
Exploiting Hierarchical Structures for Unsupervised Feature Selection

Suhang Wang∗ Yilin Wang∗ Jiliang Tang† Charu Aggarwal‡ Suhas Ranganath∗

Huan Liu∗

Abstract

Feature selection has been proven to be effective and efficient

in preparing high-dimensional data for many mining and

learning tasks. Features of real-world high-dimensional data

such as words of documents, pixels of images and genes of

microarray data, usually present inherent hierarchical struc-

tures. In a hierarchical structure, features could share cer-

tain properties. Such information has been exploited to help

supervised feature selection but it is rarely investigated for

unsupervised feature selection, which is challenging due to

the lack of labels. Since real world data is often unlabeled,

it is of practical importance to study the problem of feature

selection with hierarchical structures in an unsupervised set-

ting. In particular, we provide a principled method to exploit

hierarchical structures of features and propose a novel frame-

work HUFS, which utilizes the given hierarchical structures

to help select features without labels. Experimental study

on real-world datasets is conducted to assess the effective-

ness of the proposed framework.

1 Introduction

High-dimensional data is ubiquitous in many data min-
ing and machine learning applications [1, 2]. Data with
high dimensionality not only significantly increases the
time and memory requirements of many algorithms, but
also degenerates algorithms’ performance due to the
curse of dimensionality and the existence of irrelevant,
redundant and noisy dimensions [3]. Feature selection,
which aims at reducing the dimensionality by selecting
a subset of most relevant features, has been proven to be
an effective and efficient way to handle high-dimensional
data [4, 3].

In terms of the label availability, feature selection
methods can be generally categorized into supervised
and unsupervised methods [5, 6]. With class labels,
supervised feature selection [7, 8, 9] is able to effectively
select discriminative features to distinguish samples
from different classes. As most data is unlabeled in
many applications and it is very expensive to label data,
unsupervised feature selection has attracted increasing
attention in recent years [10, 11, 12, 13, 14, 15].

∗Arizona State University {suhang.wang, ywang370, srangan8,
huan.liu}@asu.edu
†Michigan State University, tangjili@mus.edu
‡IBM T.J. Watson, charu@us.ibm.com

(a) Gene Expression (b) WordNet

Figure 1: Examples of Feature Hierarchical Structures

Features of real-world high-dimensional data, such
as words of documents [16], pixels of images [17] and
genes of microarray data [18], usually exhibit certain
hierarchical structures. For example, Figure 1 gives two
examples of hierarchical structures of features. Figure
1(a) illustrates the hierarchical structure of genes from
a cancer tumour dataset in [18], where each row is a cell
(data instance) and each column is a gene (feature).
The genes are hierarchically clustered using their gene
expressions and genes in the same subgroup, such as yel-
low group in Figure 1(a), share similar gene expressions.
Figure 1(b) gives an example of the word hierarchical
structure constructed by word senses, where words with
the same (or close) meanings are grouped together and
fine-grained meaning groups are nested under coarse-
grained ones. As shown in the Figure 1(b), all the words
are in the same coarse group since they are kinds of as-
set. Furthermore, coin and cash, are further grouped
together with money as they are kinds of money. Ob-
viously, features in the same group share certain prop-
erties, functionalities or semantic meanings. These hi-
erarchical structures of features could give important
guidance to feature selection. Therefore, recently, there
are supervised feature selection algorithms exploiting hi-
erarchical structures to improve performance [17, 19].
However, little work exists for unsupervised feature se-
lection given hierarchical structures of features.

As data is often unlabeled and hierarchical struc-
tures can be important, we study the novel problem of
utilizing given hierarchical structures for unsupervised
feature selection in this paper. Without label infor-
mation, we need to investigate the following two chal-
lenges: (1) how to mathematically model given hierar-
chical structures? and (2) how to incorporate the hi-
erarchical structures for unsupervised feature selection?

In an attempt to address these two challenges, we pro-
pose a novel unsupervised feature selection framework
HUFS. It integrates given hierarchical structures of fea-
tures for feature selection. The major contributions of
the paper are :

• A principled approach to exploit hierarchical struc-
tures for unsupervised feature selection;

• A novel framework HUFS, which utilizes given hier-
archical structures to select features in an unsuper-
vised scenario by modeling HUFS as a non-smooth
optimization problem; and

• Extensive experiments on various datasets with
demonstration on the effectiveness of HUFS.

2 Related Work

Feature selection is a process of choosing a subset of
original features so that the feature space is optimally
reduced according to a certain evaluation criterion. It
is frequently used as a preprocessing step to machine
learning and data mining and has been proven to be
an effective and efficient way in reducing dimension-
ality, removing irrelevant features, increasing learning
accuracy, and improving comprehensibility [20]. As un-
labeled data is pervasive in many applications and it is
very expensive to label data, unsupervised feature selec-
tion has attracted increasing attention in recent years
[10, 11, 12, 13, 14, 15, 21].

Without label information to define feature rele-
vance, a number of alternative criteria have been pro-
posed for unsupervised feature selection. Similar to su-
pervised feature selection, one commonly used criterion
is to select features that can preserve the data similar-
ity or manifold structure. Since no label information
are given, data similarity are usually constructed from
the whole feature space without label information such
as Laplacian Score [11] and Unsupervised SPEC [22].
As the success of sparse learning in supervised fea-
ture selection, in recent years, applying sparse learning
in unsupervised feature selection has attracted increas-
ing attention. The general idea is to generate pseudo
cluster labels via clustering algorithms and then trans-
form unsupervised feature selection into sparse learn-
ing based supervised feature selection with these gener-
ated cluster labels such as Multi-cluster feature selection
(MCFS) [23], Nonnegative Discriminative Feature Se-
lection (NDFS) [13], Robust Unsupervised Feature Se-
lection [14] and EUFS [21].

In real-world, features are usually not independent.
For example, in the multi-factor analysis-of-variance
(ANOVA) problem, each factor may have several levels
and can be denoted as a group of dummy features. Aux-
iliary information of such feature relations have proven
to be effective in improving supervised feature selec-

tion performance [24, 17, 19]. For example, Yuan et
al [24] studied the non-overlap group lassos to exploit
group structures of features. Liu et al [19] proposed
weakly hierarchical lasso to study feature interaction.
However, little work exists for unsupervised feature se-
lection with hierarchical structures. There is a similar
effort to impose overlapping group structures on data
instances under unsupervised scenario [25], but it is not
about hierarchical structures of features; in addition, its
purpose is of clustering, while our study is of unsuper-
vised feature selection. To the best of our knowledge, we
are the first one to study unsupervised feature selection
with given hierarchical structures. We propose a novel
framework HUFS and an efficient algorithm to solve the
non-smooth optimization problem of HUFS.

3 Unsupervised Feature Selection with
Hierarchical Structures

In the paper, matrices are written as boldface capital
letters and vectors are denoted as boldface lowercase
letters. For an arbitrary matrix M ∈ Rm×n, Mij

denotes the (i, j)-th entry of M while mi and mj

mean the i-th row and j-th column of M, respectively.
‖M‖F is the Frobenius norm of M and Tr(M) is
the trace of a square matrix M. 〈A,B〉 equals to
Tr(ATB), which is the standard inner product between
two matrices. I is the identity matrix. The `2,1-norm
is defined as ‖M‖2,1 =

∑m
i=1 ‖mi‖2. Capital letters in

the calligraphic font such as G are used to denote sets.

3.1 A Basic Model for Unsupervised Feature
Selection Sparse learning has been proven to be a
very powerful tool for feature selection [23, 26, 14,
27]. One effective approach of applying sparse learning
for unsupervised feature selection is to embed feature
selection into a clustering algorithm by performing
feature selection on the latent features with sparse
learning techniques [21]. Following the idea, the basic
model for our proposed framework directly embeds
feature selection into a low-rank matrix approximation
algorithm and performs `2,1 norm on the latent feature
matrix to achieve feature selection. Let X ∈ RN×m be
the data matrix where N is the number of data samples
and m is the number of features. The basic model
decomposes X into two low-rank matrices U ∈ RN×K
and V ∈ Rm×K , and applies `2,1 norm on V as follows:

(3.1)
min
U,V
‖X−UVT ‖2,1 + β‖V‖2,1,

s.t. UTU = I,U ≥ 0

In Eq.(3.1), U is the cluster affiliation matrix. Non-
negative orthogonal constraints are applied on U to
enforce that each row of U has one non-zero element
as the cluster affiliation. V is the latent feature matrix.
Each feature xi, i.e., i-th column of X, is reconstructed

as xi ≈ UvTi . Thus, there’s one to one correspondence
between the original feature xi and the latent feature
vi. A good feature xi should be well reconstructed by
its latent feature vi. Therefore, by adding `2,1 norm
on V, it aims to eliminate vi that cannot properly
reconstruct xi [21]. `2,1-norm on X−UVT is adopted to
avoid reconstructing errors that dominate the objective
function. Finally, the importance of the i-th feature
is indicated by ‖vi‖2 – the larger ‖vi‖2 is, the more
important the i-th feature is. This serves as a good basic
model for exploiting hierarchical structures because: (1)
vi and xi has one to one correspondence and the quality
of vi reflects quality of xi, which allows us to model
hierarchical structures on vi; and (2) the learning of vi
doesn’t need label information.

3.2 Modeling Feature Hierarchical Structures
Features in many real-world applications often present
certain inherent hierarchical structures; and features in
the same group of the hierarchical structure usually
share similar functionalities, properties or semantic
meanings, which can provide helpful information for
feature selection and have been widely captured under
supervised settings [17, 28, 29]. In this subsection, we
discuss how to capture hierarchical structures based on
the unsupervised basic model shown in Eq.(3.1).

In the basic model, vi is used to reconstruct xi

and they have one-to-one correspondence. Meanwhile,
with extra constraints on features, unsupervised feature
selection is likely to achieve better performance [30].
Hence, we can model hierarchical structures as con-
straints on the latent feature matrix V to guide feature
selection. Next we will use the example in Figure 1(b)
to demonstrate how to model hierarchical structures.
Index tree is a natural way to represent the hierarchical
structure of Figure 1(b) [17]. The definition of index
tree is given as:

Definition 1. For an index tree T of depth d, Gst , s =
1, . . . , d, t = 1, . . . , ns, denotes the t-th node in the level
s, where ns is the number of nodes in the s-th level.
G11 = {f1, f2, . . . , fm} is the root node that contains all
the features f1, . . . , fm. The nodes satisfy the following
conditions: 1) the nodes from the same depth level
have non-overlapping indices, i.e, Gsi ∩ Gsj = ∅,∀s =

2, . . . , d and , i 6= j, 1 ≤ i, j ≤ ns; and (2) let Gs−1j0 be

the parent node of a non-root node Gsj , then Gsj ⊂ G
s−1
j0 .

Figure 2 is an index tree to denote the hierarchical
structure in Figure 1(b). In Figure 2, f1, . . . , f6 are six
features corresponding to the words coin, . . . , treasure
in Figure 1(b), respectively. The tree is composed of
5 nodes, i.e., G11 = {f1, f2, . . . , f6}, G21 = {f1, f2, f3},
G22 = {f4, f5, f6}, G31 = {f1, f2} and G32 = {f5, f6}.
Therefore, the hierarchical structure in Figure 1(b) can

Figure 2: An example of tree guided groups.

be viewed as a tree guided groups where features in
same group share similar properties. The reasons why
the index tree captures information from hierarchical
structure are two-fold. First, each node in the index
tree represents a group in the hierarchical structure. For
example, G21 represents the group {coin, cash,money}
and G31 denotes the group {coin, cash} . Second, in the
index tree, the child node is a subset of its parent node
because in the hierarchical structure, a small group can
nest under a large group.

We note that features in a node of an index tree
share similar semantic meanings; while semantic mean-
ings of features in a child node are similar to that of
its parent node but is more fine-grained. For example,
in G21 , the features are {coin, cash,money}, which share
the same semantic meaning money and the features in
its child node G31 are specific types of money. Thus,
each node could guide unsupervised feature selection by
providing different semantic meanings. For example, if
topics of documents we want to cluster are irrelevant to
money, we should discard these features in G21 simulta-
neously , as they are not discriminative; while if one of
the topics of the documents is about money, all these
features in node G21 could be helpful in identifying a clus-
ter of documents about money. Note that in the basic
model in Eq.(3.1), we cluster the data X into K clus-
ters. Therefore, we can add constraints to features in
each node of the index tree to ensure that all features in
the same group (a node of the index tree) are either rel-
evant or irrelevant to one of the K clusters. To achieve
this, for a node Gst , we use viGst to denote the sub-vector

of vi corresponding to the features in Gts. For example,
if G21 = {f1, f2, f3}, then ‖viG2

1
‖2 = ‖[V1i,V2i,V3i]‖2. If

features in Gst are irrelevant to the K clusters, we want
to make elements in VGst = [v1

Gst , . . . ,v
K
Gst] to be close

to zero or exactly zero. In this way, when we select
features based the value of ‖vp‖2, p = 1, . . . ,m, any fea-
ture fj ∈ Gst with ‖vj‖2 ≈ 0 will be eliminated, which
achieves the goal of feature selection with hierarchical
structures. To force elements of some VGst to be close
to zero, we add the constraint as follows:

(3.2)

K∑
i=1

‖viGst ‖2.

The effect of the constraint
∑K
i=1 ‖viGst ‖2 is equiv-

alent to add `1 norm on the vector g =
[‖v1
Gst ‖2, ‖v

2
Gst ‖2, . . . , ‖v

K
Gst ‖2], i.e., ‖g‖1. It could make

the solution of g sparse; in other words, some elements
in g could be exactly zero. If g(i) = 0 or ‖viGst ‖2 = 0,

then the effect of all features in Gst on the i-th cluster
is eliminated. If all the features in Gst are irrelevant to
the K clusters, then all elements in VGst

will be close to
0. Thus, given an index tree T we propose to minimize
the following term to capture the hierarchical structure:

(3.3)

d∑
s=1

ns∑
t=1

K∑
i=1

‖viGst ‖2

3.3 The Proposed Framework – HUFS With the
model component to exploit hierarchical structures, the
proposed framework HUFS is to solve the following
optimization problem:

arg min
U,V
‖X−UVT ‖2,1 + β‖V‖2,1 + α

K∑
i=1

Ω(vi)

s.t. UTU = I,U ≥ 0(3.4)

In Eq. (3.4), the first and second terms with constraints
are from the basic unsupervised feature selection frame-
work in Eq. (3.1); and the third term is to capture hier-
archical structures, which is controlled by a parameter
α. And Ω(vi) is defined as:

(3.5) Ω(vi) =

d∑
s=1

ns∑
t=1

‖viGst ‖2

4 An Optimization Method for HUFS

The objective function in Eq.(3.4) is not convex in
both U and V, which makes it difficult to optimize.
In addition, the index tree regularizer on V contains
overlapping group structures and is non-smooth, which
makes the optimization problem more difficult. Follow-
ing [31, 32], we use alternating direction method of mul-
tiplier (ADMM) [33] to optimize the objective function.
ADMM is a popular method for solving non-convex and
non-smooth optimization problem. ADMM can break
the complicated problem into small sub-problems, each
of which is then easier to solve. We next give details of
using ADMM. We first introduce three auxiliary vari-
ables E = X − UVT , Z = U and P = MV, where

M ∈ {0, 1}
∑d
s=1

∑ns
t=1 |G

s
t |×m is a sparse matrix whose

definition will be given next. With these auxiliary vari-
ables, the objective function becomes

arg min
U,V,E,Z,P

‖E‖2,1 + α

K∑
i=1

Ω1(pi) + β‖V‖2,1(4.6)

s.t. E = X−UVT ,Z = U,P = MV,UTU = I,Z ≥ 0

We will give the definition of Ω1(pi) shortly. The goal
of introducing M is to ensure that the constraint Ω1(pi)
has the same regularization effects as Ω(vi) but is easier
to optimize, i.e., there are no overlapping groups on
pi. To achieve this goal, we allow each row of M
to contain exactly one nonzero element. Specifically,
if the k-th element in Gpq ∈ T is the feature fi, we

set M(
∑p−1
s=1

∑ns
t=1 |Gst | +

∑q−1
t=1 |G

p
t | + k, i) = 1, where∑p−1

s=1

∑ns
t=1 |Gst | +

∑q−1
t=1 |G

p
t | is the total number of

features encoded in nodes from root node G11 to node
Gpq−1 and the addition of k is because fi is the k-th

feature in node Gpq . The effect of Mvi is the same as

concatenating elements in vi by the features encoded
in the nodes of the index tree. Let M|Gst denote the
rows of M corresponding to Gst , i.e, the rows that
are constructed by features in Gst . Then, we have
M|Gst v

i = viGst . Since we require pi = Mvi, we also

have pi|Gst
= M|Gst v

i and pi|Gst
= viGst . We define Ω1(pi):

(4.7) Ω1(pi) =

d∑
s=1

ns∑
t=1

‖pi|Gst ‖2

With M and Ω1(pi) defined as above, we have
(4.8)

Ω1(pi) =

d∑
s=1

ns∑
t=1

‖pi|Gst ‖2 =

d∑
s=1

ns∑
t=1

‖viGst ‖2 = Ω(vi)

Thus, we have shown that Ω1(pi) = Ω(vi) and it is
obvious that there is no overlapping group structure in
Ω1(pi) because pi|Gst

and pi|Gpq do not overlap. With

these auxiliary variables, Eq.(4.6) can be solved by the
following optimization problem:

min
U,V,E,Z,P

‖E‖2,1 + α

K∑
i=1

Ω1(pi) + β‖V‖2,1

+ 〈Y1,Z−U〉+ 〈Y2,X−UVT −E〉

+ 〈Y3,P−MV〉+
µ

2
‖Z−U‖2F(4.9)

+
µ

2

(
‖X−UVT −E‖2F + ‖P−MV‖2F

)
s.t. UTU = I,Z ≥ 0

where Y1, Y2 and Y3 are Lagrangian multipliers and
µ is to control the penalty for the violation of equality
constraints E = X−UVT , Z = U and P = V.

4.1 Update E To update E, we fix the other vari-
ables except E and remove terms that are irrelevant to
E. Then Eq.(4.9) becomes

(4.10) min
E

1

2
‖E− (X−UVT +

1

µ
Y2)‖2F +

1

µ
‖E‖2,1

The equation has a closed form solution by the following
Lemma [34]

Lemma 4.1. Let q be a given vector and λ a positive
scalar. If the optimal solution of

(4.11) min
w

1

2
‖w − q‖22 + λ‖w‖2

is w∗, then w∗ is

(4.12) w∗ =

{
(1− λ

‖qi‖)q, if ‖q‖ > λ

0, otherwise

Apparently, if we let Q = X−UVT + 1
µY2 and

decompose Eq.(4.10) row-wise, then using Lemma 4.1,
E can be updated as

(4.13) ei =

{
(1− 1

µ‖qi‖)qi, if ‖qi‖ > 1
µ

0, otherwise

4.2 Update V To update V, we remove terms that
are irrelevant to V and use the fact that UTU = I,
Eq.(4.9) becomes

(4.14) min
V

µ

2
‖V −K‖2F +

µ

2
‖MV −H‖2F + β‖V‖2,1

where K = (X−E+ 1
µY2)TU and H = P+ 1

µY3. Since

each row of M contains only one nonzero element with
value 1, then if M(j, i) = 1, we have M(j, :)V = vi.
Thus, let Hi = {j : M(j, i) = 1}, then ‖MV−H‖2F can
be rewritten as

(4.15) ‖MV −H‖2F =

m∑
i=1

∑
j∈Hi

‖vi − hj‖22

With the above trick, Eq.(4.14) can be decomposed into
row-wise sub-problem as
(4.16)

min
vi

µ(1 + |Hi|)
2

‖vi−
1

1 + |Hi|
(ki+

∑
j∈Hi

hj)‖22 +β‖vi‖2

Similarly, using Lemma 4.1, V can be updated as
(4.17)

vi =

1

(1+|Hi|) (1−
β

µ‖ki+
∑
j∈Hi

hj‖2)(ki +
∑
j∈Hi hj),

if ‖ki +
∑
j∈Hi hj‖2 >

β
µ

0, otherwise

4.3 Update U Optimizing Eq.(4.9) with respect to
U yields the equation

(4.18) min
UTU=I

||U−N||2F

where N is defined as N = 1
µY1 + Z + (X−E +

1
µY2)V. Now we have converted the objective function

of updating U to the classical Orthogonal Procrutes
problem [35], which can be solved using the following
lemma [36]

Lemma 4.2. Given the objective in Eq.(4.18), the opti-
mal U is defined as

(4.19) U = SQT

where S and Q are the left and right singular vectors of
the economic singular value decomposition (SVD) of N.

4.4 Update P After removing terms that are irrele-
vant to P, Eq.(4.9) becomes

(4.20) min
P

K∑
i=1

(
µ

2
‖pi−vi+

1

µ
yi3‖22 +α

d∑
s=1

ns∑
t=1

‖pi|Gst ‖2)

Obviously, the above equation can be solved through
addressing the following sub-problems:

(4.21) min
pi|Gst

1

2
‖pi|Gst − (viGst −

1

µ
yi3,|Gst)‖22 +

α

µ
‖pi|Gst ‖2

Again, we can apply Lemma 4.1 to solve the above
problem and P is updated as
(4.22)

pi|Gst =

(1− α

µ‖viGst
− 1
µy

i
3,|Gst

‖)(v
i
Gst −

1
µy

i
3,|Gst

),

if ‖viGst −
1
µy

i
3,|Gst
‖ > α

µ

0, otherwise

4.5 Update Z Optimizing Eq.(4.9) with respect to
U yields the equation

(4.23) min
Z≥0
||Z−T||2F

where T is defined as T = U − 1
µY1. Clearly, the

optimal solution of the above problem is

(4.24) Zij = max(Tij , 0)

4.6 Update Y1, Y2, Y3 and µ After updating
the variables, we now need to update the ADMM
parameters. According to [33], they are updated as
follows:

(4.25)

Y1 = Y1 + µ(Z−U)

Y2 = Y2 + µ(X−UVT −E)

Y3 = Y3 + µ(P−MV)

µ = min(ρµ, µmax)

Here, ρ > 1 is a parameter to control the convergence
speed and µmax is a larger number to prevent µ from
becoming too large.

With these updating rules, the optimization method
for HUFS is summarized in Algorithm 1.

Algorithm 1 The Algorithm for HUFS.

Input: X ∈ RN×m, α, β, n, latent dimension K, T
Output: n selected features
1: Initialize µ = 10−3, ρ = 1.1, µmax = 1010, U =

0,V = 0 (or use K-means) and M from T
2: repeat
3: Calculate Q = X−UVT + 1

µY2

4: Update E by Eq.(4.13)
5: Update V by Eq.(4.17)
6: Calculate N = 1

µY1 + Z + (X−E + 1
µY2)V

7: Update U by Lemma 4.2
8: Update P by Eq.(4.22)
9: Calculate T = U− 1

µY1

10: Update Z using Eq.(4.24)
11: Update Y1,Y2,Y3 and µ
12: until convergence
13: Sort each feature of X according to ||vi||2 in de-

scending order and select the top-n ranked ones

4.7 Parameter Initialization One way to initialize
U and V is to set them to be 0. As the algorithm
runs, the objective function will gradually converge to
the optimal value. To accelerate the convergence speed,
following the common way of initializing NMF, we use
k-means to initialize U and V. To be specific, we first
apply k-means to cluster X, then get the soft cluster
indicator to initialize U and set V as XTU. Y1,Y2

and Y3 are initialized to be 0. µ is typically set in
the range of 10−6 to 10−3 initially depending on the
datasets and is updated in each iteration. µmax is often
set to be a large value such as 1010 to give µ freedom
to increase but prevent it from being too large. ρ is
empirically set to 1.1 in our algorithm. The larger ρ is
, the faster µ becomes larger and the more we penalize
the deviation of the equality constraint, which makes
it converge faster. However, we may sacrifice some
precision of final objective function with very large ρ.

4.8 Convergence Analysis Since our algorithm
uses ADMM to optimize the objective function, the con-
vergence of our algorithm adapts from the convergence
of ADMM. The detailed convergence proof of ADMM
can be found in [37, 33]. Empirically, we find that
our algorithm converges within 100 iterations for all the
datasets used in evaluation.

4.9 Time Complexity Analysis The computation
cost for E depends on the computation of Q and the
update of E, which are O(NmK) and O(Nm), re-
spectively. Similarly, the computation cost for V in-
volves the computation of K,H and the update of V,

which areO(NmK), O(K
∑d
s=1

∑ns
t=1 |Gst | andO(mK).

The cost of updating Z is O(NK). The main com-

putation cost of U involves the computation of N
and its SVD decomposition, which are O(NmK) and
O(NK2). The cost of updating P is calculating P
in Eq.(4.22), which is O(K

∑d
s=1

∑ns
t=1 |Gst |). There-

fore, the overall time complexity in each iteration is

O(NmK +NK2 +K
∑d
s=1

∑ns
t=1 |Gst |).

5 Experiments

In this section, we conduct experiments to evaluate
the effectiveness of the proposed framework HUFS.
After introducing experimental settings, we compare
HUFS with the state-of-the-art unsupervised feature
selection methods. We conduct experiments on three
different categories of datasets, i.e., text, image and
biology datasets so as to see how HUFS performs on
datasets from different domain. Further experiments
are conducted to investigate the effects of important
parameters on HUFS.

5.1 Experimental Settings The experiments are
conducted on 11 publicly available and widely used
benchmark datasets, which can be divided into three
different categories as follows: (i) 5 text datasets: BBC-
Sport1, CNNStory2, Webkb43, Guardian4 and 20News-
groups5; (ii) 3 image datasets: COIL20, Yale and warp-
PIE 6; and (iii) 3 biology datasets: Carcinoma [38],
B Cell Chronic Lymphocytic Leukemia (CLL) 7 and
Global Cancer Map (GCM) 8.

In practice, datasets that demand feature selection
most are those short and fat datasets, i.e., small number
of data samples and large number of features. There-
fore, our experiments focus on such kind of datasets.
The statistics of the aforementioned datasets are sum-
marized in Table 1. In the table, C denotes number of
classes. Note that we have label information for these
datasets, however, label information is only used as the
ground truth for the evaluation purpose; in other words,
it is not used by HUFS as well as baseline methods.

Since HUFS require hierarchical structure as input,
we briefly describe how we get the hierarchical struc-
tures. For text datasets, we use WordNet to get the hi-
erarchical structures based on the semantic meaning of
words. For Image datasets, since pixels in images have
spatial locality relations. For example, nearby pixels

1http://mlg.ucd.ie/datasets/bbc.html
2https://sites.google.com/site/qianmingjie/home/datasets/cnntop-

and-npr-news
3http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
4http://mlg.ucd.ie/datasets/3sources.html
5http://qwone.com/ jason/20Newsgroups/
6All three datasets can be downloaded from

http://featureselection.asu.edu/datasets.php
7Carcinoma and CLL can be downloaded from

http://featureselection.asu.edu/datasets.php
8http://eps.upo.es/bigs/datasets.html

Table 1: Statistics of the Datasets

Type Dataset # Samples # Features C

Text

BBCSport 737 4613 5
CNNStory 142 8682 10
Webkb4 4168 7770 4

Guardian 302 3631 6
20Newsgroup 1000 14675 20

Image
COIL20 1440 1024 20

Yale 165 1024 15
warpPIE 210 2420 10

Biology
Carcinoma 174 9182 11

CLL 111 11340 3
GCM 190 16063 14

have a high probability to share similar values. We con-
struct the hierarchical structure based on spatial local-
ity. For biology datasets, we use hierarchical clustering
on features to get the structure. Note that construct-
ing hierarchical structures is not part of HUFS. HUFS
doesn’t produce hierarchical structures but utilize these
hierarchical structures for feature selection.

Following the common way to evaluate unsuper-
vised feature selection, we assess HUFS in terms of clus-
tering performance [22, 13]. Two widely used evaluation
metrics, accuracy (ACC) and normalized mutual infor-
mation (NMI), are employed to evaluate the quality of
clusters. The larger the ACC and NMI are, the bet-
ter the performance is. In the evaluation, we choose
K-means to cluster samples based on the selected fea-
tures. Since K-means depends on initialization, follow-
ing previous work [26], we repeat the experiments 20
times and the average results with standard deviation
are reported.

5.2 Quality of Selected Features With the hier-
archical structures constructed in the above way, we
compare HUFS with the following representative state-
of-the-art unsupervised feature selection algorithms:

• LS: Laplacian Score [11] which evaluates the im-
portance of a feature through its power of locality
preservation;

• MCFS: Multi-Cluster Feature Selection [23] which
selects features using spectral regression with `1-
norm regularization;

• NDFS: Nonnegative Discriminative Feature Selec-
tion [26] which selects features by a joint frame-
work of nonnegative spectral analysis and `2,1 reg-
ularized regression;

• RUFS: Robust Unsupervised Feature Selection
[14] which jointly performs robust label learning via
local learning regularized robust orthogonal non-
negative matrix factorization and robust feature
learning via joint `2,1-norms minimization; and

• EUFS: Embedded Unsupervised Feature Selec-
tion [21] which embeds feature selection into the
nonnegative matrix factorization based clustering
algorithm. Note that EUFS is a special case of
HUFS by setting α = 0 in HUFS and removing the
graph regularizer of EUFS.

There are some parameters to be set. First, all base-
line methods need to construct the affinity matrix. Fol-
lowing [14], for the baseline methods, we fix the neigh-
borhood size to be 5 for all the datasets to construct
the affinity matrix. Second, to fairly compare differ-
ent unsupervised feature selection methods, we tune the
parameters for all methods by a ”grid-search” strategy
from {10−6, 10−4, . . . , 104, 106}. More details about pa-
rameter analysis on HUFS will be discussed in the fol-
lowing subsection. How to determine the optimal num-
ber of selected features is still an open problem [39], we
vary the number of selected features as {50, 100, 150,
. . . , 300} for all datasets. Due to the page limitation,
we only report the best performance for each algorithm
with the above settings. The comparison results are
summarized in Table 2 and Table 3 in terms of ACC
and NMI, respectively. Note that numbers in parenthe-
ses are the numbers of selected features achieving the
best performance. From the two tables, we make the
following observations:

• The proposed framework HUFS outperforms
EUFS. Compared to EUFS, HUFS also utilizes
given hierarchical structures. These results sup-
port the importance of hierarchical structures for
unsupervised feature selection.

• Most of the time, HUFS achieves the best perfor-
mance with smaller numbers of selected features,
which supports that HUFS is more likely to select
discriminative features given the auxiliary informa-
tion from the hierarchical structure.

• On all 11 datasets, HUFS often obtains better per-
formance than baseline methods. There are two
major reasons. First, HUFS directly embeds fea-
ture selection into a clustering algorithm and se-
lects features in a batch mode. Second, HUFS ex-
ploits hierarchical structures, which provides aux-
iliary information to guide feature selection.

5.3 Parameter Sensitivity Analysis There are
two important parameters for HUFS – (1) α controlling
the contribution from hierarchical structures of features
and (2) β controlling the row sparsity of V. In this
subsection, we perform parameter analysis on these two
parameters.

To evaluate the sensitivity of α, we fix β = 0.01 and
vary the value of α as {10−5, 10−4, . . . , 10}. The perfor-
mance variation w.r.t. α and the number of selected fea-

Table 2: Clustering performance(ACC%±std) of feature selection algorithms on the 11 datasets in terms of ACC
Dataset LS MCFS NDFS RUFS EUFS HUFS
BBCSport 73.4±10.9(300) 75.7±12.8(200) 77.0±1.15(250) 76.2±11.9(250) 75.9±13.87(150) 79.2±6.69(150)
CNNStory 54.4±4.55(150) 53.5±7.71(50) 49.3±4.97(50) 51.6±6.01(50) 51.9±4.27(200) 56.3±5.66(50)
Webkb4 49.5±1.07(300) 48.5±2.50(250) 51.2±0.74(250) 51.1±0.81(200) 50.7±1.67(200) 52.1±1.05(200)
Guardian 50.0±6.55(200) 51.1±4.55(150) 51.2±8.96(300) 53.0±6.87(150) 51.1±6.90(250) 53.9±6.78(150)
20Newsgroup 17.8±1.33(100) 17.1±0.78(150) 17.2±1.85(250) 17.7±1.35(200) 17.1±1.23(200) 18.2±1.49(150)
COIL20 56.2±5.45(250) 60.4±4.52(50) 59.3±3.86(300) 62.02±6.35(250) 61.9±5.43(250) 63.9±4.25(250)
Yale 43.9±4.58(250) 42.9±4.19(150) 42.5±2.21(200) 41.5±3.35(250) 42.0±3.52(150) 44.5±3.12(150)
warpPIE 33.8±2.54(300) 38.5±3.72(200) 37.4±3.89(250) 39.9±4.10(50) 41.3±4.21(50) 42.5±3.27(50)
Carcinoma 69.6±7.95(300) 72.7±6.73(50) 67.9±8.25(200) 72.2±8.16(150) 72.7±7.31(200) 73.8±6.78(150)
CLL 55.1±1.44(100) 53.0±4.69(50) 51.8±4.42(200) 49.5±7.39(200) 52.4±5.19(200) 55.2±1.76(100)
GCM 41.9±4.25(300) 47.2±4.58(150) 48.5±5.07(300) 47.9±4.36(200) 47.7±3.98(100) 49.5±3.90(100)

Table 3: Clustering performance(NMI±std) of feature selection algorithms on the 11 datasets in terms of NMI
Dataset LS MCFS NDFS RUFS EUFS HUFS
BBCSport 0.627±0.10(300) 0.655±0.12(300) 0.643±0.02(300) 0.652±0.09(250) 0.628±0.11(200) 0.660±0.09(150)
CNNStory 0.562±0.04(200) 0.517±0.08(50) 0.509±0.07(50) 0.538±0.06(50) 0.522±0.05(150) 0.570±0.05(50)
Webkb4 0.208±0.02(250) 0.227±0.02(200) 0.235±0.03(250) 0.236±0.02(200) 0.228±0.03(200) 0.245±0.02(200)
Guardian 0.369±0.06(200) 0.371±0.07(150) 0.393±0.10(300) 0.413±0.07(300) 0.385±0.07(250) 0.425±0.08(200)
20Newsgroup 0.165±0.02(200) 0.153±0.01(150) 0.170±0.02(200) 0.167±0.02(200) 0.166±0.02(200) 0.174±0.02(150)
COIL20 0.708±0.03(250) 0.737±0.03(50) 0.727±0.02(300) 0.746±0.02(250) 0.748±0.02(250) 0.767±0.03(250)
Yale 0.518±0.02(200) 0.515±0.03(150) 0.501±0.03(250) 0.503±0.02(150) 0.508±0.03(150) 0.522±0.03(150)
warpPIE 0.364±0.03(300) 0.457±0.03(200) 0.438±0.03(250) 0.442±0.03(100) 0.447±0.04(50) 0.467±0.04(50)
Carcinoma 0.721±0.06(300) 0.785±0.04(50) 0.714±0.06(200) 0.776±0.05(150) 0.774±0.04(200) 0.787±0.03(150)
CLL 0.230±0.01(100) 0.195±0.09(50) 0.173±0.04(150) 0.172±0.08(200) 0.236±0.01(200) 0.318±0.02(100)
GCM 0.470±0.02(300) 0.542±0.02(150) 0.544±0.03(300) 0.540±0.03(200) 0.536±0.03(100) 0.556±0.03(100)

50
100

150
200

250
300

1e−5
1e−4

1e−3
1e−2

1e−1
1

10

0

0.2

0.4

0.6

0.8

#feature
α

(a) ACC on CNNStory

50
100

150
200

250
300

1e−5
1e−4

1e−3
1e−2

1e−1
1

1e−5

0

0.2

0.4

0.6

0.8

#feature
α

(b) NMI on CNNStory

Figure 3: Performance with different α

50
100

150
200

250
300

1e−5
1e−4

1e−3
1e−2

1e−1
1

10

0

0.2

0.4

0.6

0.8

#feature
β

(a) ACC on CNNStory

50
100

150
200

250
300

1e−5
1e−4

1e−3
1e−2

1e−1
1

1e−5

0

0.2

0.4

0.6

0.8

#feature
β

(b) NMI on CNNStory

Figure 4: Performance with different β

tures is depicted in Figure 3. Note that due to the page
limitation, we only show the results on CNNStory; how-
ever, we make similar observations on other datasets.
In general, with the increase of α, the performance first
increases and then decreases. In particular, when α in-
creases from 10−5 to 10−4, the performance increases

a lot, which further supports the importance of hierar-
chical structures. When α is between 10−3 and 0.1, the
performance is relatively stable, which eases the process
to determine the optimal value of α in practice. Sim-
ilarly, to evaluate the sensitivity of β, we fix α = 0.01
and vary the value of β as {10−5, 10−4, . . . , 10}. The
performance variation w.r.t. β and the number of se-
lected features is demonstrated in Figure 4. We have
similar observations about β compared to α.

6 Conclusion

In this paper, we propose a new unsupervised feature
selection approach, HUFS, which embeds feature selec-
tion into a clustering algorithm and captures hierarchi-
cal structures of features. In particular, we use the index
tree to represent hierarchical structures and each node
of the index tree works as constraints to guide feature
selection. We propose an efficient optimization frame-
work based on ADMM to solve the proposed framework.
Experimental results on 11 different real-world datasets
demonstrate the effectiveness of the proposed frame-
work and the importance of hierarchical structures for
unsupervised feature selection. We also give guidances
on how to construct hierarchical structures of features
in different domains.

There are several directions needing further investi-
gation. Currently, we only explore three different ways
of constructing the hierarchical structures, and one fu-

ture work is to explore more methods of constructing
hierarchical structures for HUFS. Another direction is
to extend the unsupervised feature selection with hi-
erarchical structures with semi-supervised or multitask
learning [40] setting.

7 Acknowledgements

This material is based upon work supported by, or in
part by, the NSF grants #1614576 and IIS-1217466, and
the ONR grant N00014-16-1-2257.

References

[1] A. Jain and D. Zongker, “Feature selection: Evalua-
tion, application, and small sample performance,” pp.
153–158, 1997.

[2] I. Guyon and A. Elisseeff, “An introduction to variable
and feature selection,” JMLR, vol. 3, 2003.

[3] H. Liu and H. Motoda, Computational methods of
feature selection. CRC Press, 2007.

[4] G. H. John, R. Kohavi et al., “Irrelevant features and
the subset selection problem.” in ICML, 1994.

[5] S. Wang, J. Tang, and H. Liu, “Feature selection,” in
Encyclopedia of Machine Learning and Data Mining,
C. Sammut and G. I. Webb, Eds. Springer, 2016.

[6] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino,
J. Tang, and H. Liu, “Feature selection: A data
perspective,” 2016.

[7] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern
classification. 2nd,” Edition. New York, 2001.

[8] F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan, “Trace
ratio criterion for feature selection.” in AAAI, 2008.

[9] Z. Zhao, L. Wang, and H. Liu, “Efficient spectral
feature selection with minimum redundancy,” in AAAI.

[10] L. Wolf and A. Shashua, “Feature selection for unsu-
pervised and supervised inference: The emergence of
sparsity in a weight-based approach,” JMLR, 2005.

[11] X. He, D. Cai, and P. Niyogi, “Laplacian score for
feature selection,” in NIPS, 2005, pp. 507–514.

[12] C. Boutsidis, P. Drineas, and M. W. Mahoney, “Un-
supervised feature selection for the k-means clustering
problem,” in NIPS, 2009.

[13] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou,
“l2, 1-norm regularized discriminative feature selection
for unsupervised learning.” in IJCAI, 2011.

[14] M. Qian and C. Zhai, “Robust unsupervised feature
selection,” in IJCAI, 2013.

[15] S. Alelyani, J. Tang, and H. Liu, “Feature selection for
clustering: A review,” in Data Clustering: Algorithms
and Applications. CRC Press, 2013, pp. 29–60.

[16] G. A. Miller, “Wordnet: a lexical database for english,”
Communications of the ACM, 1995.

[17] J. Liu and J. Ye, “Moreau-yosida regularization for
grouped tree structure learning,” in NIPS, 2010.

[18] A. A. Alizadeh, M. B. Eisen, R. E. Davis et al., “Dis-
tinct types of diffuse large b-cell lymphoma identified
by gene expression profiling,” Nature, 2000.

[19] Y. Liu, J. Wang, and J. Ye, “An efficient algorithm for
weak hierarchical lasso,” ACM, pp. 283–292, 2014.

[20] L. Yu and H. Liu, “Feature selection for high-
dimensional data: A fast correlation-based filter so-
lution,” in ICML, vol. 3, 2003, pp. 856–863.

[21] S. Wang, J. Tang, and H. Liu, “Embedded unsuper-
vised feature selection,” in AAAI, 2015.

[22] Z. Zhao and H. Liu, “Spectral feature selection for
supervised and unsupervised learning,” in ICML, 2007.

[23] D. Cai, C. Zhang, and X. He, “Unsupervised feature
selection for multi-cluster data,” in SIGKDD, 2010.

[24] M. Yuan and Y. Lin, “Model selection and estimation
in regression with grouped variables,” Journal of the
Royal Statistical Society: Series B, 2006.

[25] M. Shiga and H. Mamitsuka, “Non-negative matrix
factorization with auxiliary information on overlapping
groups,” TKDE, no. 1, pp. 1–1, 2015.

[26] Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, “Unsu-
pervised feature selection using nonnegative spectral
analysis,” in AAAI, 2012.

[27] J. Gui, Z. Sun, S. Ji, D. Tao, and T. Tan, “Feature se-
lection based on structured sparsity: A comprehensive
study,” TNNLS, 2016.

[28] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach,
“Proximal methods for hierarchical sparse coding,”
JMLR, vol. 12, pp. 2297–2334, 2011.

[29] D. Yogatama, M. Faruqui, C. Dyer, and N. A.
Smith, “Learning word representations with hierarchi-
cal sparse coding,” in Proc. of ICML, 2015.

[30] J. Tang and H. Liu, “An unsupervised feature selection
framework for social media data,” TKDE, 2014.

[31] Y. Wang, S. Wang, J. Tang, G. Qi, H. Liu, and B. Li,
“Clare: A joint approach to label classification and tag
recommendation,” in AAAI, 2017.

[32] Y. Wang, S. Wang, J. Tang, H. Liu, and B. Li, “PPP:
joint pointwise and pairwise image label prediction,”
in CVPR, 2016.

[33] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein, “Distributed optimization and statistical learn-
ing via the alternating direction method of multipli-
ers,” FTML, vol. 3, no. 1, pp. 1–122, 2011.

[34] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning
via efficient l 2, 1-norm minimization,” in UAI, 2009.

[35] P. H. Schönemann, “A generalized solution of the or-
thogonal procrustes problem,” Psychometrika, vol. 31,
no. 1, pp. 1–10, 1966.

[36] J. Huang, F. Nie, H. Huang, and C. Ding, “Robust
manifold nonnegative matrix factorization,” TKDD,
vol. 8, no. 3, p. 11, 2014.

[37] T. Goldstein, B. ODonoghue, and S. Setzer, “Fast al-
ternating direction optimization methods,” CAM re-
port, pp. 12–35, 2012.

[38] A. I. Su, J. B. Welsh, L. M. Sapinoso et al., “Molecular
classification of human carcinomas by use of gene
expression signatures,” Cancer research, 2001.

[39] J. Tang and H. Liu, “Feature selection with linked data
in social media,” in SDM., 2012, pp. 118–128.

[40] W. Lian, R. Henao, V. Rao, J. Lucas, and L. Carin, “A
multitask point process predictive model,” in ICML,
2015, pp. 2030–2038.

