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Exploring Hierarchical Structures for
Recommender Systems

Suhang Wang, Jiliang Tang, Yilin Wang, and Huan Liu, Fellow, IEEE

Abstract—Items in real-world recommender systems exhibit certain hierarchical structures. Similarly, user preferences also present
hierarchical structures. Recent studies show that incorporating the hierarchy of items or user preferences can improve the performance
of recommender systems. However, hierarchical structures are often not explicitly available, especially those of user preferences. Thus,
there’s a gap between the importance of hierarchies and their availability. In this paper, we investigate the problem of exploring the
implicit hierarchical structures for recommender systems when they are not explicitly available. We propose a novel recommendation
framework to bridge the gap, which enables us to explore the implicit hierarchies of users and items simultaneously. We then extend
the framework to integrate explicit hierarchies when they are available, which gives a unified framework for both explicit and implicit
hierarchical structures. Experimental results on real-world datasets demonstrate the effectiveness of the proposed framework by
incorporating implicit and explicit structures.

Index Terms—Recommender system, implicit hierarchical structures, explicit hierarchical structures, deep nonnegative factorization.
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1 INTRODUCTION

ECOMMENDER systems [1] intend to provide users with
Rinformation of potential interest based on their demo-
graphic profiles and historical data. Collaborative Filtering
(CF), which only requires past user ratings to predict un-
known ratings, has attracted more and more attention [2],
[3], [4]. Collaborative Filtering can be roughly categorized
into memory-based [5], [6], [7] and model-based methods
[2], [8], [9]. Memory-based methods mainly use the neigh-
borhood information of users or items in the user-item
rating matrix while model-based methods usually assume
that an underlying model governs the way users rate and in
general, and model-based methods have better performance
than memory-based methods. Despite the success of various
model-based methods [2], [10], matrix factorization (MF)
based model has become one of the most popular methods
due to its good performance and efficiency in handling large
datasets [8], [9], [11], [12], [13].

Items in real-world recommender systems could exhibit
certain hierarchical structures. For example, Figure 1(a) and
1(b) are two snapshots from Netflix DVD rental page'. In
the figure, movies are classified into a hierarchical struc-
ture as genre—subgenre—detailed-category. For example,
the movie Schindler’s List first falls into the genre Faith
Spirituality, under which it belongs to sub-genre Faith &
Spirituality Feature Films and is further categorized as Inspi-
rational Stories (see the hierarchical structure shown in Fig.
1(a)). Similarly, Fig. 1(c) shows an Antiques & Collectibles
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Fig. 1: (a) and (b) are Netflix Movie Hierarchical Structure
and (c) is half.com Book Hierarchical Structure

category from half.com?. We can also observe hierarchical
structures, ie., category—sub-category. For example, the
book Make Your Own Working Paper Clock belongs to Clocks
& Watches, which is a sub-category of Antiques & Collec-
tions. In addition to hierarchical structures of items, users’
preferences also present hierarchical structures, which have
been widely used in the research of decision making [14].
For example, a user may generally prefer movies in Faith
Spirituality, and more specifically, he/she watches movies
under the sub-category of Inspirational Stories. Similarly, an
antique clock collector may be interested in Clocks & Watches
subcategory under the Antiques & Collections category. Items
in the same hierarchical layer are likely to share similar
properties, hence they are likely to receive similar rating
scores. Similarly, users in the same hierarchical layer are
likely to share similar preferences, thus they are likely
to rate certain items similarly [15], [16]. Therefore, recent

2. Snapshot is from http://books.products.half.ebay.com/antiques-
collectibles_ W0QQcZ4QQcatZ218176
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recommender systems exploit explicit hierarchies of items
or users [15], [16], [17], [18]. However, explicit hierarchies
are often unavailable, especially those of user preferences.
The gap between the importance of hierarchical struc-
tures and their unavailability motivates us to study implicit
hierarchical structures of users and items for recommenda-
tion. In particular, we investigate the following two chal-
lenges: (1) how to capture implicit hierarchical structures of
users and items simultaneously when these structures are
explicitly unavailable? and (2) how to model them mathe-
matically for recommendation? In our attempt to address
these two challenges, we propose a novel framework IHSR,
which captures Implicit Hierarchical Structures of users and
items based on the user-item matrix and integrate them
into a coherent model. We further extend the framework to
capture explicit hierarchical structures when the structures
are explicitly available, which enables a unified framework
HSR for both explicit and implicit Hierarchical Structures.
The major contributions of this paper are summarized next:

e We provide a principled approach to model implicit and
explicit hierarchical structures of users and items simulta-
neously based on the user-item matrix;

« We propose a novel recommendation framework IHSR
which enables us to capture implicit hierarchical struc-
tures of users and items when these structures are not
explicitly available;

o We extend the proposed framework to capture explicit
hierarchical structures when they are available, which
results in a unified framework HSR that is able to exploit
both implicit and explicit hierarchical structures for rec-
ommendation; and

¢ We conduct extensive experiments on four real-world rec-
ommendation datasets to demonstrate the effectiveness of
the proposed framework.

The rest of the paper is organized as follows. In Sec. 2,
we review related work. In Sec. 3, we introduce IHSR that
explores implicit HS. In Sec. 4, we introduce HSR which
exploits explicit HS. In Sec. 5, we present a method to
solve the optimization problem of HSR/IHSR along with
the convergence and time complexity analysis. In Sec. 6, we
show empirical evaluation with discussion. In Sec. 7, we
present the conclusion and future work.

2 RELATED WORK

In this section, we will briefly review related works on
recommender systems and hierarchical structures for rec-
ommendation.

2.1 Recommender Systems

Recommender systems [1] play an important role in help-
ing online users find relevant information based on their
demographic profiles and historical data. Collaborative Fil-
tering (CF), which only requires past user ratings to pre-
dict unknown ratings, has attracted more and more atten-
tion [2], [3], [4], [19], [20]. Generally, collaborative filtering
can be classified into two categorizes - (1) memory-based
methods [5], [6], [7], which mainly use the neighborhood
information of users or items in the user-item rating matrix
for recommendation; and (2) model-based methods, which

2

usually assume that an underlying model governs the way
users rate [2], [8], [9]. In general, model-based methods have
better performance than memory-based methods. Despite
the success of various model-based methods [2], [10], matrix
factorization (MF) based model has become one of the
most popular methods due to its good performance and
efficiency in handling large datasets [8], [9], [11], [12], [13].
The essential idea of MF based models is to decompose
the user-item rating matrix into user latent feature matrix
and item latent feature matrix such that user latent feature
matrix captures user preferences while item latent feature
matrix captures item properties.

One of the major challenges of collaborative filtering
is the data sparsity problem, i.e., only a small subset of
products are rated by a user and the ratings of the user
to the majority of the products are unknown. For example,
the density of available ratings in commercial recommender
systems is often less than 1% [21]. The data sparsity problem
degrades the performance of recommender systems. One
approach to alleviate data sparsity is graph-based recom-
mender systems [22], where the interactions or similarities
between the users and items are encoded into edges such
that random walks and other graph mining algorithms
can be used to fully mine user preferences based on the
graph. Another approach for alleviating data sparsity is top-
K recommendations [23], [24], [25]. Instead of focusing on
predicting the ratings, top-K recommender systems focus
on the top-K ranking. Therefore, may approaches tries to
learn latent representations that can keep the ranking. For
example, Rendle et al [23] proposed a bayesian personalized
ranking for top-K recommendation.

Incorporating auxiliary information into collaborative
filtering is another popular and effective approach to alle-
viating the data sparsity problem [20], [26], [27], [28], [29].
Various auxiliary information has been exploited to guide
the learning process of collaborative filtering, such as social
relationships [26], [30], review contents [29], [31] and tempo-
ral signals [4], [27]. For example, Ma et al. [26] incorporated
social networks to matrix factorization with the assumption
that friends have similar interests and significantly increases
the recommendation performance. Tang et al. [28] investi-
gated the distrust/foe relationships in social networks for
recommendation and demonstrated that distrust/foe rela-
tionships have added value in addition to trust/friend rela-
tionships. Review contents are also popularly used for im-
proving recommendation performance. Almahair et al. [31]
used LSTM to infer user preferences from review texts for
collaborative filtering. Recently, hierarchical structures, as a
new source of auxiliary information, are attracting more and
more attentions for recommender systems [15], [16], [17],
[18], [24], [32], which will be discussed in next subsection.

2.2 Hierarchical Structures for Recommendation

Hierarchical structures of items are very pervasive in real-
world. For example, as shown in Figure 2, musics are usu-
ally first categorized into genres such as “Classical Music”,
“Country & Western/Folk” and “Jazz ”, which are further
categorized into sub-genres, e.g., the genre “Classical Mu-
sic” has sub-genres “Classical Choral Music” and “Opera
& Operetta”. Similarly, books are categorized into different
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categories by topics and sub-topics. In addition to item
hierarchical structures, user preferences can also exhibit
hierarchical structures. Obviously, items in the same genre
or sub-genre of the hierarchical structure share some prop-
erties and thus are likely to receive similar ratings, which
has been demonstrated helpful to improve the performance
of recommender systems [15], [16], [18], [24]. Maleszka et
al. [16] studied hierarchical structures of user profiles for
recommender systems. Nikolakopoulos et al. [24] exploited
the intrinsic hierarchical structure of the itemspace to tackle
the data sparsity problem. Yang et al. [18] proposed a re-
cursive matrix factorization method which uses hierarchies
as a regularizer. Recent study also suggests that relationship
among sibling nodes of hierarchies could also be useful [33].
However, the aforementioned methods assume that hier-
archical structures are explicitly available while in real-
world, explicit hierarchical structures are often unavailable,
especially those of users preferences. We call the hierarchi-
cal structure that cannot be explicitly obtained as implicit
hierarchical structures, meaning that we know the existence
of the hierarchical structures but we don’t have the explicit
structure in hand. One example is hierarchical structures of
user preferences, whose preference hierarchy is difficult to
obtain. None of the aforementioned paper studies implicit
hierarchical structures; while implicit hierarchical structures
have potential to improve recommendation performance.

Therefore, we study the novel problem of exploring
implicit hierarchical structures for recommender systems,
which is inherently different from existing work. In par-
ticular, we propose a novel framework which can incor-
porate implicit hierarchical structures of users and items
for recommendation. We further extend the framework to
capture explicit hierarchical structures when the structures
are explicitly available, which gives us a unified and flexible
recommendation framework that can exploit both implicit
and explicit hierarchical structures. A close structure to
hierarchy is ontology [34], which is very precise and can
improve the performance of recommender systems. How-
ever, it is hard/slow to use; while hierarchies are easier to
be adopted for recommender systems.

3 THE PROPOSED FRAMEWORK FOR IMPLICIT Hi-
ERARCHICAL STRUCTURES

Throughout the paper, matrices are written as boldface
capital letters such as A and B;. For an arbitrary matrix
M, M(4, j) denotes the (i, j)-th entry of M. ||M]||Fr is the
Frobenius norm of M and Tr(M) is the trace norm of M
if M is a square matrix. Let & = {uy,ua,...,u,} be the
set of n users and V = {v1,v9,...,v,,} be the set of m
items. We use X € R™ ™ to denote the user-item rating
matrix where X(i,j) is the rating score from u; to v; if
u; rates vj;, otherwise X(i,j) = 0. For IHSR, we do not
assume the availability of hierarchical structures of users
and items, hence the input of the studied problem is only
the user-item rating matrix X, which is the same as that of
traditional recommender systems. Before going into details
about how to model implicit hierarchical structures of users
and items, we would like to first introduce the basic model
of the proposed framework.

3.1 The Basic Model

In this work, we choose weighted nonnegative matrix fac-
torization (WNMF) as the basic model of the proposed
framework, which is one of the most popular models to
build recommender systems and has been proven to be
effective in handling large and sparse datasets [3]. WNMF
decomposes the rating matrix into two nonnegative low
rank matrices U € R"¥4 and V € R4, where U is
the user preference matrix with U(4, :) being the preference
vector of u;, and V is the item characteristic matrix with
V(:,j) being the characteristic vector of v;. Then a rating
score from u; to v; is modeled as X(4, j) = U(¢,:)V(:,j) by
WNME. U and V can be learned by solving the following
optimization problem:

W o (X -UV)[E+ B0l + IVIF) (1)

min
UZ0,V>0
where @ denotes Hadamard product. W (i, j) = 1 if u, rates
v;, and W (4, j) = 0 otherwise.

3.2 Modeling Implicit Hierarchical Structures

In weighted nonnegative matrix factorization, the user pref-
erence matrix U and the item characteristic matrix V can in-
dicate implicit flat structures of users and items respectively,
which have been widely used to identify communities of
users [35] and clusters of items [36]. Since both U and
V are nonnegative, we can further perform nonnegative
matrix factorization on them, which may pave the way to
model implicit hierarchical structures of users and items for
recommendation. In this subsection, we first give details
about how to model implicit hierarchical structures based
on weighted nonnegative matrix factorization, and then
introduce the proposed framework IHSR.

The item characteristic matrix V. € RYX™ gives the
d-dimensional feature representation of m items. Since V
is non-negative, we can further decompose V into two
nonnegative matrices Vi € R™ "™ and Vy € R¥X™ to get
a 2-layer implicit hierarchical structure of items as shown in
Figure 2(a):

V~ VoV, @)

where m; is the number of latent sub-categories in the 2-nd
layer and V; indicates the affiliation of m items to m; latent
sub-categories. \72 denotes the latent representations of the
my sub-categories. Since V1 (:, 1) is the affiliation of the item
v; to the m; latent items, then VoVi(:, i) gives the latent
features of v;. In other words, Vng represents the latent
features of the m-items.

Since \72 is non-negative, we can further decompose
the representation matrix Vg to Vo € R™2*™1 and V3 €
R%*™2 to get a 3-layer implicit hierarchical structure of
items as shown in Figure 2(b):

V ~ VngVl (3)

In particularL VngVl € R¥*™ denotes the representation
of m items, V3Vy € R9X™ means the representation of m;
sub-categories and V3 € R denotes the representation
of my categories. An illustration that the factorization, i.e,
V3VyVy, V3V, and V3, can describe a 3-layer hierarchical
structures is shown in Figure 4.
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Fig. 2: Implicit Hierarchical Structures of Items via Deeply Factorizing the Item Characteristic Matrix.

Let V,_; be the latent category affiliation matrix for the
(¢ — 1)-layer implicit hierarchical structure. The aforemen-
tioned process can be generalized to get the g-layer implicit
hierarchical structure from (g — 1)-layer implicit hierarchical
structure by further factorizing V,_; into two non-negative
matrices as shown in Figure 2(c):

V = quq_1 . V2V1 (4)

where V; € RmiXmi-1 (1 < j < ¢) and V, € R Ma-1,
Similarly, to model a p-layer user implicit hierarchical
structure, we can perform a deep factorization on U as

U~ U U,...U, U, )

where Uj is a n x ny matrix, U; (1 < i < p)isan;_1 xn;
matrix and U, is a n,—1 X d matrix.

3.3 The proposed IHSR

With model components to model implicit hierarchical
structures of items and users, the framework IHSR is pro-
posed to solve the following optimization problem

IWo (X -U;...U,V,...V))|%

min
Uy,...,Up,Vi,..., Vg

p q
IR+ IVIE)
i=1 j=1

st. U;>0,ie{l1,2,...
V;>0,je{1,2...

,D},

,q}

An illustration of the proposed framework IHSR is demon-
strated in Figure 3. The proposed framework IHSR performs
a deep factorizations on the user preference matrix U and
the item characteristic matrix V to model implicit hierar-
chical structures of items and users, respectively; while the
original WNMF based recommender system only models
flat structures as shown in the inner dashed box in Figure 3.

4 THE PROPOSED FRAMEWORK FOR EXPLICIT HI-
ERARCHICAL STRUCTURES

When hierarchical structures are explicitly available, it
would be superior to incorporating this explicit hierarchical
structures than using implicit hierarchical structures be-
cause explicit hierarchical structures contains more struc-
tural information for guiding the learning process of learn-
ing latent features. Therefore, in this section, we introduce
how to incorporate explicit hierarchical structures. We aim

:' X e
i ! WNMF
U V|
U, U, Vo, V)
U2 I:JS {{3 V2 HSR
U,1 U, V, V.

Fig. 3: An Illustration of The Proposed Framework IHSR.

to provide a unified and flexible framework that can deal
with both explicit hierarchical structures and implicit hier-
archical. Thus, we will extend IHSR to incorporate explicit
hierarchical structures, which provides us a unified frame-
work. Next, we will first introduce how to mathematically
represent explicit hierarchical structures followed by the
details of how to incorporate explicit hierarchical structures.

4.1

Figure 4 gives an example of an explicit hierarchical struc-
ture. Generally, the hierarchical structure can be regarded as
a set of trees, where each node is a group of items that share
certain properties. The set of items in a child node is a subset
of items in its parent node. Each parent node can have one
or more child nodes and each leave node is an item. For
example, in figure 4, there are two trees, which corresponds
to two large categories such as “Kitchen Products” and
“Bedroom Products”, respectively. The root of the left tree
has four items, i.e., {v1, va,v3,v4}, which are all “Kitchen
Products”. It has two child nodes, which has item sets
{v1,v2} and {vs,v4}, corresponding to two subcategories,
i.e., “Cookware” and “Bakeware”. From this observation,
we can see that a hierarchical structure is simply a set
of parent-child relationship, which can be represented as
membership matrices. Specifically, let Q; € R™*-1X™* be
the membership matrix, which indicate the membership of
the child nodes in height & to the nodes in height k + 1,
where the leaves are in height 1. Qx(4,j) = 1 means that
the ¢-th node in height k belong to the j node in height
k + 1. For example, in Figure 4, we have Q; € R™1*™2
with m; = 4 and my = 2 as there are 4 nodes in height
2 and 2 nodes in height 3. In addition, Q2(1,1) = 1,
Q2(2,1) = 1, Q2(3,2) = 1 and Q2(4,2) = 1. Note that
we assume each tree in the same hierarchical structure has

Representing Explicit Hierarchical Structures
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Fig. 4: An Illustration of Hierarchical Structures and Feature Representation of Each Nodes.
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(b) Dummy Node Example 2

Fig. 5: Adding dummy nodes. In each example, the left tree
is the original tree and the right tree is the tree with dummy
node. The red node is dummy node. (Best viewed in color)

the same depth and the depth from the root node to each
leaf node is the same. Otherwise, we can add dummy nodes
to realize this. Figure 5 gives two example of how to add
dummy nodes to satisfy the requirement. In Figure 5(a),
the left subtree of the root node has depth 2 wile the right
subtree has depth 1, thus, we can add one dummy node
(i.e., the red node in the figure) to ensure that the left and
right subtrees have the same depth. In Figure 5(b), we want
a tree of depth 3, thus, we can add a dummy node (red) as
shown in the figure. Note that, adding dummy node doesn’t
change the properties or semantic meanings contained in the
hierarchical structure. Instead, adding dummy nodes will
make the modeling easier, which will be explained in next
section.

Similarly, user preferences also have hierarchical struc-
tures. We add dummy nodes to make sure that each tree
within the same hierarchical structure has the same depth
and the depth from root node to each leaf node is the same.
We then use P;, € R"™*"*~1 to denote the membership
matrix for user preference hierarchical structure, which is
defined in a similar way. We omit the detail here.

4.2 Modeling Explicit Hierarchical Structures

As observed in Figure 4, a hierarchical structure can be
regarded as a set of trees, where each node of a tree is
a group of objects that share certain properties. The items
contained in a child node is a subset of the items contained
in its parent node. Thus, a parent node captures more
general properties for a large set and the child node captures
more fine-grained properties for a smaller set. The leaves
capture the unique properties of each item. This property
implies that the representation of a parent node can be
captured by the average of the representations of its child
nodes. From the modeling of implicit hierarchical structures,
we already have the representation of each node of these

trees, i.e., let p be the number of layers of the hierarchical
structure, then V, ...V, € R¥>Xme |k < p represent the
my, nodes in the level p — k + 1 of a hierarchical structure.
For example, as shown in the Figure 4, V3V,V; € RI¥X™
with m = 8 denotes the latent features of the eight leave
nodes; V3V, € R¥>*™1 with m; = 4 denotes the latent
representations of the four nodes; and V3 € R¥*™2 gives
the latent representations of the two root nodes. Since the
representation of a parent node can be captured by the
average of the representations of its child nodes, and the
parent child relationship is captured in Qj, it is easy to
model this relationship. Specifically, we first normalize Qy

as
Qi(i,J) « e

> Qu(d, )

Then the requirement that the representation of a parent

node should be close to the average of the representations
of its child nodes can be mathematically modeled as

@)

q
min» " |[Vy... Vi =V, V,i1Qi1|% 8)
1=2

Similarly, we do the normalization on P, as

Pk (Za .7 )
S PL(G, )
With the normalized Pj, we model the explicit hierarchical
structure for user preferences as

P(i,7) < ©)

p
min Y [|U;... U, =P Ui ... U1 (10)
=2

4.3 The proposed HSR

With the model components to model explicit hierarchical
structures of items and users, the framework HSR is pro-
posed to solve the following optimization problem

Y [Wo (X -U;...U,V,...V))||%
q

min
U1,..,Up, V1,0,

P
+ Oéz ||UZ .. .Up —-P;,_1U,;_1.. UP”%‘
=2
q
+B8D IVg...Vi= V4. .ViaQia|7
1=2

p q
FAO NUE + D IIVIE)
i=1 =1

st. U;>0,i€{1,2,...
V,; >0, je{1,2,...

P}

,q}
(11)
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where a and S are two parameters to control the con-
tribution of the explicit user and item hierarchical struc-
tures, respectively. The proposed framework is a general
framework that can deal with both explicit and implicit
hierarchical structures. When explicit hierarchical structures
are available, oo and [ are set to positive values to guide
the learning process of user and item latent features. When
explicit hierarchical structure is not available, we can set
a and [ to zero, then HSR reduces to IHSR, which models
implicit hierarchical structures. For mixed hierarchical struc-
tures such as explicit item HS and implicit user HS, we can
set o to be 0 and f3 to be positive.

4.4 Discussion of Dummy Nodes

For simplicity, we will use the example in Figure 5(a) to
show that dummy nodes don’t affect the modeling purpose.
Our modeling follows the assumption that a parent node’s
representation is close to the average of its child nodes’
representations. Thus, we only need to show that with and
without the dummy nodes, we achieve the same goal. Con-
sider the left tree without dummy nodes in Figure 5(a), we
would require the representation of node {vs, vg, v7,v7} to
be close to the average representations of nodes {vs, vg, v7}
and node {vg}. After adding the dummy nodes, ie., the
right tree in Figure 5(a), we would require the representation
of node {vs,ve,v7,v7} to be close to the average repre-
sentation of node {vs,vs,v7} and node {vg} (red circle).
In addition, we also have that the representation of node
{vs} (red rectangle) is close to that of {vs} (gray circle).
The total effect is that we are enforcing the representation
of node {vs,vs,v7,v7} to be close to the average repre-
sentation of node {vs,vs,v7} and node {vs} (gray circle).
Thus, the modeling effects with and without dummy nodes
are approximately the same. However, by adding dummy
nodes, we make the modeling easier because now each tree
has similar form and the number of leaves of all the trees
are equal to number of items. The modeling of hierarchical
structures can be written in the simple form as Eq.(11).

5 AN OPTIMIZATION FRAMEWORK

The objective function in Eq.(11) is not convex if we update
all the variable jointly but it is convex if we update the
variables alternatively. We will first introduce our optimiza-
tion method for HSR based on an alternating scheme in [37]
and then we will give convergence analysis and complexity
analysis of the optimization method.

5.1 Inferring Parameters of HSR

In this subsection, we give the details of updating rules of
Ui and Vz

5.1.1 Update Rule of U,

To update U;, we fix the other variables except U;. By
removing terms that are irrelevant to U;, Eq.(11) can be
rewritten as:

IgnglOIIW ® (X - AUH) |7 + o (I-P;U;)D;| %

i1 12)
+a Z [(GF — ChHUD |3 + AU ||%
k=1

6
where A;, H;, and D;, 1 <1 < p, are defined as:
_f UU,... Uy ifi#d
Al_{I ifi=1 (13)
o Ui+1...Uqu...V1 lfl#p
HZ_{Vq...Vl ifi=p (9
o Ui+1Ui+2...Up le#p
DZ_{I ifi = p (15)
GfandCf,lSigp,lSk‘gi—l,aredeﬁnedas
k Uk+1...Ui_1 lfk#l—l
Gi—{l ifh=i—1 (16)
Cl =P, U,.GF 17)

The Lagrangian function of Eq.(12) is
L(U;) =[[W o (X — A;UH)||7 + MU |7 — Tr(YTU))

i—1
+al|(I-P;U;)D;||7 + « Z (G} — C/UD;|7
k=1
(18)
where Y is the Lagrangian multiplier. The derivative of
L(U;) with respect to U is

3/;([‘;” —2A7 [W 0 (A,UH, - X)|H! + 22U,

+ 2P (P, U,D; — D;,)D} - Y (19)
i—1
+20 ) (G = C))(G] - C))U:D:D}
k=1
By setting the derivative to zero and using Karush-Kuhn-

Tucker complementary condition [38], i.e., Y(s,t)U;(s,t) =
0, we get:

i—1
[ATIW © (A;UH; - X)H] + 0 ) (G - ChT(GE - C))
k=1
U,D;D] + aP! (P;U,D; — D;)D] + AU, (s, 1)Ui (s, 1) = 0
(20)
Eq.(20) leads to the following update rule of U; as:
El(s,t)
Ui(s,t) < Ui(s, )| zo - 21
(5:1) € Uil 0y o5 e1)
where E! and E? are
E! = AT (W o X)H! + oP!D,D}
1—1
+a Y (GEcH + ' ahu,D,Df
b=l (22)
E2 = AT(W & (A, U;H,))H? + oPTP,U,D,D”

i—1
+aY (G @k +ct chu,D,D! + 2T,
k=1
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5.1.2 Update Rule of V;

Similarly, to update V;, we fix the other variables except V.
By removing terms that are irrelevant to V;, the optimiza-
tion problem for V; is:

in [Wo (X~ B;V:M,)|% + B T:(I- V,Q))|%

i—1 (23)
+ B> T V(L — SH|I7 + A3l
k=1
where B;, M; and T;, 1 < i < ¢, are defined as
o U1~~-Upvq-~~Vi+1 lfl#q
B”_{Ul...Up ifizg @Y
ViV ifi#l
MZ_{I ifi=1 (25)
V.. Vi ifi#£ 1l
T%*{I ifi=1 (26)
Lf ande,lgigq,l§k§i—1,aredeﬁnedas
V,.1...V ifk#£i—1
k _ i—1 k+1
Li—{l ifh=i—1 @7
Sf = LV, Qs (28)

The Lagrangian function of Eq.(23) is
min [W o (X = B;ViMy)|[F + Al Vi[5 — Tr(ZTV5)

1—1
+ BIT(X = ViQo) |17 + B> IT:Vi(LF — SH)|1%
k=1

) (29)
where Z is the Lagrangian multiplier. The derivative of
L(V;) with respect to V is

% =2BI' [W o (B,;V:M,; — X)|M! +2)\V;
+28T](T;V;Q; — T;)Q] — Z (30)
1—1
+283 TIT,Vi(LE - S)(LF - 88T
k=1

Similarly, by setting the derivative to zero and using Karush-
Kuhn-Tucker complementary condition, Z(s, t)V;(s,t) =0,
we arrive at

i—1

[BZ” W B VM, - X)|M! + 83 TI T V(L - s¥)
k=1
(LF -85 4+ pTT(TiV:Q: — T)QT + Avi] (s,0)Vi(s,8) = 0
(1)
which leads to the following update rule of V; as
Fl(s,t)
Vi(s,t Vi(s,t L 32
(5,8) = V5.0 g )
where F} and F? are given as
F; =B/ (WoX)M; + 5T/ T,Q;
i-1 - - (33)
+8Y TITiVi(LiS; + 1L 87
k=1
F; =B [W® (B,V,M,)| M] + T T;V,Q:Q
' (34)

1—1
+ B8 TIT,Vi(LE(L))T + 8FSHT) + AV,
k=1

7

Algorithm 1 The Optimization Algorithm for the Proposed
Framework HSR.

Input: X, o, 5, A, p, ¢, d and dimensions of each layer
Output: X,,cq
: Initialize {U;};_, and {V;}{_;
: U,V WI\H\/IF()(7 d)
s fori=1top-1do ~
Ui, Ui+1 — NMF(UZ', ?’lz)
: end for
: fori=1tog-1do ~
Vi+1, Vl — NMF(V“ ml)
end for ~
U,=0,,V,=V,
: repeat
fori=1toqdo
update B;, M;, T, Lf and Sf, 1<k<i-1,
with Eq.(24)-(28)
13: update V; by Eq.(32)
14: end for
15:
16: fori=ptoldo
17: update A;, H;, D,, Gf, 1<k<i-—1,and Cf
with Eq.(13) - (17)
18: update U; by Eq.(21)
19: end for
20: until Stopping criterion is reached
21: predict rating matrix X,eq = Uy ... U, V...V,

R N A A S e

_
N 2o

5.2 Learning Algorithm for HSR

With the update rules for U; and V;, the optimization
algorithm for HSR is shown in Algorithm 1. Next we briefly
review Algorithm 1. In order to expedite the approximation
of the factors in HSR, we pre-train each layer to have
an initial approximation of the matrices U; and V;. To
perform pretraining, we first use WNMEF [3] to decompose
the user-item rating matrix into U;V; by solving Eq.(1).
A}fter tha~t, we further decompose U; into U; = U;U; and
Vi1 = V3V, using nonnegative matrix factorization. We
keep the decomposition process until we have p user layers
and g item layers. This initializing process is summarized in
Algorithm 1 from line 1 to line 9. After initialization, we will
do fine-tuning by updating the U; and V; using updating
rules in Eq.(21) and Eq.(32) separately. The procedure is
to first update V; in sequence and then U, in sequence
alternatively, which is summarized in Algorithm 1 from line
10 to line 20. In line 21, we reconstruct the user-item matrix
as Xpred = Uy ... U,V ... V. Amissing rating from u; to
v; will be predicted as X,¢q(%, §)

5.3 Learning Algorithm for IHSR

The proposed model HSR is a unified and flexible frame-
work which can be used for both implicit and explicit
hierarchical structure. By setting o and 3 to zero, HSR
reduces to IHSR. Thus, the learning algorithm of HSR can
also be used for IHSR. Specifically, by setting « and /3 to
zero, Algorithm 1 becomes a learning algorithm for IHSR.
We omit the details here.
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TABLE 1: Statistics of the Datasets

Dataset #of users | # of items | # of ratings
MovieLens100K 943 1,682 100,000
Douban 1,371 1,967 149,623
MovieLensIM 6,040 3,900 1,000,209
Ciao 7,935 16,200 171,465

5.4 Time Complexity Analysis

Initialization and fine-tuning are two most expensive oper-
ations for Algorithm 1. For line 3 to 5, the time complex-
ity of factorization of U, € Ru-1Xd 4o U; € RMi-1%Xni
and U;;; € R%*? is O(tn;_1nd) for 1 < i < p, and
O(tnnid) for i = 1, where ¢ is number of iterations takes
for the decomposition. Thus the cost of initializing U;’s is
O(td(nn1 + ning + - - - + np_on,_1). Similarly, the cost of
initializing Vs is O(td(mmq + mimg + - - + mg_omg_1)
(line 6 to 8). The computational cost of fine-tuning U, in
each iteration is (’)(nni_lni + nnym + ni_1nym + ni(d +
ni—1) + n?_;(n; 22;11 nk)) Similarly, the computational
cost of fine-tuning V; in each iteration is O(mmi,lmi +
mmm—l—mi_lmm—i—m?(d—!—mi_l)+m§71(mi+22;11 mg)).
Let ng = n,mo = m,n, = my = d, then the time complex-
ity of fine-tuning for HSR is O(ts[(n + m)(>t_; ni—1n; +
Sy micama) + nm (300 na + 320 my) + X i (d +
nio1) + X0 n? (e sy k) + iy m3(d 4+ mioq) +
S m? (mi + Yi_my)]), where t; is the number
of iterations takes to fine-tune. For IHSR, since we set
a = 0 and B = 0, the time complexity of fine-tuning
for IHSR is O (ts[(n +m)(>F_; nj—1n; + Z?Zl mi_1m;) +
nm(35_y ni + Y7, m;)]). The overall time complexity is
the summation of the costs of initialization and fine-tuning.
Note that in practice, for both IHSR and HSR, two layers
of users and items, ie., p = 2 and ¢ = 2, already give
significant performance improvement over MF and NME
When p and q are both set to a larger value than 2, the per-
formance is slightly better than that of p = 2 and ¢ = 2 but
the time complexity increases. Thus, in practice, we usually
choose p = 2 and q = 2 and thus the time complexity is not
that large compared with WNMEF and MEF, while the performance
improvement is significant enough.

6 EXPERIMENTAL ANALYSIS

In this section, we conduct experiments to evaluate the
effectiveness of the proposed framework IHSR/HSR and
factors that could affect the performance. We begin by intro-
ducing datasets and experimental settings, then we compare
the proposed framework with the state-of-the-art recom-
mendation systems. Further experiments are conducted to
investigate the parameter sensitivity of IHSR and HSR.

6.1

The experiments are conducted on four publicly avail-
able benchmark datasets, i.e., MovieLens100K 2, Douban ?,
MovieLenslm ° and Ciao °.

Datasets

3. http:/ /grouplens.org/datasets/movielens/100k /
4. http:/ /dl.dropbox.com/u/17517913 /Douban.zip
5. https://grouplens.org/datasets /movielens/1m/
6. http:/ /www.cse.msu.edu/ tangjili/trust.html

8

¢ MovieLens100K: MovieLens100K consists of 100,000
movie ratings of 943 users for 1,682 movies. The movies
are categorized into 18 categories, such as “Animation”,
“Children’s” and “Comedy”.

« Douban: The Douban dataset is crawled from Douban 7
and used in [39]. We filter out users who rated less than
20 movies and movies that are rated by less than 10 users
from the Douban dataset and get a dataset consisting of
149,623 movie ratings of 1,371 users and 1,967 movies.

e MovieLens1M: MovieLens1M is a widely used movie rat-
ing datasets, which contains around 1 million anonymous
ratings of approximately 3,900 movies by 6,040 users.
Each user rated at least 20 items. Similarly, the movies
are also categorized into 18 categories.

e Ciao: The Ciao dataset is collected from a real-world
social media websites, Ciao ®. From the originally col-
lected dataset, we filter out users who rated few items
and also items that received less than 3 ratings, which
leaves us 7,935 users and 16,200 products. Each product
belongs to one of the 30 categories defined by Ciao, such
as “Electronics”, “Home & Garden” and “Fashion”. Each
category is further divided into several sub-categories.

For all four datasets, users can rate items with scores
from 1 to 5. For MovieLens100K, MovieLensIM and Ciao,
in addition to rating matrix, we also have the category
information of the items. The category information are used
as the explicit hierarchical structures for the evaluation of

HSR. The statistics of datasets are summarized in Table 1.

We adopt these datasets because: (i) they are widely used

for evaluating the effectiveness of recommender systems;

and (ii) three of these datasets have category information,
which can be used for the evaluation of HSR.

6.2 Evaluation Settings

We perform both rating prediction and Top-K recommen-
dation to evaluate the effectiveness of the proposed frame-
work. For rating prediction, the widely used evaluation
metric, i.e., root mean square error (RMSE), is adopted to
evaluate the performance. For Top-K recommendation, we
adopt precision@K (prec@K) and recall@K as the evaluation
metrics, where K is varied as {5, 10, 15, 20}.

We random select ©% as training set and the remaining
1 — 2% as test set where x is varied as {40,60}. Note that
for rating prediction, the test set contains ratings from 1 to
5; while for top-K ranking, following previous work [25], we
remove ratings below 5-stars from test set such that the test set
contains only 5-stars ratings. Thus, we can reasonably state that
test set contains items relevant to the respective users. For both
rating prediction and top-K recommendation, the training
set contains ratings from 1 to 5. The random selection is
carried out 10 times independently, and the average results
are reported. A smaller RMSE value means better rating pre-
diction performance; while a larger Prec@K and Recall@K
suggests better top-K recommendation performance.

6.3 Recommendation Performance of IHSR
In this section, we conduct experiments to show the ef-
fectiveness of exploring implicit hierarchical structures by

7. https:/ /www.douban.com/
8. http://www.ciao.co.uk/
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TABLE 2: Rating prediction results (RMSEZstd) on MovieLens100K, Douban, Movielens1M and Ciao

Methods UCF MF WNMF ITHSR-User THSR-Item THSR
MovieLens100K 40% | 1.0615+0.0032 | 0.979240.0029 | 1.02054+0.0034 | 0.9681+0.0028 | 0.9672+0.0027 | 0.9578+40.0024
60% | 1.0446+0.0030 | 0.9664+0.0022 | 0.99534+0.0025 | 0.9433+0.0015 | 0.9412+0.0020 | 0.9325+0.0032
Douban 40% | 0.8077+0.0019 | 0.753840.0023 | 0.7807+0.0021 | 0.7313+0.0013 | 0.7304-+0.0016 | 0.7284+0.0014
60% | 0.7988+0.0028 | 0.7403+0.0025 | 0.76371+0.0023 | 0.7225+0.0014 | 0.7219+0.0017 | 0.7179+0.0018
MovieLens1M 40% | 1.0842+0.0007 | 0.9306+0.0004 | 0.9519+0.0007 | 0.9021+0.0009 | 0.901540.0008 | 0.895740.0009
60% | 1.0549+£ 0.0010 | 0.9085+0.0020 | 0.9384+0.0012 | 0.887740.0009 | 0.8882+0.0010 | 0.8813+0.0009
Ciao 40% | 1.1280+0.0031 1.09464-0.0028 | 1.1188+0.0038 | 1.0783£0.0021 | 1.077840.0023 | 1.0695+0.0021
60% | 1.10404+0.0025 | 1.0702+0.0038 | 1.08114+0.0024 | 1.02514+0.0043 | 1.0260+0.0039 | 1.0178+0.0032
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Fig. 6: Top K ranking on MovieLens100K, DOuban, MovieLens1M and Ciao.

comparing the recommendation performance of IHSR with
representation recommender systems. Note that for IHSR,

no explicit hierarchical structures are used. The comparison
results for rating prediction and top-K recommendation
are summarized in Table 2 and Figure 6, respectively. The
baseline methods in the table and figure are defined as:

WNMEF: weighted nonnegative matrix factorization tries

to decompose the weighted rating matrix into two non-

negative matrices to minimize the reconstruction error [3].

It is the basic model of the proposed framework.

BPR: Bayesian personalized ranking [23] is state-of-the-art

ranking based method proposed for top-K recommenda-

tion. Since it is not good at predicting the ratings, we only
use is as a baseline for top-K recommendation.

o IHSR-Item: IHSR-Item is a variant of the proposed frame-
work IHSR. IHSR-Item only considers the implicit hierar-
chical structure of items by setting p = 1.

o IHSR-User: IHSR-User is a variant of the proposed frame-

work IHSR. IHSR-Users only considers the implicit hier-

archical structure of users by setting g = 1.

o UCF: UCF is the user-oriented collaborative filtering
where the rating from u; to v; is predicted as an aggre-
gation of ratings of K most similar users of u; to v;. The
cosine similarity is used to calculate user-user similarity.

o MF: matrix factorization based collaborative filtering tries
to decompose the user-item rating matrix into two matri-
ces such that the reconstruction error is minimized [9]. It
is one of the most popular recommender systems.
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TABLE 3: Rating prediction results (RMSE+std) on MovieLens100K, MovielensIM and Ciao
Methods ReMF IHSR HSR-Item HSR
MovieLens100K 40% | 0.975140.0026 | 0.957840.0024 | 0.9659+0.0027 | 0.9558+0.0022
60% | 0.9499+0.0028 | 0.932540.0032 | 0.9426+0.0033 0.9296+0.0027
MovieLens1M 40% | 0.915240.0014 | 0.8957+0.0009 | 0.8950+0.0006 0.8912+0.0010
60% | 0.8923+0.0010 | 0.8813+0.0009 | 0.8798+0.0021 0.8777+0.0019
Ciao 40% | 1.079140.0021 | 1.0695+0.0021 | 1.0687+0.0023 | 1.0634+ 0.0020
60% | 1.0320£0.0034 | 1.0178+0.0032 | 1.0166+0.0032 1.013440.0027
0.22, — 0.2, = - 0.1 P 0.2, =
o v 0.18 g PPt 01H 3~ SR 0.18 g
R -e-HSR_item -®-HSR_item ot L S -©-HSR_item -©-HSR_item
R ->-HSR 0161| - » - Hsr Lo eet T T o1ak S NIs. -P-HSR 036|- » - HsR
0.18| ‘~:\ . [t ”," s\\ \x:\‘x o
@01& e @o.la . \\:\ - )
014 0.11 k\‘u_:a\“\:: B .
0.12] 01 \"‘--___‘ oosh-”
U>15 10 K 15 20 o 5 10 « 15 20 0.0 5 10 « 15 20 oo 5 10 X 15 20

(a) Prec@K on ML100K 40%  (b) Recall@K on ML100K 40%  (c) Prec@K on ML100K 60% (d) Recall@K for ML100K 60%

0.23¢ o. 0.1 0.2
£~ -+ -ReMF —+-ReMF b -+ -ReMF -+ -ReMF
0.27] "\'\._' IHSR 0.16] IHSR - ET: R IHSR 0.18| IHSR
S~ S =© -HSR_item =@ -HSR_item PR oo e - @ -HSR_item - @ -HSR_item
0.214 AU -p- - -l ~ 0.16
F oo R YN HSR 0.14f{~ P~ HSR I 0.17 Sao sl -P-HSR -»-HSR
02f . S e N ‘o, N
¥ ~. ~ < X - x hS N < X
.. N ] 0.16| N el e ®
%mg R SR 3 % N ST H
3 Sel o .. g & 0.15 Sl So 8
® o018 N lTtealy © - NN &
o017 RIS, - 0.14 \\‘ Sal Tl
0.16 e 013 REIGRRR
0.1 0.1 0.0:
5 10 15 20 20 5 10 15 20 5 10 15 20

K K
(e) Prec@K on ML1M 40% (f) Recall@K on ML1M 40% (g) Prec@K on MLIM 60% (h) Recall@K for ML1M 60%

0.1 0. 0.11 0.2

=+ -ReMF -+ =ReMF =+ -ReMF =+ -ReMF
015 IHSR 0.18 IHSR - odfe IHSR 0.18 IHSR .z
01a) ~ - -HSR_item - - HSR_item PP YN -© -HSR_item -© - HSR_item Prrtae
L . -»-HSR 0.16/| = P ~HSR PPt S -P-HSR 0.16{{~ >~ HSR 22"
(R SIS SPPEle . -8 -1
éo.u«\ “\:;.___ @o.m - é .
Sonl s ERRENR SN %o g
a AN Trel Tl e @
0.1 Seol Sl T
-l ~.. 0.1
0.09 DT .~
0.08 ‘“~-,_‘ 0.085~
0.0 - 0.0 0.
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
K K K K
(i) Prec@K on Ciao 40% (j) Recall@K on Ciao 40% (k) Prec@K on Ciao 60% (1) Recall@K for Ciao 60%

Fig. 7: Top K ranking on MovieLens100K, DOuban, MovieLens1M and Ciao.

The compred baselines include representative and state- 6.4 Performance Comparison of Recommender Sys-
of-the-art rating based and ranking based methods. IHSR- tems with Hierarchical Structures
Item and IHSR-Users are aim to show that by considering
only item hierarchical structures or item hierarchical struc-
tures, can we gain improvement. Note that parameters of all
methods are determined via cross validation. Based on the
results, we make the following observations:

In this section, we conduct experiments to show the ef-
fectiveness of incorporating explicit hierarchical structures.
The hierarchical structures are obtained by the category
information of items. Since we don’t have category infor-
mation for Douban datasets, we only conduct experiments

o In general, matrix factorization based recommender sys-  on MovieLens100K, MovieLens1M and Ciao. The represen-
tems outperform the user-oriented CF method and this tative compared methods are:

observation is consistent with that in [9]. . .

« Both IHSR-Ttem and THSR-User obtain better results than ¢ ReMF: ReMF [18]is state-of-the-art model that exploits ex-
WNME. We perform {-test on these results, which suggest plicit hierarchical structures. Specifically, it is a matrix fac-
that the improvement is significant. These results indicate torization framex'/v.ork.with re'cursive regularization, w}}ich
that the implicit hierarchical structures of users and items models the explicit hierarchical structure as a regularizer
can improve the recommendation performance to guide the learning process user and item latent features.

e BPR outperforms MF on top-K recommendation becuase It doesn’t work for implicit hierarchica.l structures.
it is optimized for ranking. IHSR outperforms BPR, which ~ * [HSR: The proposed model for exploring implicit hierar-
sugwests the effectiveness considerine hierarch § chical structure. This is used to compare the performance

. IH%EI;{ consistently outperforms both IEI;—ISR—Item};n d IHSR- difference between implicit hierarchical structure and ex-
User. These results suggest that implicit hierarchical struc- plicit hler:flrchlcal structure. . L .
fures of users and items contain complementary infor- ° HSR-Item: HSR-Item only considers the explicit item hi-

: . . erarchical structures, i.e., @ = 0 and 8 > 0. No explicit or
mation and capturing them simultaneously can further R . .
. . implicit user preference structures are considered for this
improve the recommendation performance.

method.

1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2789443, IEEE

Transactions on Knowledge and Data Engineering

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

1000 100 n,

(b) RMSE for ML 1M 60%

Recall@20
o 2 o 2 o
B & &5 & 5

23

1000

100" 200

m n, 100 200 m

(e) Prec@20 on ML1M 40% (f) Recall@20 on ML1M 40%

11

n
1000 100 N 1000 100
m.

(c) RMSE for Ciao 40% (d) RMSE for Ciao 60%

100 200

(g) Prec@20 on ML1M 60%

100 200

(h) Recall@20 on ML1IM 60%

Fig. 8: Parameter Analysis for IHSR.

o HSR: For HSR, we exploits implicit hierarchical structure
of user preferences and explicit hierarchical of items. This
setting is very practical in real-world as item hierarchical
structures are usually explicitly available while explicit
user preference structures are difficult to obtain.

Similarly, the parameters of all methods are determined

via cross validation. Every experiments are conducted 10

times and the average performance for rating prediction and

top-K recommendation are reported in Table 3 and Figure 7,

respectively. From the results, we make observe:

o Comparing HSR-Item and ReMF, HSR-Item is slightly bet-
ter than ReMF. Both HSR-Item and ReMF utilize explicit
hierarchical structure with the idea that the representation
of child nodes should be close to that of parent node.
However, HSR-Item is more effective as it uses deep non-
negative matrix, which can learn more powerful latent
features; and

o Generally, HSR-Item and IHSR has similar performance.
This is because HSR-Item exploits item explicit hier-
archical structures while IHSR explores both user and
item implicit hierarchical structures. HSR gives the best
performance as in addition to item structures, it also
exploits user preference hierarchical structures, which
demonstrates the effectiveness of exploiting both explicit
and implicit hierarchical structures for recommendation.

6.5 Parameter Analysis

In this section, we investigate the affects of the parameters
on the performance of the proposed frameworks, IHSR
and HSR. Specifically, for the proposed IHSR that explores
implicit hierarchical structures, m1,...,m, and nq, ..
which determines the number of nodes in each layer of
implicit hierarchical structures, are important parameters
to be selected; while for HSR that incorporates explicit
hierarchical structures, m1, ..., m, and ny,...,n, are given
by the explicit HS. Instead, for HSR, o and /3, which controls
the contribution of the explicit hierarchical structures, are
important parameters to be tuned. Since IHSR and HSR
have different set of parameters that will affects their per-
formance, next we will investigate the parameter sensitivity
of IHSR and HSR, respectively.

-y g,

6.5.1 Parameter Analysis for IHSR

In this subsection, we investigate the impact of dimen-
sions of implicit layers on the performance of the pro-
posed framework IHSR. We only show results with p = 2
and ¢ = 2, ie, WO X ~ W © (U;UyV,Vy) with
U, € R™™ Uy € RM*4 V€ RX™1 and Vo € R™MX™
as we have similar observation with other settings of p and
q. We fix d to be 20 and vary the value of ny as {100, 200, 300,
400, 500} and the value of m; as {200, 400, 600, 800, 1000}.
Each experiments are conducted 10 times. The average per-
formance for rating prediction on MovieLens 1M and Ciao
and the average performance for top-K recommendation on
MovieLens 1M are shown in Figure 8. Form the figures, we
make the following observation: (1) In general, when we
increase the values of dimensions, the performance tends to
first increase and then decrease; and (2) Among n; and my,
the performance is relatively sensitive to m;.

6.5.2 Parameter Analysis for HSR

In this subsection, we investigate the impact of 5 on the
performance of the proposed framework HSR. Specifically,
we evaluate the performance of HSR-Item as we only have
the explicit hierarchical structures of items. We fix d to be 20
and vary the value of § as {0,1e — 4,1e — 3,1e — 2,0.1, 1}.
Similarity, we use 2% percent for training and (100—x)% for
testing where x is chosen as 40 and 60. Each experiments are
conducted 10 times and the average performance for rating
prediction on MovieLens 1M and Ciao and the average
performance for top-K recommendation on MovieLens 1M
are shown in Figure 9. From the figure, we can observe that
(i) Generally, as [ increases, the performance first increases
until certain value, then it decreases; and (ii) A value of
B within [107%, 1073] gives relatively good performance,
which eases the parameter selection.

7 CONCLUSION

In this paper, we investigate the novel problem of exploiting
implicit and explicit hierarchical structures of items and
users for recommendation depends on their availability.
We propose a novel recommendation framework, which
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integrates the explicit hierarchical structures of users into
a coherent model when explicit hierarchical structures are
available and exploits implicit hierarchical structures when
the structures are not explicitly available. Experimental re-
sults on four real-world datasets demonstrate the impor-
tance of the explicit and implicit hierarchical structures of
items and those of users in the recommendation perfor-
mance improvement.

There are several interesting directions needing further
investigation. First, in this work, we choose the weighted
nonnegative matrix factorization as our basic model to cap-
ture the implicit hierarchical structures of items and users
and we would like to investigate other basic models. Since
social networks are pervasively available in social media
and provide independent sources for recommendation, we
will investigate how to incorporate social network informa-
tion into the proposed framework.

APPENDIX A
CONVERGENCE ANALYSIS

In this section, we will investigate the convergence of Algo-
rithm 1. Following [40], we will use the auxiliary function
approach to prove the convergence of the algorithm.

Definition 1. [40] G(h, h') is an auxiliary function for F(h) if
the conditions

G(h,h') > F(h), G(h,h) = F(h) (35)

are satisfied

Lemma A.1. [40] If G is an auxiliary function for F, then F is
non-increasing under the update

R = arg min G(h, h®) (36)
Proof. Since h**1) = arg min, G(h, h(!)), we have
G(hMY h®) < G(hM, M) (37)
From Definition 1, we immediately know that
F(R'Y) < G h®), G(h®, h V) = F(h®)  (38)

Thus, F(h'*!) < G(R#D h®) < G A®)) = F (D).
O
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Lemma A.2. [41] For any matrics A € R} B €
R¥* 'S € RPF S € RYF and A, B are symmetric, the
following inequality holds

n k 4 2
ZZ (AS BS),(s,t)S (s,t) > Tr(STASB)  (39)
s=1t=1 (S’ t>
Proof. Please refer to the proof in [41]. O

Now consider the objective function in Eq.(12), it can be
written in the following form by expanding the quadratic
terms and removing terms that are irrelevant to U;

J(U) = =277 (AT(W o X)HIUT ) + Tr(\U:UT)
————
Term 2

Term 1

+Tr (A? (W © (A;UH,)) H?U?)

Term 3

—2aTr(U P/ D,D]) +a Tr(U PP, U,D,D})

Term 4 Term 5
i—1

+aY Tr(UT(ct ¢t +at ahuDD)
k=1

Term 6
i—1
~aY rr(Ul(Gict” + ¢ ahup.DY)
k=1

Term 7

Theorem A.3. The following function
6(U;, U)

i (54 62)

Term 8

A U0+ (A? W o (AiU;Hi)}HiT) (s,1)

s,t s,t

U3 (s, t)

U(s,t)

Term 9 Term 10

~20 3 (DY) (s, U 1) (1 + 10w 1)

s,t T

Term 11
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’ UZ(s,t)
+a (PTP,U,D;DT) (s, t) ——2~
(P; DD )( )Ui(s,t)

Term 12

13
It is easy to observe that F(s, j, k,t) = F(j, s, t, k). With this
observation, we have
Term 10 — Term 3

i—1 2
kT ~k kT ~kyrp! T Ui (s,t) / / 2 — 2k s 2
+a > ((Ci Cf +G! Gi)U,D,D; )(s,t)iU, = S F(s,4,k tp UG UL (s, 1) (k= 2k pist + pist)
k=1 i(57t) . 2
8:t,P,4,5:k
Term 13 / / e — 2
i1 "’ Ul 2 FliktpaU, BUL (s, 1) 10
~a Y ((GECE" + T GHUIDIDT) (5, 1)U, 1) (1 + log Ufgs’t) ik
) 87 . . . .
k=t ! )l"hat is, Term 10 is larger than Term 3. With these given

Term 14

is an auxiliary function for J (U;). Furthermore, it is a convex
function in U; and its global minimum is attained as

1
U;(s,t) = Uj(s,t) :EE)%EZ:Z; (40)
where E} and E? are
E! = AT(W o X)H? + oPTD,DT (41)
and
E? = AT(W © (A;U;H,;))H? + oPTP,UD,DT
‘ (42)

i—1
+a Cf ctUD,D! + U,
k=1

Proof. We will first prove that G(U;, U;) in Eq.(A.3) is an
auxiliary function. First, it is obvious that

G(U,U;) = J(Uy) (43)
Since z > 1 4 log(z), ¥z > 0, it is easy to show that
4 Uz at
3" (BID.DY)(s. )U; (s.6)(1 + log oY)
U (s,t)
&t ! (44)
<> (PTD,D])(s,t)Ui(s,t) = Tr(U] P{ D,D])

s,t

In other words, Term 11 of G(U,U;) is smaller than Term
4 of J(U;). Similarly, we have Term 8 is smaller than
Term 1 and Term 14 is smaller than Term 7. According to
Lemma A.2, we can verify that Term 9, Term 12 and Term
13 are larger than Term 2, Term 5 and Term 6, respectively.
Now let’s consider Term 10 and Term 3, the difference of the
two terms can be written as

Term 10 — Term 3

= Y AL AG Gk H ()W 00U R) g

$,6,0,q,5,k o

5,t,p,q,5,k

(45)
For simplicity of notations, let F(s,j, k,t,p,q) =
Ai (pa S)Ai (pa j)Hl(k7 Q)Hz (t, q)W(p7 q) and UZ (Sa t) =
Ul (s, t)pst, then we can rewrite the difference as

Term 10 — Term 3
= Z F(Saj7kat7p7 Q)Uz(.]) k)Ut(S’t>(:u§t _:ujk',ust)

ERN N NN
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above, it is easy to verify that Q(Ui.U;) - J(U;) >0,1ie,
¢(U,.U,) > J(U;)

Therefore, G(U;.U}) is an auxiliary function for 7 (U;).
Now let’s prove that the global minimum of G(U;.Uj)
is attained as Eq.(40). By taking derivative of G(U,.U}) w.r.t
to U; and setting it to zero, we can can get Eq.(40) and thus
proves it. We omit the details here. O

(46)

Theorem A.4. Updating U; with Eq.(21) will monotonically
decrease the value of the objective in Eq.(6).

Proof. With Lemma A.1 and Theorem A.3, we have
) = U u?) > gu u) > gul) >

3 3

.... Thatis, J(U;) decreases monotonically. O

Similarly, the update rule for V; will also monotonically
decrease the value of the objective in Eq.(11). The proof is
very similar to that for U; and we omit the details here.
Since the value of the objective in Eq.(6) is at least bounded
by zero, we can conclude that the optimization method in
Algorithm 1 converges.
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