Knowledge-Based Systems 172 (2019) 64-75

journal homepage: www.elsevier.com/locate/knosys

Contents lists available at ScienceDirect

Knowledge-Based Systems

Learning binary codes with neural collaborative filtering for efficient]

recommendation systems

Check for
updates

Yang Li?, Suhang Wang ¢, Quan Pan?, Haiyun Peng”, Tao Yang?, Erik Cambria >

2 School of Automation, Northwestern Polytechnical University, China

b School of Computer Science and Engineering, Nanyang Technological University, Singapore

¢ College of Information Sciences and Technology, Pennsylvania State University, USA

ARTICLE INFO ABSTRACT

Article history:

Received 14 September 2018

Received in revised form 4 February 2019
Accepted 11 February 2019

Available online 15 February 2019

Keywords:
Recommendation systems
Binary code learning
Neural networks

Neural collaborative hashing the proposed framework.

The fast-growing e-commerce scenario brings new challenges to traditional collaborative filtering be-
cause the huge amount of users and items requires large storage and efficient recommendation sys-
tems. Hence, hashing for collaborative filtering has attracted increasing attention as binary codes can
significantly reduce the storage requirement and make similarity calculations efficient. In this paper, we
investigate the novel problem of deep collaborative hashing codes on user-item ratings. We propose a
new deep learning framework for it, which adopts neural networks to better learn both user and item
representations and make these close to binary codes such that the quantization loss is minimized. In
addition, we extend the proposed framework for out-of-sample cases, i.e., dealing with new users, new
items, and new ratings. Extensive experiments on real-world datasets demonstrate the effectiveness of

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Recommender systems, which aim at recommending potential
products that user may be interested in, have recently attracted
huge attention [1-6]. Among various recommender systems, col-
laborative filtering has achieved great success due to its superior
performance. Despite the great success of traditional collaborative
filtering, the fast growth of online shopping platforms brings new
challenges to recommender systems due to the huge amount of
users and products. For example, it is reported that Amazon has in
total 300 million users' and 398 million products as on January,
2017.2 There were approximately 226.6 million active customers
and fulfilled 1.6 billion orders in 2016 from JD.> Traditional col-
laborative filtering, which learns continuous vector representa-
tions of users and items and makes recommendation based on
the similarity of the representations, suffers from severe issues as:
(i) the massive user and item continuous vector representation
requires huge storage (e.g., it needs 256 bytes for a single item if
its length is 32, note that data are stored in double format); and
(2) it is time consuming to make recommendation to each user
because we need to calculate the similarity between a user and

* Corresponding author.
E-mail address: cambria@ntu.edu.sg (E. Cambria).
1 http://expandedramblings.com/index.php/amazon-statistics.
2 http://scrapehero.com/how-many-products-are-sold-on-amazon-com-
January-2017-report.
3 http://ir.jd.com/phoenix.zhtml?c=253315&p=irol-homeprofile.

https://doi.org/10.1016/j.knosys.2019.02.012
0950-7051/© 2019 Elsevier B.V. All rights reserved.

the huge number of items (e.g., it takes more than ten seconds
to process 1 million calculation in a recommendation). Therefore,
efficient representations of users and items that can reduce storage
requirement and search time cost are needed.

Hash collaborative filtering, which learns the binary represen-
tation of users and items, has become a popular efficient rec-
ommendation technique [7-10]. By learning binary codes, the
storage requirement can be significantly reduced as storing each
binary code only require 4 bytes if the code length is 32. Also,
the time complexity of calculating the hamming distance between
two binary codes is very efficient especially when the binary code
length is short. The majority of existing hash collaborative filter-
ing algorithms exploits a two-stage approach, which first learns
continuous vector representation, then quantizes the continuous
vector representation to binary codes. However, the quantization
will introduce large information loss, which significantly degrades
the recommendation performance. Therefore, to alleviate the in-
formation loss, Zhang et al. [10] seek to learn the binary codes in
a one-stage process by solving a discrete optimization problem.
However, discrete optimization is NP-hard and is inefficient.

Another direction to compensate the quantization loss is to (i)
learn better continuous vector representations which contain the
semantic information of users and items that are better at the rec-
ommendation, and (ii) make the continuous vector representation
be close to binary vector representation. Recently, deep learning
for collaborative filtering has significantly improved the recom-
mendation performance [4,11] because of its great representation
learning ability. Therefore, it is very promising to exploit deep

https://doi.org/10.1016/j.knosys.2019.02.012
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2019.02.012&domain=pdf
mailto:cambria@ntu.edu.sg
http://expandedramblings.com/index.php/amazon-statistics
http://scrapehero.com/how-many-products-are-sold-on-amazon-com-January-2017-report
http://scrapehero.com/how-many-products-are-sold-on-amazon-com-January-2017-report
http://ir.jd.com/phoenix.zhtml?c=253315&p=irol-homeprofile
https://doi.org/10.1016/j.knosys.2019.02.012

Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75 65

collaborative filtering for learning binary codes. However, the work
on investigating deep collaborative filtering binary codes on user-
item ratings is rather limited.

Therefore, in this paper, we study the novel problem of investi-
gating deep learning to learn binary codes for collaborative filter-
ing. In essence, we need to solve two problems: (i) how to design
a deep collaborative filtering architecture that is good at learning
user and item representations; and (ii) how to make the learned
representation close to binary codes such that the quantization
loss is minimized when doing the hashing? In an attempt to solve
these two questions, we propose a novel deep learning framework
for deep collaborative hashing (DCH). The model is composed of
two neural networks for learning user and item representations,
respectively, and the two neural networks are trained to recon-
struct ratings. The activation of the neural networks at the last
layer is specially designed such that the outputs are close to binary
code. Furthermore, the out-of-sample cases are also explored. The
contributions of this work are listed as follows:

e We investigate a new problem of deep hashing for collabora-
tive filtering;

e We propose a novel neural collaborative filtering framework
for learning binary codes and extend the framework for out-
of-sample extension;

e We conducts extensive experiments on three real-world
datasets to demonstrate the effectiveness of the proposed
framework for both the normal case and the out-of-sample
cases;

The remainder of this paper is organized as follows: Section 2
describes related works, including hashing for efficient recommen-
dation, hashing by deep learning, and deep learning for recom-
mender systems; Section 3 introduces the details of the proposed
framework; Section 4 provides an optimization framework for
training DCH; Section 5 extends the DCH for dealing with new
users, new items, and new ratings; Section 6 describes experi-
ments; finally, Section 7 discusses conclusion and future work.

2. Related works

In this paper, we investigate binary codes with neural collabora-
tive filtering for an efficient recommendation. The work is related
to hashing for the efficient recommendation, deep learning based
hashing and recommendation.

2.1. Hashing for efficient recommendation

Hashing is a popular method for efficient approximate nearest
neighbor search on massive dataset [12,13]. It aims at learning a
low-dimensional binary vector representation of the data points,
which is called binary codes. The binary vector representation
can (i) significantly reduce the storage requirement for large-scale
datasets as each element of the binary code, i.e., 1/-1, only takes up
1 bitin the storage and; (ii) significantly reduce the cost of querying
as the similarity calculation of binary codes is much efficient.
Therefore, learning to hash is widely used for efficient similarity
search of text, image and video data in the search engine [14-16].

Collaborative filtering is essentially a similarity search problem,
where even linear time complexity is prohibitive for large-scale
recommendation tasks. Thus, hashing for collaborative filtering
has attracted increasing attention [7-9]. For example, Karatzoglou
et al. [7] and Liu et al. [9] learned the continuous representation
with traditional CF, then the technique of rounding or rotation is
applied to get the binary codes. Zhou et al. [8] built their model
by relaxing the hashing with real value at first, then the rounding
was applied to get the binary codes. Apparently, all of these works

contain two stages, i.e., first learn the continuous vector repre-
sentation of users and items, and then quantize the continuous
vector representation to binary codes. Such a two-stage scheme
will generate large quantization loss. Therefore, Zhang et al. [10]
proposed the discrete collaborative filtering, which is a unified
framework that integrates the hash learning process into matrix
factorization by solving a discrete optimization problem. However,
discrete optimization is NP-hard and inefficient. Therefore, in this
paper, we try to compensate the quantization loss by achieve
two goals (i) learn better continuous vector representations of
users and items that for the better recommendation; and (ii) learn
continuous representation that is close to binary codes to reduce
quantization loss.

As we have discussed, the majority of existing hash collabora-
tive filtering is based on matrix factorization, while deep learning
algorithms have been demonstrated to be effective in learning
user and item latent features from user-item rating history [4,
17]. Therefore, in this paper, we investigate the novel problem of
exploiting deep learning to learn binary codes for collaborative
filtering, which is to achieve the two goals for compensating quan-
tization loss.

2.2. Hashing by deep learning

Deep learning has become one of the most successful ways in
hashing learning, especially in the searching system. Based on dif-
ferent data, lots of models are proposed. For the image data, models
like deep hashing (DH) [18], supervised deep hashing (SDH) [18],
deep quantization network (DQN) [19] and deep hashing network
(DHN) [20], etc., extract the features from the image and learn the
hash code with neural network models. Most of them are end-
to-end methods which are composed of feature representation
learning over the image and hashing code learning, and belongs to
the two-stage schema mentioned before. Furthermore, the super-
vised information is adopted to guide the feature representation
learning [18]. Same as that in the image data, deep learning for
hashing models can be proposed for the text data. Suthee et al. [21]
build the variational deep semantic hashing (VDSH) based on the
variational auto-encoder [22]. In the meantime, there are works
over the multi-modal data. Cao et al. [19] build the deep visual-
semantic hashing (DVSH) with fusing visual embedding from the
image and semantic embedding from the text before the hash
function, which also is a two-stage model. Hu et al. [23] propose
the deep binary reconstruction (DBRC) model for the multi-modal
hash code learning without the similarity information. Then Wu
et al. [24] proposed a unified framework self-supervised deep
multi-model hashing (SSDMH) by integrating deep learning and
the latent representation regularization.

Unlike previous works, the hash learning in this paper is over
the users and items only. As far as we know, this is the first work
to learn to hash with deep learning over this type of data.

2.3. Deep learning for recommender systems

Recently, along with the successful application of deep learn-
ing in natural language processing (NLP) research [25-30], deep
networks have attracted a lot of attention in the recommendation
community, and many deep learning based recommender systems
have shown promising results [4,17,31].

Compared with the traditional latent feature learning methods,
deep learning based models are more effective in learning rep-
resentations that can capture relations between users and items.
Methods like community embeddings [32], User2Vec [33], and
Item2Vec [34] learn user and item vectors by applying embed-
ding techniques [35,36]. Works like neural collaborative filtering

66 Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75

(NCF) [4] applied neural networks to perform collaborative filter-
ing and has achieved promising results. Pei et al. [37] proposed
the interacting attention-gated recurrent network (IARN) which
learned the feature from the user and item at the same time. Mod-
els like collaborative variational auto-encoder (CVAE) [11], col-
laborative denoising auto-encoder (CDAE) [38] applied the auto-
encoder frameworks to get the latent representation of the user
and items. For the CVAE, it is the inference process for the latent
information learning, and as to the CDAE, it can be considered as
the SVD++ if the activate function is identity.

However, the works above aim at learning continuous vector
representation of users and items for recommendation. The work
on exploring deep learning to learn hash for collaborative filtering
is rather limited. One reason is that learning binary codes brings
challenges to training neural networks: the binary codes are the
discrete value which limits the back-propagation in the neural
networks. Therefore, in this paper, we propose a novel framework
that utilizes deep learning for hash collaborative filtering by over-
coming the challenges.

3. Neural collaborative filtering for hashing

Before introducing the details of the proposed framework, we
first introduce the notations used in this paper. Throughout the
paper, matrices are written in boldface capital letters and vectors
are denoted as boldface lowercase letters. For an arbitrary matrix
M, M; denotes the (i,j)th entry of M and ||M||§ is the Frobenius
norm. Capital letters in calligraphic math font such as \V are used to
denote sets and | V| is the cardinality. Lett/ = {uq, uy, ..., u,} be
the set of n-users and vV = {vq, v,, ..., vy} be the set of m items.
We use § € R™™ to denote user-item rating matrix where Sj; is
the rating score from u; to vj if u; rates vj, otherwise, S; = 0. We
assume that ¢, V and S are fixed. Function sign is represented by
sgn, and softsign is abbreviated to softsgn.

3.1. Collaborative filtering with MLP

Matrix factorization is one of the most popular models for
collaborative filtering and has been proven to be effective [1]. The
essential idea of matrix factorization is to decompose the rating
matrix S into two low-rank matrices B and D which are good at
reconstructing the rating

min (Sij — ujv;)* + A2(U, V) (1)
uv ij:S;;>0

where U € R¥" is the user latent feature matrix and V € R¥™ is
the item latent feature matrix. £2(U, V) is the regularizer on U and
V to alleviate overfitting. With U and V, we can learn binary user
and item representations that are close to U and V or we can simply
quantize U and V to binary codes.

It is obvious that using binary codes to represent user prefer-
ences and item properties can introduce information loss. There-
fore, we need a powerful model for learning user and item latent
features to compensate for the loss. Deep learning methods are
very good at learning features from raw input data. Recently, it
has been proven to increase the performance of recommender
systems [4] significantly. Therefore, we exploit deep learning al-
gorithms for learning user and item latent features.

The architecture of the deep learning model proposed for learn-
ing user and item representation is shown in Fig. 1. In the proposed
framework, we assume that the simple neural network can work
well over the feature extraction from the users and items, and this
has been validated in NCF [4]. Also, it can be a universal approx-
imator when there are only two fully connected layers network,
and this has been proven in [39] if there are sufficient hidden

nodes. To make the framework simplicity and efficiency, the two-
layer MLP has been applied in the work. Thus, the framework is
composed of two columns of deep neural networks, MLP, and
MLP,, which are used to learn user preferences and item latent
features, respectively. To reduce the learned continues values are
close to the binary codes, the tanh but not the sigmoid activation
function is adopted to make the non-linear transformation. Also,
it can be a more complex neural network structure for these two
columns neural networks, such as CNN, LSTM, etc.

Because of the sparsity of the data, it is hard for the deep
learning to learn good feature from the user and item. Inspired
by the method of word embedding in the text data [36,40], each
word can be represented by the low dimension vector. Hence,
in the bottom layers, the look up method is applied to get the
user embedding and item embedding, where each user or item
is depicted as e(uy) € R“*! or e(vy) € R**! and I, and I, are
the user embedding dimension and item embedding dimension,
respectively. For user u;, its input to MLP,, is the sequence of items
bought by u;, i.e., My = (vi1, viz, ..., vin,), Where Ny; is the total
items number that bought by u;.

Then latest n items and latest m users are selected from N
and N, respectively as the input. If the user or item does not have
enough history information, then the empty values will be replaced
with zeros. Then the embedding layer will project the user/item to
embeddings as H,; = (e(vi1), e(vp), .. ., (vpn)), item array change
toH, = (e(uj1), e(uj2), ..., e(ujp)).

The embeddings then go through standard MLP layers to learn
latent features. The output of MLP, and MLP, are used to predict
the rating as

min Y | (Sy — uv;)® + A l6ullF + A2l160 IF
w50 (2)
s.t. w; = MLP,(Ny), Vj = MLPU(NUJ‘)

where 6, and 6, are the parameters of MLP, and MLP,, respectively
and A and X, are the two scalars to control the contribution of the
regularization.

3.2. Binary representation learning

With the powerful neural collaborative filtering described in
last section, we are going to introduce how to exploit it for learning
binary codes. One simple approach is to use the two-stage ap-
proach as first learning U and V with Eq. (2), then simply getting
the binary codes as b; = sgn(u;) and d; = sgn(v;). However, this
will introduce large quantization loss. Another choice is to learn b;
and d; in one-stage as

min (S — bl + A1[164112 + 22116, 2
Ou,6y

ij:5>0 (3)
s.t. by = sgn(MLP,(Nyi)), dj = sgn(MLP,(N,,))

However, the gradients of (S; — b/d;) w.r.t. to the parameters of
0, and 6, are always zero due to the sgn operation, which makes
the training of the neural networks intractable. In an attempt to
alleviate the quantization loss and make the training tractable, we
use softsgn to replace sgn as

min)~ (Sj — bl d;)* + A [16ullF + 22116, 117
Bu.0y

ij:S;>0 (4)
s.t. by = softsgn(MLP,(Ny)), d;j = softsgn(MLP,(N,;))

where softsgn is defined as
X
softsgn(x) = 5
ftsgn(x) T (5)

It is easy to see that softsgn is an approximation of sgn especially
when x is large. Unlike tanh, which converges exponentially and

Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75 67

Sij
b; softsgn l, d]
linear
tanh I
MLP | T MLP | [tems
tanh
L 4
Hi "
£ f A v
Nui . N,
Vi Vi Vim Ujr Uiz Upn

b;
u; .
1 0 0
Users -1
T—g=—=--0 1 0—» —»
270705 1
0 1
00,51 -1
5/4 /510 1
3/5/0 /4 1joj0)0 1
0 0 0 1 .
00 0 0

i

Fig. 1. The structure and the toy example of the DCH framework.

has an extreme activation distribution, softsgn converges polyno-
mially, and it activation distribution is around the knee and has
smoother asymptotes, which make it not easy to be saturated. In
addition, softsgn is differentiable, which makes the training of neu-
ral networks using gradient descent possible. To make the output
of softsgn close to 1/—1 to minimize the quantization error, we
want the output of MLP,(Ny;) to be large. Because tanh is applied
in MLPs, which makes the output value within [—1, 1]. Therefore,
a linear layer is added on the top of MLP, and MLP, which allows
the output of MLP, and MLP, have a chance to be the large value.

3.3. The proposed framework

As we have described, matrix factorization is a popular way to
do the collaborative filtering. In order to learn the user and item
representation from the explicit information, the neural network
is applied. To make the framework simple, the two-layer MLPs
which are MLP, and MLP, are adopted to extract the latent features.
The ideal representation about user and item should be expressive
and diverse. To make the learned binary code uncorrelated, the
constraint BTB = ml is added. To make the binary code diverse,
the constraint biTl = 0 is added. Thus, the objective function of
the DCH framework is given as

argmin > (S — b d;)* + A 6[F + 221160
ij:5;>0
s.t. B'1=0, D'1=0,B'B=ml, D'D = nl

b; = softsgn(MLP,(Nyi)), dj = softsgn(MLP,(N,;))

(6)

where 1 denotes all one vector and I is the identity matrix. B'1 =
0 and B'TB = ml are to make sure that the binary codes are
expressive. Specifically, the constraint bl.Tl = 0 is to enforce each
bit of b; to be activated 50% of the time and the constraint B'B = ml
makes sure that the bits are uncorrelated. 6, and 0, are the neural
network parameters that in MLP, and MLP,.

After learning B and D, the binary codes can be obtained as
sgn(B) and sgn(D) with little information loss, because the elements
of the matrices B and D are already close to 1 or —1.In addition, the
proposed framework exploits MLP, MLP, and takes into the consid-
eration of the contextual information, which makes it promising in
learning better binary codes for the recommendation.

4. An optimization framework

The objective function in Eq. (6) involves the discrete opti-
mization on the constraints and the training of the neural net-
works, which is difficult to update the parameters jointly. There-
fore, following previous work [41], we adopt Alternating Direction
Method of Multiplier (ADMM) [42] to update the parameters alter-
natively. ADMM is a popular method for solving non-convex and
constrained optimization problem. It can break the complicated
problem into small sub-problems, each of which is then easier

to solve. We next give details of using ADMM. Specifically, we
introduce auxiliary variables P and Q with the constraint P = B
and Q = D. Then the objective function is rewritten as

D (S = b) + Aal6ulF + 22016,17

ij:5;>0

s.t. b; = softsgn(MLP,(Nyi)), d;j = softsgn(MLP,(Ny;)) (7)
P'1=0,Q'1=0, PPP=mI,Q'Q=nlI
P=B, Q=D

With these two auxiliary variables, the ADMM objective function
is given as

arg min
6u.60,P,Q

arg min

Ou.60.P.QEF 3 (S — bl d)? + Tr(E"(P — B)) + Tr(F'(Q — D))

ij:5;>0
"
+ (P - Bl + 1Q = D7) + A1l16ulIF + 22116, 117
s.t. b; = softsgn(MLP,(Nyi)), dj = softsgn(MLP,(Ny;)),
P’1=0,Q'1=0, P'P=mI Q' Q=nI
(8)

where E and F are the Lagrangian multipliers and u is a scalar to
control the penalty for the violation of equality constraint P = B
and Q = D.

4.1. Updating weights of MLP, and MLP,

To update the weights of MLP, and MLP,,, we fix the other terms
except the weights of MLP, and MLP, and remove the irrelevant
terms. Then Eq. (8) becomes:

arg gnerll Z (S — bdej)Z — Tr(E"B) — Tr(F'D)
ij:Sij>0
M 2 2 2 2 9
+ E(IIP — Bl + 1Q — DIlg) + A1116ullF + 22116y I
s.t.b; = softsgn(MLP,(Nyi)), dj = softsgn(MLP,(Ny;))

After merging the terms, the objective function can be written as :

" 1
Jowoy = 3 (Si = bid)* + S IB— (P+ B
ij:Sj>0
" 1 (10)
+ ZID—(@Q+ ;F)n? + 21l0ulIF + 22110,117

s.t. b; = softsgn(MLPy(Nyi)), dj = softsgn(MLP,(N,;))

Now we have reduced the problem to the standard training of
neural networks with the cost function given in Eq. (10). We use
ADAM [43] optimizer to train the neural networks. ADAM is a
method for efficient stochastic optimization with adaptive learning
rate that only requires first-order gradients with little memory re-
quirement, which is widely used for training deep neural networks.

68 Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75

4.2. Update P

Similarly, to update P, we fix the other variables except P and
remove the irrelevant terms, which result in:

. 1)
argminTr(E'P)+ = ||P — B
gmi (E'P) 2|| Iz (1)

st. P'1=0, P'P=mI

Note that P"P = ml, we have ||P||2 = m?. Then the above equation
can be written into a more compact form as

arg mpinTr(PTT1) st. PP1=0, P'P=ml (12)
where T; = B — %E. Eq. (12) has a closed form solution by the
following lemma.

Lemma 1. Given a non-negative matrix T,

argminTr(X'T) s.t. X'1=0, X'X=ml (13)

it is a monotonous function, according to [44], it is a convergence pro-
cess using Schmidt gram orthogonalization when solving the problem.
The closed form solution is

X = /m(sg([1: T]))[2 : m] (14)
where sg denotes the Schmidt gram orthogonalization.
With Lemma 1, the optimal solution for P is given as:

P = /m(sg([1; T1])[2 : m] (15)
4.3. Update Q

By removing the terms that are irrelevant to Q, we arrive at:
. u
arg min Tr(F'Q) + Sle- D|?

st. Q'1=0, Q'Q=nlI
Similarly, the above equation can be rewritten as follows by com-
pleting the square quadratic equation:

arnginTr(QTTz) st. PI1=0, QQ=nl (17)

(16)

where T, = D — L1F. With Lemma 1, we have the closed form
update rule for Q as:

Q= V/n(sg([1; T2))I2 : n] (18)
4.4. UpdateE, Fand u

After updating the variables, we now need to update the ADMM
parameters, i.e., E, F and p. According to Boyd et al. [42], they are
updated as follows:

E=E+ u(P—B)
F=F+ u(Q-D) (19)
w=min(pu, Amax)

where p > 1is a parameter to control the convergence speed and
max 1S to prevent u become too large.

4.5. Training algorithm

With these updating rules, a training algorithm is summarized
in Algorithm 1. In Line 1, we first randomly initialize the pa-
rameters P, Q, E and F. For the parameters of MLP, and MLP,,
following the common way to initialize the parameters of neural
networks, the output length of the first layer is set to 128, and
the second layer is set to the binary code length which ranges
from {8, 16, 32, 64} in different experiment cases. From Line 3 to
Line 6, we update the parameters alternatively. The convergence
of ADMM [45] guarantees the convergence of the algorithm.

Algorithm 1 Training algorithm of the DCH framework.

Input: {S;]i,j € V}: the rating sequences of users and items, r:
code length
Output: B € {+1}"*™: user codes, D € {1}"*": item codes.
1: Initialize the parameters 6,, 6,, P, Q, E, F
repeat
Using ADAM to update the parameters of the neural net-
works, i.e., 6,, 8, with the cost function given in Eq. (10)
Update P using Eq. (15).
Update Q using Eq. (18).
Update E, F and u using Eq. (19).
until convergence
return B, D

W

@ N0 h

5. Out-of-sample extension

When new users, items, and new ratings come in, it is imprac-
tical to retrain the DCH framework for obtaining hashing codes of
these out-of-sample data. Instead, an economical way is to learn
ad-hoc codes for new data online and then update for the whole
data off-line when possible. In this section, we propose efficient
ways to update existing representations or learn new user/item
representations. Note that for out-of-sample cases, the model is
already trained. The parameters of the neural networks are fixed.
Generally, there are three cases in total, which are new ratings
given by existing user to existing items (EUEI), new ratings given by
existing user to new items (EUNI) and new ratings given by new users
to existing item (NUEI).

Next, we will give details of how to efficiently deal with these
situations, respectively.

5.1. EUEI

When an existing user gives ratings to existing items that are
not in the historical data, then these new ratings can also be used
to learn a user’s preferences. Since both the user and items are in
the historical data, the representation of the user and items have
already learned. Generally, we can have two choices, one is to make
recommendations based on current parameters, and to see how
the generalization of the proposed model is, and this solution is
named EUEII.

However, EUEI1 does not take into consideration new ratings,
which may help learn better user/item latent features. The other
solution, which is named EUEI2, is to make slight update over the
new rating scores, and learn the new binary codes b; and d; for
the existing user and existing item respectively. The problem in
this case is if we retrain the model based on those new ratings,
how to ensure the learned code not to change so much. We fix
the parameters of the neural networks and only update the latent
features of involved users and items. The essential idea is that the
new latent features should be close to the original features and at
the same time these new latent features should reflect the new
ratings. Let ¢4; be a set of new ratings given by user i to existing
items, and we have modeled it as

arg min Z(Sij —bl'd))? + a|b; — byl
b; Jjeu; (20)
sit. bie {1y, b[1=0

where I3i is the new representations we want to learn. « is a large
scalar to control how close the new representation should be to
the old representation. The above equation can be solved using the
discrete optimization technique proposed in [10]. As solving the
equation is not the focus of the paper, we omit the detail here.

Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75 69

5.2. EUNI & NUEI

In the case of EUNI, the binary codes of existing users are know.
When a new item vy is introduced, let V;, be the set of ratings given
by existing users. We want to learn the binary code for vy. There
are two choices. The first choice is to keep all of the existing user
representation fixed and only learn the new item binary code. We
name this EUNIT and the objective function is given as.

arg min Z(Sik —b'd)?
d ey, (21)

st. dee {1}, dl1=0

The other choice is to also update the users who bought this
new item. We name it EUNI2 and the objective function is given as.

arg min Z(Sm —b/d)’ +a Z I1B; — byl3

die.bj. i€ Vi i€V ieVy (22)

st e (£1)7,dl1=0,b; € (1), b/ 1=0

where &k is the binary code for the new item vy and Bi are the new
binary code for the involved users.

Similarly, there are also two choices for NUEI, where NUEI1 only
learn the binary representation of a new user while NUEI2 learn the
binary representation of a new user and update the representation
of involved items. Let u;, be the new user and ¢4, be the set of items
bought by the new user. Then the objective function of NUEI1 is
given as

arg min Z(Skf —bld;)?
L= (23)
sit. bpe {1, bl1=0

where Bk is the binary code for the new user uy. Similarly, the
objective function for NUEI2 is given as

arg rAniAn Z(Skj - IA)ZCAIJ»)2 +a Z II&j - dj||§
Bi S €Uk ey jeu (24)

sthe (£1)™, b1 =0,d; e (£}, d/1=0

where I3,< is the binary code for the new user u; and Elj are the new
binary code for the involved items.

6. Experiments

In this section, we conduct experiments to evaluate the effec-
tiveness of the proposed framework. Specifically, we aim to answer
the following questions:

e How does DCH perform as compared to other state-of-the-art
hashing for CF methods?

e Does DCH generalize well to new ratings?

e How much quantization loss in the hashing?

e Compared with the tanh, how well of the activation function
softsgn works in DCH during the learning?

e How many MLP layers are needed for DCH in feature extrac-
tion from the users and items?

We will first introduce the datasets followed by the experimental
settings; we then conduct experiments to answer the five research
questions.

6.1. Datasets
We use three widely used publicly available datasets from real-

world online websites, which includes MovieLens, Amazon, and
Yelp. The details of the datasets are given as follows:

Table 1

Statistics of the datasets in evaluation.
Dataset Users# Items# Interaction # Sparsity
MovieLens 6,040 3,704 994,169 95.56%
Amazon 36,327 30,774 1,048,246 99.91%
Yelp 77,018 74,454 2,140,741 99.96%

e MovieLens: This is a classical movie rating dataset [46],
which contains 6040 users and 3704 items with 994,169
ratings in total.

e Amazon: The amazon dataset that we used contains reviews
from the category of Movies and TV,* which contains 123,960
users, 50,052 items and 1,697,533 ratings in total.

e Yelp: The Yelp dataset that we used is from the latest Yelp
challenge,> which originally contains 1,183,361 users,
156,637 items and 4,736,897 ratings in total.

Note that for all the three datasets, the timestamps that the ratings
are given are also available, which makes it possible to generate
inputs for DCH. Due to the sparsity of Amazon and Yelp datasets,
following the common way [10], we filter out users and items
whose number of ratings are smaller than 10. The statistics of the
datasets after preprocessing are shown in Table 1.

6.2. Compared methods

We compare with representative and state-of-the-art hashing
methods for collaborative filtering, which are listed as follows:

e CH: Collaborative Hashing [9] is a popular two-stage hashing
method, where the first stage applies the matrix-factorization
to learn user and item feature, which are then quantized to
binary codes at the second stage. It is a competitive method in
binary code learning. It was originally proposed for visual fea-
tures. Following [10], we implemented CH for collaborative
filtering as: arg minyy ||S — U'V||Z, s.t.,, UUT = nI, VW' = mL
The binary codes are then obtained as sgn(U) and sgn(V).

e LCH: Laplacian Co-Hashing [47] treats the targets (the pair-
wise value (e.g., user and item, term and document)) as the
bipartite graph, then based on the graph Laplacian, the Lapla-
cian Eigenmap [48] is applied during the binary code learning.

e DCF: Discrete Collaborative Filtering [10] is a standard method
in binary code learning for the user and item, and it is a one
stage-learning process based on the collaborative filtering,
and their optimization is over the discrete value directly.

6.3. Top-K recommendation performance comparison

To answer the first question which is how DCH performs as
compared to other state-of-the-art hashing for CF methods, we
perform Top-K recommendation to evaluate the effectiveness of
the proposed framework compared with the other methods. The
leave-one-out evaluation is adopted [4,49]. The three datasets are
prepared in the following way. For each user, we first sort the
item the user rated according to the timestamp. In the training
phase, we use all the rating history except the last one for training
the model. In the evaluation process, the last item that bought
by the user is selected as the target item. We also sample one
hundred items from the set of items that are never bought by the
user as negative samples for testing. Following the common way
to measure the performance of Top-K recommendation [10], we
adopt the widely used evaluation metrics, i.e., HIT@K and NDCG@K.
Hit counts the percentage of the returned Top-K items actually

4 http://jmcauley.ucsd.edu/data/amazon.
5 http://yelp.com/dataset.

http://jmcauley.ucsd.edu/data/amazon
http://yelp.com/dataset

70 Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75

contains the target item. NDCG gives a higher score if the target
item is ranked higher. The larger HIT and NDCG are, the better the
performance is.

The parameters of the compared methods are set through the
cross-validation on the training data. Specifically, for the proposed
framework, the batch size is 256. From the empirical results, the
embedding lengths for the user [, and item [, are 100 which leads a
better recommendation besides the small training time which can
be seen from Fig. 2(a)-(c). From Fig. 2(d)-(e), we find that there
is a slight difference between minimum and maximum. When the
length of the user sequence m is set to be 80 and the length of the
item sequence n is set to be 50 will get the better prediction.

The hyper-parameter p is 1.1 initially, and wm;ax is 1000. The
initial learning rate is set to be 5e-4, which will be updated adap-
tively by ADAM. The model is implemented in TensorFlow [50],
and all of the codes are running on the GPU cluster.® We vary
the code length as {8, 16, 32, 64} to understand how the model
performances under different bit lengths. We also vary the value
of K (in Top-K) to {5, 10, 15, 20}, which is to give a comprehensive
understanding of the performance. The performances in terms of
HIT@K and NDCG@K on the three datasets are shown in Fig. 3. From
those figures, we make the following observations:

1. As K increases, the performance in terms of HIT@K and
NDCG@K also increase for all the methods tested, which is in
line with the intuition that when K is bigger, the probability
of the target in the top-K is bigger. In addition, the line
slope of our model is bigger than that of the other models
in most of the cases. Especially, in the case of the MovieLens
that has 8 binary code bits, we can see that the increment
of our model is the biggest among other methods, though
the accuracy is no better than CH when the K is no bigger
than 15. From this perspective, we can see that the places of
the targets that predicted by DCH are more likely in the top
range of the recommendation.

2. Generally, the proposed DCH framework performs best in all
the three datasets when using HIT as the evaluation metric.
Significantly, our model performs better when the code
length is large, that is to say, our model is more distinguish-
able in long length code, especially when there is a large
number of the data, like Yelp and Amazon. That indicates the
high expressiveness of the binary codes learned from DCH
which extracting the feature from the users and items with
MLPs respectively.

3. Our model performs best in all of the cases when using NDCG
as the evaluation metric, especially over the Amazon and
Yelp datasets, the results almost have about 10% improve-
ment. That is to say, the position in the ranked list of the
target item predicted by our model usually is higher than
that predicted by other three models, which implies the
effectiveness of the proposed framework.

4, For better comparison of how the performance changes as
code length become longer, the performance in terms of
HIT@20 and NDCG@20 w.r-t. the binary code length is shown
in Fig. 4. From these two figures, we can see that as binary
code length increases, the performance of the proposed
framework tends first to increase and then become stable
or slightly decrease. This is because a short code length is
not expressive while a too long code length may result in
overfitting for our model. Another observation is that the
proposed framework has better performance under differ-
ent code lengths compared with other methods, generally.

6 Supported by Parallel & Distributed Systems Lab in Nanyang Technological
University.

Table 2
Results of HIT@20 in the out of samples when the binary code length is 64.
Cases MovieLens Amazon Yelp
DCF 37.74% 19.29% 30.26%
EUEI CH 20.87% 23.43% 39.14%
EUEI 37.94% 49.05% 51.98%
EUEI2 44.54% 49.19% 59.49%
DCF 30.00% 2.17% 10.71%
CH 50.00% - -
EUNI EUNI1 50.00% 63.24% 47.40%
EUNI2 60.00% 64.61% 52.67%
DCF 14.91% 15.31% 15.38%
CH 19.77% - -
NUEI NUEI1 40.44% 21.63% 34.91%
NUEI2 42.66% 29.63% 35.50%
Table 3
Results of NDCG@20 in the out of samples when the binary code length is 64.
Cases MovieLens Amazon Yelp
DCF 10.08% 4.68% 2.83%
EUEI CH 5.43% 5.95% 10.0%
EUEI1 14.59% 22.01% 23.35%
EUEI2 18.87% 19.54% 28.98%
DCF 5.94% 0.5% 2.45%
CH 11.47% - -
EUNI EUNI1 12.02% 28.84% 22.64%
EUNI2 20.47% 29.93% 20.40%
DCF 3.60% 3.80% 3.82%
CH 4.98% - -
NUET NUEI1 14.84% 7.63% 13.10%
NUEI2 14.78% 10.48% 14.02%

To sum up, generally, DCH has better performance under dif-
ferent experiment settings, which shows that by exploiting neural
network, contextual information of the users and items can be
considered, which makes DCH learn more effective binary codes.

6.4. Out-of-sample performance comparison

To answer the second question about the DCH generalization
to new ratings, we investigate the model generalization ability in
processing the out of scope data. First, we introduce how the data
are prepared for training and testing as follows

e In case of EUEI, the out-of-sample data is built by selecting
the half items that bought by the user and making sure all of
the selected items have appeared in the remaining part which
will be the training data. The last item purchased by the user
from the out-of-sample data is chosen as the target point in
the test data. Then a hundred negative items which are never
bought by the user are sampled to build the test data.

e In case of EUNI, each dataset is divided into two parts in
average according to the user, then we select one part as the
training data, and the other part is the out-of-sample data.
Same as the previous step, the last item purchased by the user
from the out-of-sample data is selected as the target point in
the test data. Then a hundred negative items which are never
bought by the user are sampled to build the test data.

o And the data are prepared symmetrically in the case of NUEI
compare that in EUNL

From the results of the previous section, when the binary code
length is set to 64, all of the models achieve their best results.
Hence, in the next two groups of experiments, the binary code
length is set to 64.

Firstly, all of the out-of-sample cases of our proposed model are
compared, and the results are listed in Tables 2 and 3 when Top-K
is set to 20. From those two tables, we can see that the results are

Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75 71
035
0.34 0.125 155
15.0

0.33 < 0.120
& 032 9 g5
® T
® S 0115 14.0
S oa g EI:H
= 030 2 0110 >

0.29 13.0

0.28 0.105 125

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

Embedding Length

(a)

Embedding Length

(b)

Embedding Length

(c)

Fig. 2. (a)-(c) are the HIT@20, NDCG@20 and the training time with different embedding length in MovieLens. And the time is for one epoch. (d)-(e) are the skeleton map
of the HIT@20 and NDCG@20 respectively w.r.t. m and n ranging from 10 to 100 in MovieLens.

different in different cases. First, the proposed models are better
than the state-of-the-art. That means the neural networks in our
models can capture the feature of the users and items from their
profiles in any out of sample cases. In the EUEI, EUNI and NUEI, the
second solutions are better than the first one in most of the cases,
especially in the evaluation of HIT in Table 2, EUEI2, EUNI2, and
NUEI2 are higher than EUEI1, EUNIT and NUEI1 in all of the datasets.
And these are almost the same when the evaluation is NDCG in
Table 3. From those points, we can see that the second solution
which adds the slight different constraints help the model change
with the new item and user.

Then we pick up one out-of-sample case EUNI2 when Top-
K varies from {5, 10, 15, 20} to make full comparisons. And the
results are illustrated in Fig. 5. From those results, we can see that
the proposed model in out-of-sample case EUNI2 still can achieve
the best results in most of the cases, especially when the dataset
is large which helps the neural network learn more features from
the user and item, and in the measurement of NDCG, our model
EUNI2 achieves almost 5% improvement. While in the case of the
HIT over the MovieLens, CH is competitive with our model, and
this also reflects from Fig. 3. That mainly because CH applied the
projection-based linear hash functions when learning the binary
codes which seems like one neural networks layers in our model.

Because in the cases of EUNI, NUEI, and EUNI, some items or
users have no data during the training, and the matrix in that cases
cannot be used in decomposition, and that caused the empty blank
in Tables 2 and 3 and no lines about LCH Fig. 5.

6.5. Binary codes v.s. real number codes

To answer the third question about how much quantization loss
in the hashing, we validate how much improvement of the perfor-
mance will be if making the recommendation with real number
codes by deleting the hashing procedure in DCH, the experiments
with these two different codes are conducted. The comparison
results can be concluded from the red lines with the asterisk and
black lines with square scatter in Fig. 6. From those lines, we
can see that there is a smaller gap between the binary code and
real number code that means there is little information leaking
during the binary code hashing in our model. Furthermore, from

the dataset of MovieLens, using the real number codes making the
recommendation is no better than that using the binary codes. And
this also happens in the other two datasets when evaluating the
HIT at Top-20. From the dataset description in Table 1, we know
that MovieLens has the smallest number of user and item, that is
to say when there is a small number of user and item, the denoising
process of our model is highlighted, while when the number of
users and items are large, the real number codes will contain more
information than the binary codes, and will have little quantization
loss during the codes hashing.

6.6. Activation function discussion

To answer the fourth question about how well of the activation
function softsgn works in DCH during the learning, we replace the
softsgn in the last layer with tanh, whose range is also [—1, —1],
and conduct the comparison experiments. The results can be seen
from the blue lines with triangle scatter and black lines with square
scatter in Fig. 6. From those lines, we can see that all of the blue
lines with triangle scatter are under the black lines with square
scatter. That is to say that the activation function softsgn is more
suitable for the code hashing in the binary code learning.

6.7. The layers of the MLPs

To answer the fifth question about that how many layers of MLP
are needed for DCH in feature extraction from the users and items,
the experiments with different layers of MLP are conducted. The
HIT@20, NDCG@20 and the parameters size of the framework are
listed in Table 4. MLP-0 means that there are no MLPs in DCH, and
the embedding of the users and items are fed into the final layer
directly, MLP-1 implies that there is one MLP layer in DCH, etc.
Params denotes the parameter size in different cases. As we can
see that, if there is no MLP layer, the results are the worst on all of
the datasets, which means the deep learning is necessary for DCH
during the feature extraction. As along with the increase of the MLP
layers, the parameters sizes increase linearly, which means more
parameters needed to be trained. More parameters result in the
more accurate recommendation, which is line with the intuition.
And this also is validated in [4]. From the results, we can see that

72 Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75

0.5, "™ DCF 16 bits 0.5, % PCF |32 pits 0.5,/ ~®=DCF| 64 bits
—O—LCH -51|~o—LCcH 7
0.4{[—¢—cH 7
—<—DCH
EDJ 7
Zo2 /
0.1
[S R 00 5 10 15 20
rop K 5 Orpkls 2 rop K
(a) HIT on the ML datasets
=—DCF g pits 0.2, Fm=DCF 16 bits F=—DCF|32 bits ~m—DCF| 64 bits
(—O— LCH| o4 —O—LCH —O—LCH
—%—CH / ——CH _ —*%—CH
©0.1{[-7—DCH —7—DCH _ .1{ CF—DPCH
© :) 3 . ol g
z . \/o/O g0 ¥ 2
e =
0.0 0.0 0.0
5 10, 15 20 015 20 -0
rop K Top K 5 oy s
(b) NDCG on the ML datasets
0.4, DCF|8 bits 0.6, [~ DCF]16 bits 0.5, 8 DCF|32 bits 0.67 " PCF| 64 pits
H / —O—LCH —O—LCH 9 —O—LCH 7
0.51|——cu = o4 0.4{—cn 5 0.511—%—cH O
0.4{|—F— DCH] Y =7 DCHE 0.41[—7—DCH
- 7 0.3 =
ga o Eeal 0
02l - 0.2 02] §
. E . e 0.1 01 0.1
0.0 0.0 0.0 0.0
TS 1 1 20 5 0 15 20 . 015 20 5 520
Top K Top K Top K Top K

(c) HIT on the Amazon datasets

NDCG

0.3,[~==DCF 132 bits 0.3, ~®DCF| 64 bits
-O—LCH —O—LCH
—K—CH —¥—CH .
0-2{|=7—bcH| < 0.2{| - DCH - v

(d) NDCG on the Amazon datasets

0.7, ®—DCKG bits
0.6 —O—LCH
°_ | |k—cH — Y

0.51|5—pchiz

1 20

0 15
Top K

0.6, PCF |32 bits 0.7, DCF| 64 bits
“01|-o—Lcu o

0.5{|—%—CH 7
0.4][=F—DCH[?

=
= 0.3

0.2
0.1 ./././.

0.0
5 20

1015 -
Top K Top K

(e) HIT on the Yelp datasets

8 bits _ o 0.3, PCF116 bits

_ ~|Fo-Len _
0.2 ¢ —CcH L
N 0-2{ 7 DCH]

8 m—pcr] O
2 —o—LCcH| &
0.1
~ —¥—CH 0.1 i -
CZ_DeH gé__eff:;o
0.0 0.0
5 15 20 5 10 15 20
Top K Top K

|—— DCF
—O—LCH
0.31l—cn

—-DCH. < ——

32 bits

20

10 15
Top K

1 1
0Tup K 5

(f) NDCG on the Yelp datasets

Fig. 3. The results of the Top-K recommendation accuracy with HIT and NDCG where K ranges from {5, 10, 15, 20} on the three datasets.

HIT@20 and NDCG@20 in MLP-2 are far better than that in MLP-1
and MLP-0. Although the results in MLP-2 are not as good as that
in MLP-3 and MLP-4, they are close. To balance the parameter sizes
and the recommendation efficiency, also for the framework simply,
the two-layer MLPs are adopted in DCH. Furthermore, different
number layers MLP can be adopted as needed.

6.8. Time complexity and convergence

To compare the time complexity, we show the time cost for the
hashing 6000 new users in the dataset of Yelp in Table 5. To make
the comparison fairly, the time about the SVD and Non-negative
matrix factorization (NMF) is learning the 6000 new users’ latent

representation whose length range also is {8, 16, 32, 64}. All of
the codes are run over the supported cluster. We can see that CH
takes the shortest time which mainly counts on its simple design.
Then comes to LCH which needs two times of SVD during the
matrix factorization, and NMF takes the longest time. Because DCF
getting the binary code bit by bit, it is slower than CH and LCH.
The proposed model DCH takes the shorter time than DCF with the
similar objective function. Although DCH is slower than LCH and
CH, we believe it is still acceptable as the proposed model provides
the better performance.

The evidence of the model convergence is shown in Fig. 7.
From the figure, we can see that the proposed model is converging
empirically.

Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75

Movie Lens #DCF| (6 Amazon Yel ——DCF
0.6 |~ LCH |s—vrcu| 07 P Lo
0.5 —/—CH 0.6 €
[~—DCH 0.5
EOA 0.4
Z0.3 To0.3
0.2 0.2
" 0.1
0.1 0.0
8 16 32 64 8 16 32 64 16 32 64
bits bits bits
(a) HIT on the three datasets
: =—pCF - -
0.2 Movie Lens) LCH f\mazon — ?gl 0.3 VYelp —.—E‘c::'
)) N /\/ A—cn T ——~cn
G - S = fc |-=—DCH |-=—pC
© <}) 02 benl
0.1 Q o)
ar =} a
z 01 Z0.1
0.0 0.0 '/././. 0.0
8 16 32 64 8 16 32 64 8 16 32 64

Fig. 4. The results of the HIT@20 and NDCG@20 w.r.t. the length of the binary code bits on the three datasets.

bits

bits

(b) NDCG on the three datasets

bits

0.6 —=—pcr |Movie Lens 0.6 PCF Amazo 0.7, —e—pcr | Yelp
0.5] ——cH ‘_{[~F—CH 0.6] —+—CH A/A
0.5] | ——EUNI2
0.4] A—EUNIZ,— ot 0.5] ——EUND2
[:0 3 = =04
S =03 Eo.3
0.2 0.2 0.2
0.1 ././I/. 0.1 ./././. 01 ././I
0 0.0 0
5 10 15 20 5 10 15 20 5 10 15 20
Top K Top K Top K
(a) HIT on the three datasets
0.31 —m—pcr | Movie Lens 0.3; ~=—DCF |Amazon 0.4, =—pcr | Yelp
—%—CH —¥—CH —%—CH
—/—EUNI2 ——EUNI2 0.3] |-~ EUND2
0.2 0.2 o
0 0
S A/A/A/A S0 W
70.1 z
0.1 w—F—K—F
0.0 " 0.0L_p—a—H=—=
5 10 15 20 5 10 15 20 5 10 15 20
Top K Top K Top K

(b) NDCG on the three datasets

73

Fig. 5. The results of the EUNI2 Top-K recommendation accuracy with HIT and NDCG where K ranges from {5, 10, 15, 20} on the three datasets, and the binary code length

Yelp

—=— DCH
—%— with Real Code
—/— with Tanh

10 15 20
Top-K

Yelp

——DCH
—*%— with Real Code
—/— with Tanh

is 64.
0.5 Movie Lens 0.6 Amazon 0.6
0.4 05 0.5
0.3 Eo4 0.4
= = =
0.2 =—DCH 0.3 —=—DCH 0.3
0.1 == with Real Code —#— with Real Code| (.2
K {——with Tanh 0.2 —A—with Tanh
T5 10 15 20 5 10 15 20 s
Top-K Top-K
(a) HIT on the three datasets
Movie Lens 0.3 Amazon 0.3
0.2
Q 0.2 0.2
Q Q Q
a a a
70.1 —s—DCH Zo.1 —=—pcH Zo.1
—#— with Real Code —#— with Real Code|)
—/~— with Tanh —/— with Tanh
0.0 0.0 0.0
5 10 15 20 5 10 15 20 5

Fig. 6. The results of Top-K recommendation accuracy with HIT and NDCG where K ranges from {5, 10, 15, 20} on the three datasets, and the binary code length is 64.

Top-K

Top-K

(b) NDCG on the three datasets

10 15 20
Top-K

74 Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75

Table 4
The HIT@20, NDCG@20 and the parameters size with different number MLP layers when binary code length is 64.
Layers MovieLens Amazon Yelp
HIT@20 NDCG@20 Params HIT@20 NDCG@20 Params HIT@20 NDCG@20 Params
MLP-0 0.2684 0.0996 221 MB 0.2568 0.0956 8.63 MB 0.2768 0.1047 18.29MB
MLP-1 0.2749 0.1019 3.36 MB 0.2841 0.1149 9.78 MB 0.3357 0.1407 19.43MB
MLP-2 0.2776 0.1031 4.50 MB 0.3771 0.1436 10.15 MB 0.4620 0.1886 19.81MB
MLP-3 0.2760 0.1023 4.11 MB 0.4115 0.1645 10.53 MB 0.4904 0.2178 20.19MB
MLP-4 0.2978 0.1110 4.49 MB 0.4071 0.1670 10.91 MB 0.4964 0.2197 20.57MB
Table 5 [3] S.Wang,]. Tang, H. Liu, Toward dual roles of users in recommender systems,
Time cost (s) of the hashing new users over Yelp. in: Proceedings of the 24th ACM International on Conference on Information
Model/length 8 16 32 64 and Knowledge Management, ACM, 2015, pp. 1651-1660.
[4] X.He,L.Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering,
LCH 0.35 0.38 0.43 0.47 in: Proceedings of the 26th International Conference on World Wide Web,
cH 0.04 0.14 0.31 061 International World Wide Web Conferences Steering Committee, 2017, pp
DCF 0.94 0.78 0.99 1.05 173-182 ' P
DCH 0.39 040 045 048 [5] S.Wang,]. Tang, Y. Wang, H. Liu, Exploring hierarchical structures for recom-
SVD 0.94 1.05 113 1.02 mender systems, IEEE Trans. Knowl. Data Eng. 30 (6) (2018) 1022-1035.
NMF 1.18 1.22 123 1.32 [6] X.Meng, S. Wang, K. Shu, J. Li, B. Chen, H. Liu, Y. Zhang, Towards privacy pre-
serving social recommendation under personalized privacy settings, World
Wide Web (2018) 1-29.
2.5x10°A Movie Lens [7] A. Karat‘zoglou, A qula, M. Weimer, Cpllaborative filtering on‘a'b‘udget, ir}:
° — — Amazon Proceedings of the Thirteenth International Conference on Artificial Intelli-
6 L. - Yel gence and Statistics, 2010, pp. 389-396.
2.0x10 P [8] K. Zhou, H. Zha, Learning binary codes for collaborative filtering, in: Pro-
4 6 ceedings of the 18th ACM SIGKDD international conference on Knowledge
=) 1.5x10"1 discovery and data mining, ACM, 2012, pp. 498-506.
] [9] X.Liu,].He,C.Deng, B.Lang, Collaborative hashing, in: Proceedings of the IEEE
1.0x10° Conference on Computer Vision and Pattern Recognition, 2014, pp. 2139-
2146.
5.0x10° [10] H. Zhang, F. Shen, W. Liu, X. He, H. Luan, T.-S. Chua, Discrete collaborative
filtering, in: Proceedings of the 39th International ACM SIGIR Conference on
0.0 Research and Development in Information Retrieval, in: SIGIR 16, ACM, 2016,
, y) ; ' ! pp. 325-334.
0 2]3 6h 8§ 10 12 [11] X.Li,]. She, Collaborative variational autoencoder for recommender systems,
poches in: Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, ACM, 2017, pp. 305-314.
Fig. 7. The evidence convergence of the proposed model. [12] A.Gionis, P. Indyk, R. Motwani, et al., Similarity search in high dimensions via
hashing, in: Proceedings of the 25th VLDB Conference, 1999, pp. 518-529.
[13] B.Kulis, T. Darrell, Learning to hash with binary reconstructive embeddings,
. in: Advances in neural information processing systems, 2009, pp. 1042-1050.
7. Conclusion [14]].Song,Y.Yang,Z. Huang, H.T. Shen, R. Hong, Multiple feature hashing for real-
time large scale near-duplicate video retrieval, in: Proceedings of the 19th
In this paper, we proposed anovel model OfDCH, which exploits ACM international conferen;e on Multimediaj ACM, 20}1, pg. 423-432.

. . . [15] P. Zhang, W. Zhang, W.-]. Li, M. Guo, Supervised hashing with latent factor
neural networks over both user and item for leammg bmary codes. models, in: Proceedings of the 37th international ACM SIGIR conference on
The proposed framework also takes into consideration the orders Research & development in information retrieval, ACM, 2014, pp. 173-182.
in which users rate items. In addition, we also provided recom- [16] F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: Pro-
mendations on how to deal with out—of—sample cases. Extensive ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

. 2015, pp. 37-45.
e.xperlments on three real-world datasets demgnstrat.egl the gffec- [17] C.-Y. Wu, A. Ahmed, A. Beutel, AJ. Smola, H. Jing, Recurrent recommender
tiveness of the proposed framework for learning efficient binary networks, in: Proceedings of the Tenth ACM International Conference on Web
codes and for dealing with new users, new items, and new ratings. Search and Data Mining, ACM, 2017, pp. 495-503.
Furthermore, the quantized loss in DCH is acceptable during the ~ [18] V. Erin Liong, J. Lu, G. Wang, P. Moulin, J. Zhou, Deep hashing for compact
hash. and the activation function softsgn is fitful for the binary code bl'n:ary codes learning, in: 'P'roceedmgs of the IEEE Conference on Computer
' Vision and Pattern Recognition, 2015, pp. 2475-2483.
learning. [19] Y. Cao, M. Long, J. Wang, Q. Yang, P.S. Yu, Deep visual-semantic hashing for
There are several interesting directions for future work. Firstly, cross-modal retrieval, in: Proceedings of the 22nd ACM SIGKDD International
in this paper, we designed neural networks for learning user and gggiﬁf ence on Knowledge Discovery and Data Mining, ACM, 2016, pp. 1445~
%tem latept features. We would like to H,wesqgate more deep learn- [20] H.Zhu, M. Long,]. Wang, Y. Cao, Deep hashing network for efficient similarity
ing algorithms such as LSTM for learning binary codes. Secondly, retrieval, in: Proceedings of the Association for the Advancement of Artificial
in this paper, we mainly focused on explicit ratings. We would Intelligence, 2016, pp. 2415-2421.
like to extend the proposed framework for dealing with implicit [21] S.Chaidaroon, Y. Fang, Variational deep semantic hashing for text documents,
feedbacks by adopting evaluation methods such as RMSE and MAE. in: Proceedings of Fhe 40th InFematlm‘]al ACM SIGIR Conference on Research
. . . R . .. and Development in Information Retrieval, ACM, 2017, pp. 75-84.
Thll'dly, the size of the dataset in this paper 1s rather limited. We [22] Y.Li, Q. Pan, S. Wang, H. Peng, T. Yang, E. Cambria, Disentangled variational
plan to test our findings on a much bigger dataset in the near future. auto-encoder for semi-supervised learning, Inform. Sci. 482 (2019) 73-85.
[23] D.Hu, F. Nie, X. Li, Deep binary reconstruction for cross-modal hashing, IEEE
Refi Trans. Multimed. 14(8) (2018) 1-12.
elerences [24] G.Wu,]. Han, Z. Lin, G. Ding, B. Zhang, Q. Ni, Joint image-text hashing for fast
large-scale cross-media retrieval using self-supervised deep learning, IEEE
[1] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recom- Trans. Ind. Electron. (2018) 1-9.
mender systems, Computer 42 (8) (2009) 42-49. [25] T. Young, D. Hazarika, S. Poria, E. Cambria, Recent trends in deep learning

[2] S.Wang,]. Tang, Y. Wang, H. Liu, Exploring implicit hierarchical structures for
recommender systems, in: I[JCAL 2015, pp. 1813-1819.

based natural language processing, IEEE Comput. Intell. Mag. 13 (3) (2018)
55-75.

http://refhub.elsevier.com/S0950-7051(19)30073-5/sb1
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb1
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb1
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb2
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb2
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb2
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb3
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb3
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb3
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb3
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb3
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb4
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb4
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb4
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb4
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb4
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb4
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb4
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb5
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb5
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb5
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb6
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb6
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb6
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb6
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb6
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb7
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb7
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb7
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb7
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb7
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb8
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb8
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb8
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb8
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb8
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb9
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb9
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb9
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb9
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb9
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb10
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb10
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb10
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb10
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb10
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb10
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb10
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb11
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb11
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb11
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb11
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb11
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb12
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb12
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb12
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb13
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb13
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb13
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb14
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb14
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb14
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb14
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb14
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb15
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb15
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb15
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb15
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb15
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb16
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb16
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb16
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb16
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb16
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb17
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb17
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb17
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb17
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb17
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb18
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb18
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb18
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb18
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb18
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb19
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb19
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb19
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb19
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb19
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb19
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb19
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb20
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb20
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb20
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb20
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb20
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb21
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb21
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb21
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb21
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb21
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb22
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb22
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb22
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb23
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb23
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb23
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb24
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb24
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb24
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb24
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb24
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb25
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb25
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb25
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb25
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb25

[26]
[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

(35]
(36]

[37]

Y. Li, S. Wang, Q. Pan et al. / Knowledge-Based Systems 172 (2019) 64-75 75

Y.Li, Q. Pan, S. Wang, T. Yang, E. Cambria, A generative model for category text
generation, Inform. Sci. 450 (2018) 301-315.

S. Poria, E. Cambria, D. Hazarika, P. Vij, A deeper look into sarcastic tweets
using deep convolutional neural networks, in: COLING, 2016, pp. 1601-1612.
I. Chaturvedi, Y.-S. Ong, I. Tsang, R. Welsch, E. Cambria, Learning word depen-
dencies in text by means of a deep recurrent belief network, Knowl.-Based
Syst. 108 (2016) 144-154.

Y. Ma, H. Peng, E. Cambria, Targeted aspect-based sentiment analysis via
embedding commonsense knowledge into an attentive LSTM, in: AAAIL 2018,
pp. 5876-5883.

H. Peng, Y. Ma, Y. Li, E. Cambria, Learning multi-grained aspect target se-
quence for chinese sentiment analysis, Knowl.-Based Syst. 148 (2018) 167-
176.

S. Zhang, L. Yao, A. Sun, Deep learning based recommender system: A survey
and new perspectives, arXiv preprint arXiv:1707.07435.

S. Cavallari, V. Zheng, H. Cai, K. Chang, E. Cambria, Learning community
embedding with community detection and node embedding on graphs, in:
CIKM, 2017, pp. 377-386.

M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla, V. Bhagwan,
D. Sharp, E-commerce in your inbox: product recommendations at scale, in:
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2015, pp. 1809-1818.

0. Barkan, N. Koenigstein, tem2vec: neural item embedding for collaborative
filtering, in: Machine Learning for Signal Processing (MLSP), 2016 IEEE 26th
International Workshop on, IEEE, 2016, pp. 1-6.

T. Mikolov, K. Chen, G. Corrado,]. Dean, Efficient estimation of word repre-
sentations in vector space, arXiv preprint arXiv:1301.3781.

Y. Li, Q. Pan, T. Yang, S. Wang, J. Tang, E. Cambria, Learning word representa-
tions for sentiment analysis, Cogn. Comput. 9 (6) (2017) 843-851.

W. Pei, J. Yang, Z. Sun, J. Zhang, A. Bozzon, D.M. Tax, Interacting Attention-
gated Recurrent Networks for Recommendation, arXiv preprint arXiv:1709.
01532.

(38]

(39]
[40]

(41]

[42]

[43]
(44]
[45]
[46]
(47]
(48]

[49]

(50]

Y. Wu, C. DuBois, A.X. Zheng, M. Ester, Collaborative denoising auto-encoders
for top-n recommender systems, in: Proceedings of the Ninth ACM Interna-
tional Conference on Web Search and Data Mining, ACM, 2016, pp. 153-162.
K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are
universal approximators, Neural Netw. 2(5) (1989) 359-366.

Y. Li, T. Yang, Word embedding for understanding natural language: a survey,
in: Guide to Big Data Applications, Springer, 2018, pp. 83-104.

S. Wang,]. Tang, H. Liu, Embedded unsupervised feature selection., in: Pro-
ceedings of the Association for the Advancement of Artificial Intelligence,
2015, pp. 470-476.

S.Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found.
Trends Mach. Learn. 3 (1) (2011) 1-122.

D.P.Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980.

A. Ruhe, Numerical aspects of gram-schmidt orthogonalization of vectors,
Linear Algebra Appl. 52 (1983) 591-601.

Y. Wang, W. Yin, J. Zeng, Global convergence of ADMM in nonconvex nons-
mooth optimization, arXiv preprint arXiv:1511.06324.

F.M. Harper, J.A. Konstan, The movielens datasets: history and context, ACM
Trans. Inter. Intell. Syst. (TiiS) 5 (19) (2015) 1-19.

D. Zhang,]. Wang, D. Cai, J. Lu, Laplacian co-hashing of terms and documents,
in: ECIR, Vol. 5993, Springer, 2010, pp. 577-580.

M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and
data representation, Neural Comput. 15 (6) (2003) 1373-1396.

X. He, H. Zhang, M.-Y. Kan, T.-S. Chua, Fast matrix factorization for online
recommendation with implicit feedback, in: Proceedings of the 39th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, ACM, 2016, pp. 549-558.

M. Abadi, A. Agarwal, P. Barham, et al., TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems, 2015.

http://refhub.elsevier.com/S0950-7051(19)30073-5/sb26
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb26
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb26
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb27
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb27
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb27
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb28
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb28
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb28
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb28
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb28
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb29
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb29
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb29
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb29
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb29
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb30
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb30
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb30
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb30
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb30
http://arxiv.org/abs/1707.07435
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb32
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb32
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb32
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb32
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb32
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb33
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb33
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb33
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb33
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb33
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb33
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb33
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb34
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb34
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb34
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb34
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb34
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb36
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb36
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb36
http://arxiv.org/abs/1709.01532
http://arxiv.org/abs/1709.01532
http://arxiv.org/abs/1709.01532
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb38
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb38
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb38
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb38
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb38
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb39
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb39
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb39
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb40
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb40
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb40
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb41
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb41
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb41
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb41
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb41
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb42
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb42
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb42
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb42
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb42
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb44
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb44
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb44
http://arxiv.org/abs/1511.06324
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb46
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb46
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb46
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb47
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb47
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb47
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb48
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb48
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb48
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb49
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb49
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb49
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb49
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb49
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb49
http://refhub.elsevier.com/S0950-7051(19)30073-5/sb49

	Learning binary codes with neural collaborative filtering for efficient recommendation systems
	Introduction
	Related works
	Hashing for efficient recommendation
	Hashing by deep learning
	Deep learning for recommender systems

	Neural collaborative filtering for hashing
	Collaborative filtering with MLP
	Binary representation learning
	The proposed framework

	An optimization framework
	Updating weights of MLPu and MLPv
	Update P
	Update Q
	Update E, F and
	Training algorithm

	Out-of-sample extension
	EUEI
	EUNI & NUEI

	Experiments
	Datasets
	Compared methods
	Top-K recommendation performance comparison
	Out-of-sample performance comparison
	Binary codes v.s. real number codes
	Activation function discussion
	The layers of the MLPs
	Time complexity and convergence

	Conclusion
	References

