1∑
j=1

‖Wij‖2F

3.2 Efficient Backpropagation We use back-
propagation to train the tree structured neural network.
Let us focus on the cost function in Eq.(3.8) to show
how to perform efficient back-propagation as extension
to Eq.(3.9) is simple. For simplicity of notation, let’s

denote −
∑C

c=1 y(c) log q(c) as J .
Consider that if we take derivative of J w.r.t to

Wij . The term that involves Wij is through pij .
However, if Nij is inactive, i.e., if the input signal to
Nij is 0, then pij is set to 0 and is independent with
Wij . In this case, the derivative of J w.r.t Wij is
0 and there’s no need to update Wij . Thus, we can
safely remove inactive nodes from the neural network,
which reduces the tree structured neural network to a
small neural network. Figure 2 gives an example of
the reduced network of the full network in Figure 1
assuming that the active path is N11 → N21 → N32.
For simplicity of explanation, we rewrite the weights
and bias in the i-th layer of the simplified neural network
as wi and bi, the features of each node as fi, the link
connecting i−1-th layer to i-th layer as pi. For example,
as shown in Figure 2, w1 = W11(1, :), w2 = W21(2) and
W3 = W32, f1 = f11, f2 = f21, f3 = f32, p1 = p11(1) and
p2 = p21(2). Then performing backpropagation on the
simplified network is very efficient as it only involves a
small number of parameters and the network is narrow.
The details of the derivative are given as follows. Let
u(c) = W(c, :)p + b(c), we define the “error” as δ(c) as

(3.11) δ(c) =
∂J
∂u(c)

= q(c)− y(c), c = 1, . . . , C

Then, we have

(3.12)
∂J

∂W(c, :)
= δcp

T ,
∂J
∂b(c)

= δc

Similarly, let ud = Wd

[
fd

pd−1

]
+ bd, then for k = 1, 2

(3.13)

δd(k) =
∂J

∂ud(k)
=
∑
c

δ(c)W(c, ind(pd(k)))g′(ud(k))

∂J
∂Wd(k)

= δd(k)[fTd , pd−1],
∂J

∂dd(k)
= δd(k)

where ind(pd(k)) is the index of the element in W(c, :)
that multiplied with pd(k). With the same idea, for

i = d− 1, . . . , 1, let ui = wi

[
fi

pi−1

]
+ bi, then we can get

δi =
∂J
∂ui

=

{ ∑2
k=1 δd(k)Wd(k, r + 1)g′(ui), i = d− 1

δi+1wi+1(r + 1)g′(ui), i = d− 2, . . . , 1

∂J
∂wi

=

{
δi[f

T
i , pi−1], i = d− 1, . . . , 2

δ1f
T
1 , i = 1

(3.14)

∂J
∂di

= δi, i = d− 1, . . . , 1

3.3 Algorithm for NNRF The algorithm to train
a d-layer tree structured neural network is shown in
Algorithm 1. We first draw a bootstrap sample in Line
1. From Line 2 to Line 5, we draw the input feature for
each node of the neural network. From Line 8 to Line
9, we update the parameters using back-propagation.

Following the same idea as random forest, we
aggregate N independently trained neural networks for
classification, which we name as Neural Network with
Random Forest Structure (NNRF). The algorithm of
NNRF is shown in Algorithm 2. For an input x,
the predicted class distribution is by aggregating the
predicted class distribution from the N neural networks

(3.15) qa =
1

N

N∑
i=1

Ti(x)

Then the label is predicted as the class with the highest
probability, i.e, y = arg maxc qa.

3.4 Time Complexity Since there are only one
active path for each input data sample, the cost of
performing forward propagation up to depth d using
Eq.(3.6) is O(rd). Since p only has two nonnegative
elements, the cost of softmax in Eq.(3.7) to get q is
O(C). Therefore, the cost of forward propagation is
O(rd+C) for each data sample in each tree. Similarly,
the cost of backward propagation using Eq.(3.13) and
Eq.(3.14) is also O(C + rd). Thus, the total cost of
training N tree structured neural networks with depth
d is O(t(C + rd)nN), where t is number of epochs
for training each neural network. Since r is usually
chosen as

√
m, the total cost is approximately O(t(C +√

md)nN), which is modest and thus the training is
efficient.

Algorithm 1 Decision Tree Structured Neural Network

Require: X ∈ Rn×m,y ∈ Rn×1, d, r, α
Ensure: d-layer tree structured neural network

1: Draw a bootstrap sample X∗ of size N from X
2: for i = 1:d do
3: for j = 1:2i−1 do
4: Construct fij by selecting r features at ran-

dom from the m features of X∗

5: end for
6: end for
7: repeat
8: Forward propagation to get cost
9: Backward propagation to update parameters

10: until convergence
11: return Tree Structured Neural Network

Algorithm 2 NNRF

Require: X ∈ Rn×m,y ∈ Rn×1, d,N, r, α
Ensure: N d-layer tree structured neural networks

1: for b = 1:N do
2: Construct and Learn Tree Structured Neural

Network Ti with Algorithm 1
3: end for
4: return {Ti}Ni=1

3.5 Number of Parameters The main parame-
ters in a decision tree like neural network are Wij ∈
R2×(r+1) and bi ∈ R2×1, i = 2, . . . , d, j = 1, . . . , 2i−1,

W1 ∈ R2×r and W ∈ RC×2d . Thus, the number of pa-
rameters is approximately O(2d(2r + C)). Considering
the fact that d is usually set as blog2 Cc + 1 and r is
usually chosen as

√
m, the space complexity is approxi-

mately O((
√
m+C) ·2C), which is modest and thus can

be well trained even when the data size is small.

4 Experimental Results

In this section, we conduct experiments to evaluate
the effectiveness of the proposed framework NNRF. We
begin by introducing datasets and experimental setting,
then we compare NNRF with state-of-the-art classifiers.
Further experiments are conducted to investigate the
effects of the hyper-parameters on NNRF.

4.1 Datasets and Experimental Settings The
experiments are conducted on 10 publicly available
benchmark datasets, which includes 5 UCI1 datasets,
i.e., forest type mapping (ForestType), speech record of
26 alphabets (Isolet), sonar signals of mines v.s. rocks
(Sonar), chemical analysis of wines (Wine) and Wiscon-

1All the 5 UCI datasets are available at
https://archive.ics.uci.edu/ml/datasets.html

Table 1: Statistics of the Dataset

Dataset # Samples # Feature # Class
COIL20 1,440 1,024 20

ForestType 523 26 4
Isolet 7,797 617 26

Bioinfomatics 391 20 3
Sonar 208 60 2
USPS 9,298 256 10
Wine 178 13 3

Movement 360 90 15
MSRA 1,799 256 12
wdbc 569 30 2

sin diagnostic breast cancer (wdbc), 3 image datasets,
i.e., images of 20 objects (COIL-20)2, images of hand-
written digits (USPS)3 and images of faces (MSRA)4,
one bioinfomatics dataset (Bioinformatics) [17] and one
hand movement dataset (Movement)5. We include
datasets of different domains and different format so as
to give a comprehensive understanding of how NNRF
performs with datasets of various domains and format.
The statistics of the datasets used in the experiments
are summarized in Table 1. From the table, we can
see that these datasets are small datasets with differ-
ent number of classes. Deep learning algorithms with
large amount of parameter may not work well on these
datasets.

To evaluate the classification ability of the proposed
framework NNRF, two widely used classification evalua-
tion metrics, i.e., Micro-F1 and Macro-F1, are adopted.
The larger the Micro-F1 and Macro-F1 scores are, the
better the classifier is.

4.2 Classification Performance Comparison To
evaluate the ability of NNRF on classification, we
compare the proposed framework NNRF with other
classical and state-of-the-art classifiers. The details of
these classifiers are listed as follows:

• LR: Logistic regression [18], also known as max-
imum entropy classifier, is a popular generalized
linear regression model used for classification. We
use the implementation by scikit-learn [19].

• SVM: Support vector machine [20] is a classical and
popular classifier which tries to find the best hyper-
plane that represents the largest margin between
classes. We use the well-known libsvm [20] with
rbf kernel for classification.

2http://www.cs.columbia.edu/CAVE/software/softlib/coil-
20.php

3http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
multiclass.html#usps

4http://www.escience.cn/system/file?fileId=82035
5http://sci2s.ugr.es/keel/dataset.php?cod=165#sub2

Table 2: Classification results(Macro-F1%±std) of different classifiers on different datasets.

Dataset LR SVM NN RF NNRF
COIL20 96.07±1.09 97.97±1.25 98.11±1.07 99.93±0.13 99.93±0.12

ForestType 88.24±3.11 88.81±2.07 89.51±2.49 90.95±1.89 91.56±2.01
Isolet 95.49±0.51 95.68±0.48 95.65±0.72 94.34±0.39 95.72±0.51

Bioinfomatics 78.89±6.74 81.32±5.47 73.57±6.94 70.73±4.47 82.98±4.94
Sonar 75.96±7.04 80.78±3.24 82.74±4.51 84.92±6.00 86.12±4.98
USPS 93.45±0.37 94.86±0.27 94.21±0.43 95.10±0.34 95.60±0.36
Wine 59.61±3.96 70.82±3.67 68.11±5.62 66.87±2.44 71.10±3.19

Movement 68.94±2.91 76.41±4.16 82.10±3.81 82.12±2.74 83.02±2.96
MSRA 99.71±0.23 100±0.00 100±0.00 99.47±0.19 100±0.00
Wdbc 97.68±1.23 97.14±1.81 98.30±1.52 98.67±2.03 99.9±0.09

Table 3: Classification results(Micro-F1%±std) of different classifiers on different datasets.

Dataset LR SVM NN RF NNRF
COIL20 96.13±1.04 97.95±1.23 98.18±1.10 99.93±0.13 99.94±0.14

ForestType 89.62±2.15 89.62±1.94 90.57±1.83 91.51±1.85 92.45±1.90
Isolet 95.51±0.51 95.70±0.49 95.66±0.56 94.35±0.39 95.79±0.43

Bioinfomatics 82.50±4.11 85.01±2.92 80.09±4.13 78.75±3.15 86.25±3.02
Sonar 75.96±7.04 80.78±3.24 82.74±4.51 84.92±6.00 86.12±4.98
USPS 94.11±0.33 95.17±0.25 94.89±0.31 95.62±0.32 96.01±0.33
Wine 70.35±1.32 70.81±3.15 69.19±5.29 69.19±1.32 71.38±2.78

Movement 70.13±1.81 77.33±3.92 82.67±3.61 82.68±2.43 84.01±2.68
MSRA 99.73±0.21 100±0.00 100±0.00 99.45±0.22 100±0.00
Wdbc 97.68±1.23 97.14±1.81 98.30±1.52 98.67±2.03 99.9±0.09

• NN: This is a one hidden-layer feedforward neural
network [21] with softmax as the output layer
and cross-entropy as the classifier. We use the
implementation of Keras, which is a popular deep
learning and neural networks toolbox. Note that
we also tried neural networks with more hidden-
layers. However, generally, neural network with
one hidden-layer works best for the data used as
the sample sizes are small.

• RF: Random forest [8] is a classical and popular
ensemble based method which aggregate indepen-
dent decision trees for classification. It is one of
the most powerful classifiers [10]. We use the im-
plementation by scikit-learn.

For each classifier, there are some parameters to be
set. In the experiment, we use 10-fold cross validation
on the training data to set the parameters. Note that
no test data are involved in the parameter tuning.
Specifically, for NNRF, we empirically set r = d

√
m e,

d = blog2 Cc + 1, N = 150 and α = 0.00005. The
sensitivity of parameters r, d and N on the classification
performance of NNRF will be analyzed in detail in
Section 4.3. The experiments are conducted using 5-
fold cross validation and the average performance with
standard deviation in terms of Macro-F1 and Micro-F1
are reported in Tables 2 and 3, respectively. From the
two tables, we make the following observations:

• Generally, the four compared classifiers, i.e., LR,

SVM, NN and RF have similar performances in
terms of Macro-F1 and Micro-F1 on most of the
datasets used. They all performs well on most of
the datasets used.

• RF is slightly better than the remaining three clas-
sifiers on 6 datasets. This observation is consis-
tent with the observation in [10] that generally RF
achieves the best performance on the majority of
the datasets among 179 classifiers.

• NNRF outperforms the compared classifiers on the
majority of the datasets. Although NNRF also has
a tree structure like RF, it exploits a more powerful
neural network in each node to make decisions, i.e.,
linear combination of features followed by a non-
linear function. Furthermore, the backpropagation
algorithm receives feedback from the leaf nodes,
and therefore, it inherently constructs the “splits”
at the internal nodes with a deeper understanding
of the training data. Thus, it is able to make better
decisions than RF, and gives better performance.

We conduct the t-test on all performance compar-
isons and it is evident from t-test that all improvements
are significant. In summary, the proposed framework
can achieve better classification result by combining the
power from random forest structures and power from
activation functions of neural networks.

50 100 150 200
0.82

0.84

0.86

0.88

0.9

0.92

0.94

of trees

m
ac

ro
−F

1

RF
NNRF

(a) Bioinformactis

0 50 100 150 200
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

of trees

m
ac

ro
−F

1

RF
NNRF

(b) Movement

0 50 100 150 200

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

of trees

m
ac

ro
−F

1

RF
NNRF

(c) MSRA

0 50 100 150 200

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

of trees

m
ac

ro
−F

1

RF
NNRF

(d) Wdbc

Figure 3: Macro-F1 of RF and NNRF with different
number of trees on datasets ForestType, Movement,
MSRA and wdbc.

4.3 Parameter Analysis The proposed framework
has three important parameters, i.e., N , r and d, where
N is the number of neural networks, r is the size of
the randomly selected features in each node and d is
the depth of each neural network. In this section, we
investigate the impact of the parameters N , r and d
on the performance of the proposed framework NNRF.
Throughout the experiments, α is set to be 0.00005.

4.3.1 Effect of the Number of Trees N To in-
vestigate the effects of number of trees, N , on classi-
fication performance, we first fix r to be d

√
me and

d to be blog2 Cc + 1. We then vary the values of N
as {1, 5, 10, . . . , 195, 200}. We only show the results in
terms of Macro-F1 on ForestType, Movement, MSRA
and Wdbc as we have similar observations for the other
datasets and the evaluation metric Micro-F1. For com-
parison, we also conduct experiments with random for-
est. The experiments are conducted via 5-fold cross val-
idation and the average Macro-F1 for the four datasets
are shown in Figure 3. From the figure, we make the
following observations: (1) For both RF and NNRF, the
classification performance generally improves with the
number of trees N , although increasing beyond a cer-
tain point leads to diminishing returns. There are also
some random fluctuations in some data sets. From the
point of view of trade-offs between training cost and
performance, setting N to be a value within [50, 100]
seems like a reasonable point; and (2) From the point of
view of the comparative performance of RF and NNRF,
NNRF tends to consistently outperform RF when N in-
creases. This is because of the more powerful model in
NNRF both in terms of the functions at the individual
nodes, and the less myopic way in which these functions

Table 4: Macro-F1 of RF and NNRF with different r

Dataset Alg log2m
√
m m

4
m
2

Movement
RF 0.795 0.821 0.764 0.733

NNRF 0.825 0.830 0.819 0.810

USPS
RF 0.940 0.951 0.932 0.925

NNRF 0.945 0.956 0.941 0.928

Table 5: Micro-F1 of RF and NNRF with different r

Dataset Alg log2m
√
m m

4
m
2

Movement
RF 0.797 0.827 0.771 0.743

NNRF 0.835 0.841 0.825 0.818

USPS
RF 0.943 0.956 0.939 0.929

NNRF 0.951 0.960 0.945 0.933

2 3 4 5 6
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

depth d

Macro−F1
Micro−F1

(a) ForestType

3 4 5 6 7
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

depth d

Macro−F1
Micro−F1

(b) Movement

Figure 4: Macro-F1 and Micro-F1 of NNRF with
different d on ForestType and Movement

are trained with backpropagation.

4.3.2 Effect of the Number of Features r To
investigate the effects of the size of randomly se-
lected features, r, on classification performance, we first
set d as blog2 Cc + 1 and N to be 150. We then
vary r as {log2m,

√
m, m4 ,

m
2 }. Note that if any of

{log2m,
√
m, m4 ,

m
2 } is non-integer, we round it to the

nearest integer. We only show the results in terms of
Macro-F1 and Micro-F1 on Movement and USPS as we
have similar observations on the other datasets. We
conduct 5-fold cross validation and the average Macro-
F1 and Micro-F1 are reported in Table 4 and 5. From
the two tables, we make the following observations: (i)
Generally, for both RF and NNRF, the classification
performance is better when r is chosen as log2m or

√
m

than when r is chosen as m
4 or m

2 . This is because log2m
or
√
m is smaller than m

4 or m
2 and thus we introduce

more randomness and diversity into the model and can
thus learn a model with better generalization [22]; and
(ii) Comparing RF and NNRF, NNRF is more robust
and outperforms RF for different r, which shows the
effectiveness of NNRF.

4.3.3 Effect of the Neural Network Depth d To
investigate the effects of the neural network depth d, we
first set r as d

√
m e. We then vary d as {2, 3, 4, 5, 6}

for ForestType and {3, 4, 5, 6, 7} for Movement, which
is because Forest has 4 classes while Movement has
15 classes. We conduct 5-fold cross validation on

ForestType and Movement. The average performance in
terms of Macro-F1 and Micro-F1 are shown in Figure 4.
From the figure, we make the following observations: (i)
Generally, as d increases, the performance first increase
then converges or decrease a little; and (ii) When d is
chosen as blog2 Cc + 1, the performance is relatively
good. For example, for Movement, blog2 Cc+1 is 4 and
it already achieves good performance. On the contrary,
when d is chosen less then blog2 Cc, the performance
is not satisfactory. This is because when d is small,
the number of leaves in one tree, i.e., dimension of p,
is 2d ≤ C and does not have enough representation
capacity to make good classification.

5 Conclusion

In this paper, we propose a novel neural network archi-
tecture NNRF inspired by random forest. Like random
forest, for each input data, NNRF only has one path
activated and thus is efficient to perform forward and
backward propagation. In addition, the one path prop-
erty also makes the NNRF to deal with small datasets
as the parameters in one path is relatively small. Un-
like random forests, NNRF learns complex multivariate
functions in each node to choose relevant paths, and
is thus able to learn more powerful classifiers. Exten-
sive experiments on real-world datasets from different
domains demonstrate the effectiveness of the proposed
framework NNRF. Further experiments are conducted
to analyze the sensitivity of the hyper-parameters.

There are several interesting directions need further
investigation. First, we only consider the classification
task in this work. Since random forest is also a very
powerful tool for regression, thus improving random for-
est for regression in a similar way is promising. There-
fore, one direction we would like to investigate is to
extend NNRF for regression. Second, a detailed theo-
retical analysis of NNRF, such as rate of convergence,
is worth pursuing.

6 Acknowledgements

This material is based upon work supported by, or in
part by, the NSF grants #1614576 and IIS-1217466, and
the ONR grant N00014-16-1-2257.

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in NIPS, 2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in CVPR, 2016.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath et al., “Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four

research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82–97, 2012.

[4] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech
recognition with deep recurrent neural networks,” in
ICASSP. IEEE, 2013, pp. 6645–6649.

[5] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence
to sequence learning with neural networks,” in NIPS,
2014, pp. 3104–3112.

[6] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa, “Natural language pro-
cessing (almost) from scratch,” JMLR, vol. 12, no. Aug,
pp. 2493–2537, 2011.

[7] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhutdinov, R. S. Zemel, and Y. Bengio, “Show,
attend and tell: Neural image caption generation with
visual attention,” in ICML, vol. 2, no. 3, 2015, p. 5.

[8] L. Breiman, “Random forests,” Machine learning,
vol. 45, no. 1, pp. 5–32, 2001.

[9] T. K. Ho, “Random decision forests,” in ICDAR, vol. 1.
IEEE, 1995, pp. 278–282.

[10] M. Fernández-Delgado, E. Cernadas, S. Barro, and
D. Amorim, “Do we need hundreds of classifiers to solve
real world classification problems,” JMLR, vol. 15,
no. 1, pp. 3133–3181, 2014.

[11] M. Kuhn, “Caret package,” Journal of Statistical Soft-
ware, vol. 28, no. 5, 2008.

[12] G. Biau, E. Scornet, and J. Welbl, “Neural random
forests,” arXiv preprint arXiv:1604.07143, 2016.

[13] I. K. Sethi, “Entropy nets: from decision trees to neural
networks,” Proceedings of the IEEE, vol. 78, no. 10, pp.
1605–1613, 1990.

[14] P. Kontschieder, M. Fiterau, A. Criminisi, and
S. Rota Bulo, “Deep neural decision forests,” in CVPR,
2015, pp. 1467–1475.

[15] D. L. Richmond, D. Kainmueller, M. Y. Yang,
E. W. Myers, and C. Rother, “Relating cascaded
random forests to deep convolutional neural net-
works for semantic segmentation,” arXiv preprint
arXiv:1507.07583, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification,” in CVPR, 2015.

[17] C.-W. Hsu, C.-C. Chang, C.-J. Lin et al., “A practical
guide to support vector classification,” 2003.

[18] D. W. Hosmer Jr and S. Lemeshow, Applied logistic
regression. John Wiley & Sons, 2004.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,”
JMLR, vol. 12, pp. 2825–2830, 2011.

[20] C.-C. Chang and C.-J. Lin, “Libsvm: a library for
support vector machines,” TIST, 2011.

[21] C. M. Bishop, Pattern Recognition and Machine Learn-
ing (Information Science and Statistics). Springer-
Verlag New York, Inc., 2006.

[22] C. C. Aggarwal, Data mining. Springer, 2015.

