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ABSTRACT
Word and document embedding algorithms such as Skip-
gram and Paragraph Vector have been proven to help vari-
ous text analysis tasks such as document classification, doc-
ument clustering and information retrieval. The vast ma-
jority of these algorithms are designed to work with inde-
pendent and identically distributed documents. However,
in many real-world applications, documents are inherently
linked. For example, web documents such as blogs and on-
line news often have hyperlinks to other web documents, and
scientific articles usually cite other articles. Linked docu-
ments present new challenges to traditional document em-
bedding algorithms. In addition, most existing document
embedding algorithms are unsupervised and their learned
representations may not be optimal for classification when
labeling information is available. In this paper, we study
the problem of linked document embedding for classification
and propose a linked document embedding framework LDE,
which combines link and label information with content in-
formation to learn document representations for classifica-
tion. Experimental results on real-world datasets demon-
strate the effectiveness of the proposed framework. Further
experiments are conducted to understand the importance of
link and label information in the proposed framework LDE.
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1. INTRODUCTION
A meaningful and discriminative representation for doc-

uments can help many text analysis tasks such as docu-
ment classification, document clustering and information re-
trieval. Many document representation methods are pro-
posed such as bag-of-words, N-gram, latent semantic anal-
ysis [12], latent Dirichlet allocation [5] and word/document
embedding [18, 17, 13]. Among these algorithms, the re-
cently proposed distributed representations of words and
documents such as Skip-gram [18, 17] and PV-DM [13] have
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demonstrated superior performance in many tasks such as
word analogy [18], parsing [9], POS tagging [9], and sen-
timent analysis [11]. The assumption behind these docu-
ment/word embedding approaches is basically the distribu-
tional hypothesis that “you shall know a word by the com-
pany it keeps [10].” They embed words or documents into
a low dimensional space, which can alleviate the curse of
dimensionality and data sparsity problems suffered by tra-
ditional representations such as bag-of-words and N-gram.

The vast majority of existing document embedding al-
gorithms work with “flat” data and documents are usually
assumed to be independent and identically distributed (or
i.i.d. assumption). However, in many real-world scenarios,
documents are inherently linked. For example, web docu-
ments such as blogs and online news often contain hyperlinks
to other web documents, and scientific articles commonly
cite other articles. A toy example of linked documents is
illustrated in Figure 1 where {d1, d2, . . . , d5} are documents
and {w1, w2, . . . , w8} are words in documents. In addition
to content information, documents are linked and links sug-
gest the inter-dependence of documents. Hence, the i.i.d.
assumption of documents does not hold [33]. Additional
link information of such documents has been shown to be
useful in various text mining tasks such as document clas-
sification [33, 8], document clustering [14, 29] and feature
selection [27]. Therefore, we propose to study the novel
problem of linked document embedding following the distri-
butional hypothesis.

Most existing document embedding algorithms use unsu-
pervised learning, such as those in [18, 13, 32]. The rep-
resentations learned by these algorithms are very general
and can be applied to various tasks. However, they may
not be optimal for some specialized tasks where label in-
formation is available such as y2 for d2 and y5 for d5 in
Figure 1(a). For example, deep learning algorithms such
as convolutional neural networks [11], which use label infor-
mation, often outperform text embeddings for classification
tasks [23]. Hence, in this paper we study the novel problem
of linked document embedding for classification and inves-
tigate two specific problems: (1) how to capture link and
label information mathematically; and (2) how to exploit
them for document embedding. In an attempt to address
these two problems, we propose a novel linked document
embedding (LDE) framework for classification. The major
contributions of the paper are summarized next:

• We provide a principled way to capture link and label
information mathematically;

• We propose a novel framework LDE, which learns word



(a) Linked Documents (b) Three Types of Relations

Figure 1: A Toy Example of Linked Documents. {d1, d2, . . . , d5} are documents; {w1, w2, . . . , w8} are words; y2
is the label of d2 and y5 is the label of d5.

and document embeddings for classification by com-
bining link and label information with content infor-
mation; and

• We conduct experiments on real-world datasets to un-
derstand the effectiveness of the proposed framework
LDE.

The rest of the paper is organized as follows. In Section 2,
we briefly review the related work. In Section 3, we formally
define the problem of linked document embedding for classi-
fication. In Section 4, we introduce the proposed framework
LDE with the details about how to model link and label
information and how to incorporate them in document and
word embedding. In Section 5, we show how to solve the
optimization problem of LDE along with solutions to accel-
erate the learning process. In Section 6, we present empirical
evaluation with discussion. In Section 7, we conclude with
future work.

2. RELATED WORK
In this paper, we investigate linked document representa-

tion for classification, which is mainly related to document
representation, linked data and graph-based classification.

2.1 Document Representation
Document representation is an important research area

that receives great attention lately and can benefit many
machine learning and data mining tasks such as document
classification [23], information retrieval [31, 20] and senti-
ment analysis [13]. Many different types of models have been
proposed for document representation. Bog-of-words [21] is
one of the most widely used one. It is simple to imple-
ment, but not scalable since as the number of documents in-
creases, the vocabulary size can become huge. At the same
time, it suffers from data sparsity and curse of dimensional-
ity problems and the semantic relatedness between different
words is omitted. To mitigate the high dimensionality and
data sparsity problems of BOW, Latent Semantic Analy-
sis [12] uses dimensionality reduction technique, i.e., SVD,
to project the document-word matrix to a low dimension
space. Latent Dirichlet Allocation [5] is another low dimen-
sional document representation algorithm. It is a generative
model that assumes that each document has topic distribu-
tion and each word in the document is drawn from a topic
with probability. Recently, Mikolov et al. proposed the dis-
tributed representations of words, Skip-gram and CBOW,

which learn the embeddings of words by utilizing word co-
occurrence in the local context [18, 17]. It has been proven to
be powerful to capture the semantic and syntactic meanings
of words and can benefit many natural language process-
ing tasks such as word analogy [18], parsing [9], POS tag-
ging [9], and sentiment analysis [11]. It is also scalable and
can handle millions of documents. Based on the same dis-
tributed representation idea, [13] extended the word embed-
ding model to document embedding (PV-DM, PV-DBOW)
by finding document representations that are good at pre-
dicting words in the document. Document embedding has
also been proven to be powerful in many tasks such as senti-
ment analysis [13], machine translation [28] and information
retrieve [20]. Recently, predictive text embedding algorithm
(PTE) is proposed in [23], which also utilizes label infor-
mation to learn predictive text embeddings. The proposed
framework LDE is inherently different from PTE: (1) LDE is
developed for linked documents while PTE still assumes doc-
uments to be i.i.d.; (2) LDE captures label information via
modeling document-label information while PTE uses label
information via word-label information; (3) in addition to
label information, LDE also models link information among
documents to learn document embeddings; and (4) the pro-
posed formulations and optimization problems of LDE are
also different from those of PTE.

2.2 Linked Document Representation
Documents in many real-world applications are inherently

linked. For example, web pages are linked by hyperlinks and
scientific papers are linked by citations. Link information
has been proven to be very effective for machine learning and
data mining such as feature selection [26, 27], recommender
systems [15, 16], and document classification/clustering [19,
3]. Based on the idea that two linked documents are likely to
share similar topics, several works have been proposed to uti-
lize link information for better document representations [7,
35, 32]. For example, RTM [7] extends LDA by considering
link information for topic modeling; PMTLM [35] combines
topic modeling with a variant of mixed-membership block
model to model linked documents and TADW [32] learns
linked document representations based on matrix factoriza-
tion. However, the majority of the aforementioned works
do not utilize label information; meanwhile most of them do
not learn distributed document representations based on the
distributional hypothesis; while LDE employs distributional
hypothesis idea for document embedding by combining link
and label information with content simultaneously.



2.3 Graph-based Classification
Graph-based classification is to utilize the link informa-

tion to design classifier for classification. Various graph-
based classification algorithms are proposed. Label propa-
gation [34] is a classical graph-based methods, which per-
forms classification by propagating label information from
labeled data to unlabeled data through the graph. How-
ever, label propagation doesn’t utilize the features of docu-
ments. GC [4] is a more advanced graph-based classification
method, which takes into account both link structure and
documents’ content and can be combined with SVM classi-
fiers. Graffiti [2] is proposed to perform random walk on het-
erogeneous networks so as to capture the mutual influence of
connected nodes for classification. Abernethy et al. [1] incor-
porates the graph information into SVM classifier for web
spam detection. The proposed method LDE is inherently
different form the existing graph-based classification. First,
LDE learns both word embedding and document embed-
ding, which can be used for other tasks, such as word anal-
ogy [18] and visualization [23]; while existing graph-based
classification methods don’t learn word/document represen-
tation. Second, LDE utilizes the distributional hypothesis
idea and considers word-word-document relations, while ex-
isting graph-based classification methods usually use BOW
without considering the word-word relationship.

3. PROBLEM STATEMENT
We first introduce notations used in this paper. Through-

out the paper, matrices are written as boldface capital letters
and vectors are denoted as boldface lowercase letters. For
an arbitrary matrix M ∈ Rm×n, Mij is the (i, j)-th entry
of M while mi and mj are the i-th row and j-th column of
M, respectively. ‖M‖F is the Frobenius norm of M. Cap-
ital letters in calligraphic math font such as P are used to
denote sets. |P| is the cardinality of a set P.

Let D = {d1, d2, . . . , dN} be a set of N documents and
W = {w1, w2, . . . , wM} be the word dictionary of size M for
D. Documents in D are linked, which forms a document
network G = (V, E), where each vertex is a document and
eij = 1 if documents di and dj are connected. We use Y to
denote the subset of labeled documents in D where yi repre-
sents label information of the document di. Let D ∈ Rd×N

be the document embedding matrix where the i-th column
of D, i.e., di ∈ Rd×1, is a d-dimensional vector representa-
tion of the document di. Similarly we use W ∈ Rd×M to
denote the word embedding matrix where the j-th column of
W, i.e., wj ∈ Rd×1, is a d-dimensional vector representation
of the word wj in W.

With aforementioned definitions and notations, the prob-
lem under study is formally stated as:

Given the document set D, the document network G and
partial label information of D, i.e., Y, we want to learn the
document embedding matrix D and the word embedding ma-
trix W. Mathematically, the problem is written as :

f(D,G,Y)→ {D,W} (1)

where f is the learning algorithm we propose to investigate.

4. THE PROPOSED FRAMEWORK
To model content, link and label information for word and

document embedding, we extract three types of relations

by examining Figure 1(a). The three types of relations are
demonstrated in Figure 1(b): (1) word-word-document re-
lations from content information shown in Figure 1(b1); (2)
document-document relations from link information shown
in Figure 1(b2); and (3) document-label relations from label
information shown in Figure 1(b3). Next we elaborate these
three relations and their corresponding model components
before introducing the proposed framework LDE.

4.1 Modeling Word-Word-Document Relations
The distributional hypothesis that “you shall know a word

by the company it keeps” suggests that a word has close re-
lationships with its neighboring words. For example, the
phrases win the game and win the lottery appear very fre-
quently; thus the pair of words win and game and the pair
of words win and lottery could have very close relationship.
When we are only given the word win, we would highly ex-
pect the neighboring words to be words like game or lottery
instead of words as light or air. This suggests that a good
word representation should be useful for predicting its neigh-
boring words, which is the essential idea of Skip-gram [18].
Meanwhile, depending on the topics of the documents, the
probabilities of words appearing in the documents are differ-
ent [5]. For example, though the appearance of the phrase
win the lottery is frequent, if we know that the topic of a
document is about “sports”, we would expect words as game
or competition after the word win instead of the word lot-
tery because win the game/competition is more reasonable
under the topic of “sports”. On the contrary, if the topic of
the documents is about “lottery”, then we would expect lot-
tery after win. These intuitions suggest that the predictions
of neighboring words for a given word also strongly rely on
the document. Therefore, we extract word-word-document
relations from content information.

For a word wi, we use a window of size c to extract wi and
its (c− 1) neighbors with wi at the center and then wi and
each of its c − 1 neighbors wj form a pair as (wi, wj). At
the same time, we record which document the pair of words
(wi, wj) comes from, say dk. The pair of words (wi, wj) and
the document dk form a triplet (wi, wj , dk). An illustra-
tive example of such process is given in Figure 1(b1), where
window size c is 2. We denote all these triplets as a set
P. Note that in P, there may be multiple (wi, wj , dk) if
the co-occurrence of wi and wj happens multiple times in
dk and there may be also (wi, wj , ds) and (wi, wj , dk) if the
co-occurrence of wi and wj appears in both ds and dk. Af-
ter extracting P, the word-word-document relations can be
captured by maximizing the average log probability:

max
W,D

1

|P|
∑

(wi,wj ,dk)∈P

logP (wj |wi, dk) (2)

where P (wj |wi, dk) means the probability of given dk, word
wj is a neighboring word of wi, which is defined as

P (wj |wi, dk) =
exp(wT

j wi + wT
j dk)∑M

t=1 exp(wT
t wi + wT

t dk)
(3)

4.2 Modeling Document-Document Relations
Links between documents indicate the inter-dependence

of documents. For example, a piece of online news about
“sports” is likely to have hyperlinks to other news on“sports”
and a web mining article is likely to cite other web mining ar-
ticles. Two linked documents are likely to share similar top-



ics, which is a property commonly exploited in many tasks
such as classification [22] and feature selection [26]. There-
fore, we extract document-document relations from link in-
formation. For two linked document di and dj , i.e., eij = 1,
the embedding vector for di is a good indicator of that of
dj since they are likely to share similar topics, which can be
achieved by the following optimization problem:

max
D

1

|E|

N∑
i=1

∑
j:eij=1

logP (dj |di) (4)

where |E| is the number of links and P (dj |di) is given as

P (dj |di) =
exp(dT

j di)∑N
k=1 exp(dT

k di)
(5)

From Eq.(5), we can see that if two linked documents have
similar representations, then P (dj |di) will be large. Thus,
Eq.(4) aims at maximizing the similarity between two linked
documents based on their embedding vectors.

4.3 Modeling Document-Label Relations
For the classification problem, we have some labeled sam-

ples and label information could guide the document embed-
ding algorithms to learn better embeddings. Let Y ∈ Rd×Nc

be the label embedding matrix where Nc is the number of
unique labels and the k-th column of Y, yk, is the em-
bedding vector for the k-th label. yi is the label of the i-th
document and the corresponding label embedding vector for
yi is yyi . However, to avoid the notation confusion, we use
ydi instead of yyi to denote the representation of the class
label that is assigned to di in the remainder of the paper. A
good document embedding vector for di should be a good
indicator of the label of di. In other words, given the docu-
ment, we should be able to predict its label; hence we extract
document-label relations from label information, which can
be captured as follows:

max
Y,D

1

|Y|
∑

i:yi∈Y

logP (ydi|di) (6)

where P (ydi |di) is the probability that di’s label is ydi , which
is given as

P (ydi |di) =
exp(yT

di
di)∑Nc

k=1 exp(yT
k di)

(7)

4.4 Linked Document Embedding
With model components to capture content, link and la-

bel information, the proposed linked document embedding
framework LDE is to solve the following optimization prob-
lem:

min
W,D,Y

− 1

|P|
∑

(wi,wj ,dk)∈P

logP (wj |wi, dk)

− 1

|E|

N∑
i=1

∑
j:eij=1

logP (dj |di)

− 1

|Y|
∑

i:yi∈Y

logP (yi|di) + γΩ(W,D,Y)

(8)

In Eq.(8), the first term aims to learn document and word
embeddings that are useful for predicting the neighbor word,

which captures content information. The second term mod-
els link information and the third term captures label in-
formation that allows the document embeddings with the
capability to predict labels. Ω(W,D,Y) is the regularizer
to prevent the model from overfitting. We can choose the
regularizer with `1-norm if the dimension of the embedding
is high. Since we want to represent documents and words
with low-dimensional vectors for classification, we use the
Frobenius in our model:

Ω(W,D,Y) = ‖W‖2F + ‖D‖2F + ‖Y‖2F (9)

5. LEARNING LDE
In this section, we introduce the details of how to use

stochastic gradient method to train the model. We will first
introduce how to speed up the training process and then
give the update rules and the detailed algorithm.

5.1 Approximation by Negative Sampling
To update wj , we need to take derivative of logP (wj |wi, dk)

w.r.t. wj , which is given by:

∇wj logP (wj |wi, dk) = (1 + P (wj |wi, dk))(wi + dk) (10)

From Eq.(10), we find that updating wj requires the cal-
culation of P (wj |wi, dk). However, the calculation of P (wj |wi, dk)
is expensive, because the denominator of P (wj |wi, dk) is

written as
∑M

t=1 exp(wT
t wi + wT

t dk). It requires summa-
tion over all the words, which could be very inefficient since
the number of words is usually very large. To accelerate the
speed, following the method used in Skip-gram model, we
use the trick of negative sampling. In detail, the negative
sampling is defined by the following objective function [18]:

log σ(wT
j (wi + dk)) +

K∑
t=1

Ewt∼Pn(w)[log σ(−wT
t (wi + dk))]

(11)
which replaces every logP (wj |wi, dk) term in the objective
function of Eq.(8). Thus the task becomes to distinguish the
target word wj from K words drawn from the noise distri-
bution Pn(w). The idea behind negative sampling is that we
want to maximize the similarity between wj and (wi + dk)
and minimize the similarity between a randomly sampled
word wt and (wi + dk). In this way, we can approximately
maximize logP (wj |wi, dk). In practice, the noise distribu-

tion is chosen to be U(w)3/4/Z, where U(w) is the unigram

distribution of the words and Z =
∑

w U(w)3/4 is the nor-
malization term.

Thus, for a training instance (wi, wj , dk) ∈ P, we would
draw K negative word samples, say one negative sample is
wt, from the noise distribution as wt ∼ Pn(w) and then we
put (wi, wt, dk) into the negative training set N . It is easy
to verify that |N | = K|P|. Now with N and P, we can
approximate the first term in Eq.(8) using Eq.(11) as

min
W,D

− 1

|P|
∑

(wi,wj ,dk)∈P

log σ(wT
j (wi + dk))

− 1

|P|
∑

(wi,wt,dk)∈N

log σ(−wT
t (wi + dk))

(12)

Similarly, we approximate P (dj |di) as

log σ(dT
j di) +

K∑
t=1

Edt∼P̃n(d) log σ(−dT
t di) (13)



where dt in Eq.(13) is randomly sampled from documents
that are not linked with di. Thus, for each linked document
pair (di, dj), we need to randomly sample K documents, dt,
that are not linked to di and put (di, dt) to the negative
document set NE . We can see that |NE | = K|E|. Now the
second term in Eq.(8) can be written as

min
D
− 1

|E|

∑
eij∈E

log σ(dT
j di) +

∑
(di,dt)∈NE

log σ(−dT
t di)


(14)

With the similar idea, P (ydi |di) can be approximated as

log σ(yT
didi) +

∑
y 6=ydi

log σ(−yT
y di) (15)

With these negative sampling approximations, the objective
function of Eq.(8) can be approximated as

min
W,D,Y

− 1

|P|
∑

(wi,wj ,dk)∈P

log σ(wT
j (wi + dk)) (16)

− 1

|P|
∑

(wi,wt,dk)∈N

log σ(−wT
t (wi + dk))

− 1

|E|
∑

eij∈E

log σ(dT
j di)−

1

|E|
∑

(di,dt)∈NE

log σ(−dT
t di)

− 1

|Y|
∑

i:ydi
∈Y

[log σ(yT
didi) +

∑
y 6=yi

log σ(−yT
y di)]

+ γΩ(W,D,Y)

5.2 Updating Rules
We use stochastic gradient descent method to train the

proposed model. Thus for each training sample, we need
to update the involved word, document or label represen-
tations. For a given training instance, (wi, wj , dk) ∈ P,
Eq.(16) reduces to

f1 = − 1

|P| log σ(wT
j (wi + dk)) + γ(‖wi‖22 + ‖wj‖22 + ‖dk‖22)

The derivatives of the above equation w.r.t. wi,wj and dk

are given as

∇wif1 =
1

|P| [σ(wT
j (wi + dk))− 1]wj + 2γwi

∇dkf1 =
1

|P| [σ(wT
j (wi + dk))− 1]wj + 2γdj

∇wjf1 =
1

|P| [σ(wT
j (wi + dk))− 1](wi + dk) + 2γwj

(17)

Then wi,wj and dk are updated as

wi ← wi − η∇wif1

dk ← dk − η∇dkf1

wj ← wj − η∇wjf1

(18)

where η is the learning rate.
Similarly, when the training instance is (wi, wt, dk) ∈ N ,

Eq.(16) is reduced to:

f2 = − 1

|N | log σ(−wT
t (wi + dk)) + γ(‖wi‖22 + ‖wt‖22 + ‖dk‖22)

Then wi,wt and dk are updated as

wi ← wi − η∇wif2

dk ← dk − η∇dkf2

wt ← wt − η∇wtf2

(19)

When a training instance is from E , say (di, dj), we update
di and dj by the gradient descent method. When a train-
ing instance is from NE , say (di, dt), we update di and dt.
Similarly, when the training instance is (di, yi), we update
di and Y since all the label representation Y is involved as
shown in the forth line of Eq.(16) . We omit the detailed
derivations here since they are very similar to the aforemen-
tioned ones.

5.3 Subsampling of Frequent Words
There is another issue we need to deal with. In large cor-

pora, the most frequent words such as (“in”, “a”) can easily
occur millions of times. In each epoch, these words will be
trained millions of times correspondingly and the vector rep-
resentations of these words will not change significantly after
several epochs [18]. On the contrary, some rare words are
trained less frequently in each epoch thus they need more
epochs to train. To account the imbalance between rare
and frequent words, we use the sub-sampling approach as
in [18]: each word wi in the training set is discarded with a
probability computed by the formula:

P (wi) = 1−
√

t

f(wi)
(20)

where f(wi) is the frequency of the word wi and t is a chosen
threshold, typically around 10−5. The advantage of this sub-
sampling formula is that it aggressively sub-samples words
whose frequencies are greater than t while preserving the
ranking of the frequencies.

5.4 A Learning Algorithm for LDE
With the negative sampling and the update rules, the al-

gorithm to learn LDE is summarized in Algorithm 1. We
first prepare the training instances from line 1 to line 7. In
line 8, we initialize the parameters W,D and Y. Following
the common practice, we initialize each element of W,D
and Y by randomly sampling from the uniform distribution
[-0.2,0.2]. We then train LDE and update W,D and Y
given the training data using the gradient descent method
from line 9 to line 13. Finally, the document embedding D
and word embedding W are obtained.

D is the document embedding which we name LDE-Doc.
We can also represent documents using word embeddings. In
particular, to get the document representation from word-
embeddings W, for a document di, we average all the words
in the document as

d̃i =
1

Ni

∑
wi∈di

wi (21)

where, Ni is the length of the document di and d̃i is used
as the document representation for di. We denote the doc-
ument representation by word embedding as LDE-Word.

5.5 Time Complexity
When the training instance is (wi, wj , dk) ∈ P, from Eq.(17)

and Eq.(18), we can see that the cost of calculating the
derivative of f1 w.r.t. wi and updating wi are both O(d).



Algorithm 1 LDE - Linked Document Embedding

Input: D,G = {V, E},Y, λ, window size c, dimension d
Output: D,W
1: Construct P by using a sliding window size c to ex-

tract instances as (wi, wj , dk) from documents where

(wi, wj , dk) is added to P with the probability
√

t
f(wi)

2: for each training sample in P do
3: DrawK negative samples from noise distribution and

put to N
4: end for
5: for eij in E do
6: Randomly sample K documents that are not linked

with di and put them into NE

7: end for
8: Initialize W,D and Y
9: repeat

10: for each training instance do
11: Update involved parameters using SGD as de-

scribed in Section 5.2
12: end for
13: until Convergence
14: Return D, W

With similar analysis, we find that the computational cost of
calculating gradients and updating parameters are also O(d)
when training instances are from N ,P, E ,NE or Y. Thus,
we only need to count the size of the training data, which is
(K + 1)|P|+ (K + 1)|E|+Nc|Y|. Therefore, the total com-
putational cost in one epoch is

(
(K + 1)|P| + (K + 1)|E| +

Nc|Y|
)
O(d). Considering the fact that E is usually very

sparse, the complexity is comparable to Skip-gram, which is
scalable to millions of documents [18].

6. EXPERIMENTS
In this section, we conduct experiments to evaluate the

effectiveness of the proposed framework LDE. Specifically,
we aim to answer the following questions:

• How effective is the proposed framework in learning
document representations compared to the state-of-
the-art methods?

• How does label information affect the performance of
the proposed framework? and

• Does the network information provide additional infor-
mation for learning better document representations?

We begin by introducing the datasets and experimental
settings, and then we compare LDE with the state-of-the-
art algorithms for classification to answer the fist question.
We also investigate the sensitivity of LDE w.r.t. label and
link information to answer the second and third questions.

6.1 Datasets and Experimental Settings

6.1.1 Datasets
The experiments are conducted on two real-world linked

document datasets, DBLP and BlogCatalog. DBLP dataset
is extracted by Arnetminer [24] from the DBLP website.
Each document in DBLP dataset contains the title, authors
and year of a paper. Some documents also contain venues,

Table 1: Statistics of the Datasets
Dataset DBLP BlogCatalog
# of documents 15,300 62,652
# of links 36,359 378,161
# of classes 6 27

abstracts and reference papers. We use titles and abstracts
as the document contents. Thus, we remove documents
whose abstracts and titles are missing. We then choose six
categories from the corpus1, including“Computer networks”,
“Database:Data mining:Information retrieval”, “Computer
graphics:Multimedia”, “Software engineering”, “Theoretical
computer science” and “High-Performance Computing”. Af-
ter that, we randomly select 2550 samples from each chosen
category and add links between two documents if one docu-
ment cites another document. BlogCatalog2 is a blog direc-
tory where users can register their blogs under predefined
categories. The categories are used as class labels of blogs.
Each blog has a text description added by the owner, which
is used as document content in our work. The homepage
of each blog lists several blogs related to this blog, which
forms links between a blog and its related blogs. In addi-
tion, if the owner of blog A follows the owner of blog B, we
also add a link from blog A to blog B. We remove categories
whose number of blogs are less than 500, which leaves us 27
categories and 62,652 blogs. Note that BlogCatalog dataset
is unbalanced. For both datasets, we remove stop words and
no further text normalizations such as stemming are done.
The statistics of two datasets are summarized in Table 1.

6.1.2 Evaluation Metrics
Our goal is to learn vector presentations of documents for

classification. Therefore, we use classification performance
to assess the quality of learned document representations.
In fact, the classification task is also a common way to eval-
uate these word and document embedding algorithms with
unsupervised settings [13]. Two widely used classification
evaluation metrics, Micro-F1 and Macro-F1, are adopted.
The larger the Micro-F1 and Macro-F1 scores are, the bet-
ter the document representation is for the classification task.

6.2 Performance Comparison
To answer the first question, we compare the proposed

framework LDE with other classical and state-of-the-art doc-
ument representation learning algorithms. Since LDA uti-
lizes contents, links and labels during learning process, for
fair comparison, the compared algorithms include state-of-
the-art algorithms that utilizes links and contents such as
RTM, TADW, contents and labels such as PTE, CNN and
also graph-based classifier such as GC, which utilizes con-
tents, link and labels for classification. The details of these
algorithms are listed as follows:

• BOW [21]: the classical “bag-of-words” represent each
document as a M -dimensional vector, where M is the
size of the vocabulary and weight of each dimension is
calculated by the TFIDF scheme.

• RTM [7]: relational topic model is an extension of topic
modeling that models document content and links be-
tween documents.

1Categories are defined according to venue by Arnetminer
2https://www.blogcatalog.com/



Table 2: Document Classification Performance Comparison on DBLP and BlogCatalog

Dataset DBLP BlogCatalog
Name Micro-F1 Macro-F1 Micro-F1 Macro-F1
BOW 78.50±0.64 78.61±0.63 46.35±0.42 40.78±0.43
RTM 74.05±0.68 74.08±0.71 44.62±0.35 39.60±0.37

Skip-gram 81.00±0.40 80.98±0.41 47.38±0.28 41.97±0.25
CBOW 77.33±0.73 77.31±0.73 45.43±0.44 39.03±0.29
PV-DM 84.25±0.26 84.25±0.26 48.35±0.24 42.78±0.23

PV-DBOW 80.81±0.30 80.82±0.29 47.56±0.23 41.68±0.25
LP 72.88±0.75 72.90±0.76 38.54±0.42 35.51±0.40
GC 84.75±0.82 84.74±0.81 48.76±0.37 42.98±0.34

TADW 85.59±0.65 85.58±0.64 49.85±0.31 43.95±0.32
CNN 84.07±0.45 84.09±0.48 49.01±0.51 43.38±0.47
PTE 85.26±0.47 85.23±0.49 50.36±0.43 44.58±0.42

LDE-Word 80.87±0.36 80.83±0.39 48.77±0.29 42.96±0.25
LDE-Doc 87.69±0.42 87.70±0.45 53.14±0.42 46.85±0.39

• Skip-gram [18]: one of the state-of-the-art word em-
bedding model and its training objective is to find word
representations that are useful for predicting the sur-
rounding words of a selected word in a sentence. Af-
ter obtaining word embeddings by Skip-gram, we use
Eq.(21) to get document representations.

• CBOW [18]: another state-of-the-art word embedding
model. Unlike Skip-gram, the training objective of
CBOW is to find word representations that are useful
for predicting the center word by its neighbors. Simi-
larly, we use Eq.(21) to get document representations.

• PV-DM [13]: the distributed memory version of para-
graph vector which considers the order of the words. It
aims at learning document embeddings that are good
at predicting the next given context.

• PV-DBOW [13]: the distributed bag-of-words version
of paragraph vector model proposed in [13]. Unlike
PV-DM, the word order is ignored in PV-DBOW. It
aims to learn document representations that are good
at predicting words in the document.

• LP [34]: a traditional semi-supervised algorithm based
on label propagation, which performs classification by
propagating label information from labeled data to un-
labeled data through the graph. LP denotes a tradi-
tional method that utilizes both network information
and label information for classification.

• GC [4] a graph-based classification method which uti-
lizes both document contents, link and label informa-
tion into a probabilistic framework for classification.

• CNN [11]: convolution neural network for classifica-
tion. It uses word embeddings as input to train con-
volution neural network with label information3.

• TADW [32]: text-associated DeepWalk is a matrix fac-
torization based method that utilizes both link and
document data4.

• PTE [23]: predictive text embedding which considers
label information to learn word embedding but cannot
handle link information among documents.

3Code available at https://github.com/yoonkim/CNN sentence
4We use the code from https://github.com/albertyang33/TADW

• LDE-Word: the proposed framework trains both word
embedding and document embedding. This variant
uses the average of the word embeddings to represent
a document.

• LDE-Doc: the proposed framework. Instead of using
the word embeddings, we use the document embed-
dings directly as the representations of the documents.

The experiment consists of two phases, i.e., the represen-
tation learning phase and the document classification phase.
During the representation learning phase, all the documents
in the training set and testing set are used to learn word
embeddings or document embeddings. For LDE-Word and
LDE-Doc, labels of training data and link information are
also used for learning embeddings during the representation
learning phase. Labels of testing data are held out and no
algorithm can use labels of testing data during the represen-
tation learning phase. During the classification phase, we
use libsvm5 [6] to train a SVM classifier using the learned
document embeddings and the training data. The trained
SVM classifier is then assessed on the testing data6.

There are some parameters to set for the baseline algo-
rithms. For a fair comparison, for Skip-gram, CBOW, PV-
DM, PV-DBOW, CNN, RTM and LDE, we set the embed-
ding dimension to be 100. For Skip-gram, CBOW, PV-DM,
PV-DBOW and LDE, following the parameter setting sug-
gestions in [18], we set the window size to be 7 and the
number of negative samples also to be 7. We follow the set-
ting in [23] for PTE and we use the default setting in the
code of TADW. For the proposed model, we choose γ to be
0.0001. As of CNN, we use the default architecture in [11].
For both datasets, we randomly select 60% as training data
and the remaining 40% as testing data. The random se-
lection is conducted 5 times and the average micro-f1 and
macro-f1 with standard deviations are reported in Table 2.
From the table, we make the following observations:

• Skip-gram and PV-DM outperforms BOW slightly on
both datasets. This shows that word/document em-
beddings can learn dense representations of documents
which can improve the classification performance slightly.

5Avaliable at https://www.csie.ntu.edu.tw/ cjlin/libsvm/
6For Skip-gram, CBOW, PV-DM and PV-DBOW, we
use the implementation by Gensim, which is available at
https://radimrehurek.com/gensim/



Table 3: Effects of Label Density for LDE.

Dataset Algorithm Metrics 0% 20% 40% 60% 80% 100%

DBLP
LDE-Word

Micro-F1 76.62 77.30 78.25 78.79 79.69 80.87
Macro-F1 76.63 77.26 78.23 78.76 79.65 80.83

LDE-Doc
Micro-F1 78.68 79.05 81.85 83.87 85.65 87.69
Macro-F1 78.68 79.04 81.85 83.87 85.65 87.70

BlogCatalog
LDE-Word

Micro-F1 45.45 45.92 46.36 47.05 47.98 48.77
Macro-F1 39.62 40.09 40.73 41.47 42.20 42.96

LDE-Doc
Micro-F1 46.57 47.12 48.83 50.17 51.62 53.14
Macro-F1 40.65 41.24 42.76 44.15 45.51 46.85

In contrast, LDE-Doc is much better than BOW on
both datasets, which demonstrates the effectiveness of
the proposed framework by incorporating link and la-
bel information.

• Most of the time, CNN outperforms other baseline
methods. CNN uses label information for training and
it is likely to obtain better performance. PTE outper-
forms CNN, which is consistent with previous obser-
vations [23].

• Comparing LDE-Doc and TADW, we can see that the
performance of LDE-Doc is better than TADW. This
is because though TADW utilizes link information, it
doesn’t consider label information for learning docu-
ment representation.

• The performance of LDE-Doc is much better than LDE-
Word. This is because LDE focuses on learning doc-
ument representations. The link information and la-
bel information are used by LDE specific to document
embedding instead of word embedding. LDE-Word is
comparable to Skip-gram.

• The performance of LDE-Doc is better than the graph-
based classification method GC, which also utilizes
contents, link and label information for classification.
This suggests that by utilizing the distributional hy-
pothesis idea and exploiting the word-word-doc, doc-
link and doc-label relationships, the learned document
representations is good for classification.

• Though both PTE and LDE-Doc follow the idea of dis-
tributional hypothesis and use the label information,
LDE-Doc significantly outperforms PTE. This is be-
cause in addition to label information, LDE-Doc also
models the link information among documents which
is pervasively available for linked documents.

• The proposed document embedding algorithm LDE-
Doc outperforms representative document representa-
tion algorithms including PV-DM, RTM, PV-DBOW,
PTE and TADW and graph-classification based meth-
ods such as GC, which further demonstrates that by
considering link and label information, the proposed
framework LDE is able to learn better document rep-
resentations.

We conduct t-test on all performance comparisons and it
is evident from t-test that all improvements are significant.
In summary, the proposed framework can learn better doc-
ument embeddings for classification by exploiting link and
label information.
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Figure 2: Relative performance improvement of
LDE with increasing label information.

6.3 Impact of Label Density
In this subsection, we perform experiments to investigate

the effects of the label density on the quality of word and
document embeddings. We first split each dataset into 60%
and 40%, where 40% is fixed as testing data. From the 60%
part, we sample x% as labeled data in the embedding learn-
ing phase. The remaining (100-x)% are not used for learning
the embeddings. We vary x as {0, 20, 40, 60, 80, 100}. Simi-
larly, the experiment is composed of two phases. During the
representation learning phase, we use all the documents with
the x% labeled data and link information to learn the em-
beddings. After the embeddings are learned, we use libsvm
to train an SVM classifier. Each experiment is conducted 5
times and we report the average classification performance in
terms of Micro-F1 and Macro-F1 in Table 3. To help under-
stand the effects, we plot the relative performance improve-
ment compared to that without label information (x = 0) in
terms of Micro-F1 in Figure 2. Note that we omit the figure
for Macro-F1 since we have similar observations. From the
table and the figures, we make the following observations:

• For both datasets, with the increase of labeled data
in the representation learning phase, the performance
of both word embedding and document embedding in-
creases, which demonstrates that by incorporating la-
bel information, we can learn better document and
word embeddings.

• From the figure, we can see that with the increase of
labeled data, the difference between LDE-Word and
LDE-Doc also increases, which indicates that label in-
formation is more useful for the proposed framework
to learn document embeddings than word embeddings.
This is reasonable because we explicitly model docu-
ment and label relations to enable the capability of the
learned representations in predicting labels.

6.4 Effects of Link Density
In this subsection, we perform experiment to investigate

the effects of the link density on the quality of word and doc-



Table 4: Effects of Link Density on LDE.

Dataset Algorithm Metrics 0% 20% 40% 60% 80% 100%

DBLP
LDE-Word

Micro-F1 76.83 79.15 79.25 79.51 79.35 80.87
Macro-F1 76.82 79.12 79.23 79.48 79.32 80.83

LDE-Doc
Micro-F1 78.03 81.31 82.78 83.56 85.20 87.69
Macro-F1 78.05 81.30 82.79 83.57 85.22 87.70

BlogCatalog
LDE-Word

Micro-F1 45.87 46.48 46.84 47.07 47.75 48.77
Macro-F1 39.87 40.38 40.97 41.52 42.13 42.96

LDE-Doc
Micro-F1 46.89 48.04 49.23 50.15 51.65 53.14
Macro-F1 40.91 41.62 42.65 44.27 45.71 46.85

ument embeddings. Each time, we randomly sample x% of
links. We vary x as {0, 20, 40, 60, 80, 100}. We then split the
dataset into 60% and 40%, where 60% are used for training
and 40% are used for testing. The experiment is composed
of two phases. During the representation learning phase, we
use all the documents, the label for the training data and the
x% of links to learn embeddings. After learning embeddings,
we use libsvm to train a SVM classifier. We report the clas-
sification performance in terms of Micro-F1 and Macro-F1
in Table 4. Similarly, to help understand the effects, we plot
the relative performance improvement in terms of micro-f1
w.r.t. compared to that without links (x = 0) in Figure
3. From the table and the figures, we make the following
observations:

• For both datasets, as the percentage of links increases
during the representation learning phase, the perfor-
mance of both word embedding and document embed-
ding increases, which demonstrates that by incorpo-
rating link information, we can learn better document
and word embeddings.

• From the figure, we can see that as the percentage of
links increases, the difference between LDE-Word and
LDE-Doc also increases, which suggests that link in-
formation helps document embedding more than word
embedding. The reason is that we extract document
and document relations from link information and then
explicitly model them based on document embeddings.
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Figure 3: Relative performance improvement of
LDE with increasing link information.

6.5 Effects of Embedding Dimensions
In this subsection, we investigate how the embedding di-

mensions affect the performance of the proposed framework
LDE. In detail, we first randomly select 60% as training and
the remaining 40% as testing. All the documents, link infor-
mation and label information of the 60% training data are
used for learning document and word embeddings. After
that, we train a SVM classifier to perform document clas-
sification with the learned document and word embeddings

on the testing data. We vary the number of embedding
dimension d as {20, 50, 100, 200, 400, 1000}. The random se-
lection process is done 5 times and the average Micro-F1
are shown in Figure 4. Note that we only report Micro-F1
since the performance in terms of Macro-F1 is very close to
Micro-F1. From the figures, we note that as the dimension
of embeddings increases, the performance of both document
embedding and word embedding first increases and then de-
creases. This is because when the embedding dimension is
too small, the representation capability of the embedding
vectors is not sufficient and we may lose information. How-
ever, when the embedding dimension is too large, the model
is too complex and we may overfit to the data.
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Figure 4: The effects of embedding dimension on
the classification performance of document and word
embedding.

7. CONCLUSION
In many real-word applications, documents are linked via

various means. Little work exists for exploiting link informa-
tion for document embedding. In this paper, we investigate
the problem of linked document embedding for classification.
We propose a novel framework LDE that captures content,
link and label information into a coherent model for learn-
ing document and word embeddings simultaneously. Experi-
mental results on real-world datasets show that the proposed
framework outperforms state-of-the-art document represen-
tation algorithms for classification. Further experiments are
conducted to demonstrate the effects of label density and
link density on the performance of LDE, which suggest that
both link and label information can help learn better word
and document embeddings for classification.

There are several interesting directions that need further
investigation. First, in this work, we consider linked doc-
ument embedding for classification and it will be interest-
ing to investigate linked document embedding specific to
other tasks such as ranking or recommendation [30]. Sec-
ond, currently we deal with unsigned and unweighted links
and we would like to investigate how to extend the proposed



framework to handle other types of links such as signed and
weighted links [25].
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