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a b s t r a c t 

The neural network model has been the fulcrum of the so-called AI revolution. Although 

very powerful for pattern-recognition tasks, however, the model has two main drawbacks: 

it tends to overfit when the training dataset is small, and it is unable to accurately cap- 

ture category information when the class number is large. In this paper, we combine re- 

inforcement learning, generative adversarial networks, and recurrent neural networks to 

build a new model, termed category sentence generative adversarial network (CS-GAN). 

Not only the proposed model is able to generate category sentences that enlarge the origi- 

nal dataset, but also it helps improve its generalization capability during supervised train- 

ing. We evaluate the performance of CS-GAN for the task of sentiment analysis. Quantita- 

tive evaluation exhibits the accuracy improvement in polarity detection on a small dataset 

with high category information. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The success of many existing machine learning and data mining algorithms relies on large amounts of labeled data.

For example, one important reason that convolutional neural networks (CNNs) have become so popular is the emergence

of large-scale datasets such as ImageNet, which contains 14,197,122 manually-labeled images [33] . The majority of existing

classifiers cannot perform as expected when the size of the training dataset is small. Constructing a large labeled dataset,

however, is time-consuming and sometimes it requires domain knowledge. Thus, there is a gap between the importance of

having a large training dataset and the difficulty in obtaining such data. 

Generative models, which can generate realistic data samples, appear to be a promising tool for augmenting data size to

bridge such a gap. The essential idea of generative models is to approximate the underlying data distribution by training a

model to fit the training data. With the learned data distribution, generative models can generate observable data values.

Thus, a massive amount of labeled data can be generated by training a generative model from a small amount of labeled

data, which can be used for training the classifiers. Various generative models have been proposed in the literature, such

as latent Dirichlet distribution [3] , restricted Boltzmann machines [14] , and generative adversarial networks (GANs) [11] ,

which use the adversarial training idea for generating more realistic data samples. Among the existing generative models,

GANs are attracting increasing attention. The core idea of GAN is to play a min-max game between a discriminator and
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a generator, i.e., adversarial training. The discriminator tries to differentiate between real samples and artificial samples

(constructed by the generator) while the generator tries to create realistic samples that can fool the discriminator (i.e.,

make the discriminator believe that the generated samples are real). GANs have shown an extremely powerful ability to

generate artificial images and facilitated many applications. For example, an image generator based on GANs can create

super-resolution [20] images from their low-resolution counterparts and an interactive image generator [50] can generate

realistic images from some sketches or do the auto painting [24] with the help of GAN. 

Because of the astonishing power of GAN in generating realistic images, its adoption in the context of natural language

processing (NLP) for generating sentences is attracting increasing attention [17,23,4 8,4 9] . For example, Zhang et al. [49] and

Semeniuta et al. [36] used GANs for text data generation and achieved state-of-the-art results. Dialogue-GAN proposed

in [23] demonstrated the ability of GAN to generate realistic dialogues. However, existing works on text generation mainly

focus on generating unlabeled sentences, which are not helpful for data augmentation to train better classifiers. 

In this paper, we study the novel problem of generating labeled sentences with GAN for data augmentation. Because

sentences are sequential data, recurrent neural networks (RNNs) are always used during generation. Also, the generator

can be an agent whose target is to predict the next character based on current characters, which can be considered as a

reinforcement learning (RL) process. Hence, in this paper, an ensemble of RNNs and RL is applied. In particular, we aim to

tackle two challenges: (1) generating realistic sentences with GAN, given the discrete nature of text; and (2) incorporating

category information in GAN to generate labeled synthetic data. To this end, we propose a novel framework termed category

sentence–generative adversarial networks (CS-GAN), which not only can expand any given dataset by means of GANs and

RL, but also can learn sentence structure directly with RNNs. Experiments show the effectiveness of the proposed model in

the context of sentiment analysis, especially in the case of large category information. The main contributions of this work

are as follows: 

• We study a new and important problem of labeled sentence generation, which can be used to help train better classifiers;

• We propose a new framework CS-GAN, which stacks GAN, RNN and RL together for better sentence generation; 

• We conduct extensive experiments to demonstrate the proposed framework can generate more realistic sentences with

labels. 

The remainder of the paper is organized as follows: Section 2 illustrates the literature of both models and tasks related

to the research work; Section 3 introduces preliminaries of the proposed model; Section 4 describes CS-GAN in detail;

Section 5 validates the effectiveness of the proposed model; finally, Section 6 offers concluding remarks. 

2. Related works 

In this section, we illustrate related works for the models we use (namely: RNN, GAN, and RL) and for sentence genera-

tion and sentiment analysis (the focus and context of this paper, respectively). 

2.1. Recurrent neural networks 

Because of its recurrent structure, RNN is good for sequence data processing. There is no constraint for the sequence

length when applying this model, and the hidden unit is updated at every time-step. One of the early RNN models was

BiRNN [35] , which splits the neurons of regular RNN into two directions: one for the forward computation and one for back-

ward computation. Today, the most successful RNN model is the long short-term memory (LSTM) [16] network, where the

gates in each neuron help the model predict the sequence data better based on contextual tokens. Many more models based

on LSTM have been proposed recently, e.g., bidirectional LSTM [12] , gated recurrent neural tensor network (GRNTN) [42] etc.

These works not only help the sequence data generation but also make the model more flexible when faced with the variety

of sequence data. 

Many works employed LSTM for sentence generation, either directly [40] or as an embedded module [4 8,4 9] . Some

works [9] use LSTM for machine translation on the basis of sentence generation, other works deploy this model for end-

to-end speech recognition based on sequence generation [38,44] . All of these models leverage the so-called teacher-forcing

algorithm [45] , which teaches the generation using near future tokens. This algorithm was later improved by Alex et al. [19] ,

who introduced the professor-forcing algorithm, which outperforms teacher-forcing methods in text generation by using dy-

namic RNNs and by teaching the generator a large range of existing tokens. Prior information, e.g., sentence sentiment, can

be added to this model during sequence data generation, which makes the generation more flexible. Some works added

category information, which aids category sentence generation, e.g., [10] combined conditional LSTM and category informa-

tion for sentence classification in semi-supervised learning. Our work also employs LSTM and prior category information

for sentence generation but our goal is to use the generated category sentence to improve the generalization of supervised

learning. 

2.2. Generative adversarial networks 

Recently, GAN [11] has become very popular in the context of computing vision. Many models are based on GAN to gen-

erate images from a predefined distribution. In such models, the discriminator has the goal to distinguish between artificial
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Fig. 1. Sentence generation models in previous works. The different color arrow lines stand for the information streams in different text generation models, 

and the spiny round with number denotes the class number. Spiny round 1 together with the red arrow stands for the first class, spiny round 2 together 

with blue arrows denotes the second class, and spiny round 3 together with the green arrows is the third class. w k is the tokens in the sentence, z is the 

prior distribution in GANs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

images (created by the generator) and real ones. The zero-sum game between the generator and discriminator helps improve

their respective abilities step by step. Because GAN is a bit unstable when training the network, some methods were pro-

posed to avoid collapse during training, e.g., WGAN [1] , LossSensitiveGAN [32] , Improved GAN [34] . Some works proposed to

integrate extra information into GAN, e.g., Info-GAN [8] , Cat-GAN [39] , and other works [39] used GAN in semi-supervised

learning, in which GAN generates samples for training the classifier. 

There are some obstacles in applying GAN to NLP [11] , e.g., the discrete space of words that cannot be differentiated in

mathematics. To this end, works like Seq-GAN [48] and Dialogue-GAN [23] applied RL for text generation by using softmax

over continue values for character selection. Controllable text generation [17] applies the variable auto-encoder (VAE) to-

gether with controllable information to generate category sentences. Zhang et al. [49] and Semeniuta et al. [36] used GANs

for text data generation and achieved state-of-the-art results. 

2.3. Reinforcement learning 

It is natural to consider sentence generation as the decision-making process of an agent that takes actions (next character

selection) based on a goal-oriented policy aimed at achieving best long-term rewards. There are several models of RL [41] ,

some of which were applied to sentence generation, e.g., actor-critic algorithm [2] and deep q-network [13] . In SeqGAN [48] ,

in particular, the Monte Carlo method is used to search for next tokens. This is also applied to dialogue generation [23] and

neural network decoder with specific properties [22] . 

Recently, researchers have been looking for relations between RL and GAN [15,30] . In particular, Ho et al. [15] found a

connection between GAN and inverse RL [29] , believing that a transformation can be made between the generative adver-

sarial imitation learning and reverse RL using the entropy-regularized term. 

2.4. Sentence generation 

Sentence generation consists in producing natural language from a computational representation of information. There

are some seminal works on generating good sentences using GANs ( Fig. 1 ). Most of them consider sentence generation as

a process of character prediction and use RNN for feature extraction from time series data [40,4 8,4 9] . There are also some

works treating sentence generation as the encoder-decoder problem, which aim to minimize the loss between the source

data and the target data. Recently, VAE achieved state-of-art results in sentence generation [17,36] . 

Because all of these models are used for generating the sentence directly, we can put them into the same class which is

represented by the spiny round with number one ( Fig. 1 ). The information stream in those models is represented by the red

arrow line nearby. Besides the generator (RNN, VAE, etc.), which produces synthetic sentences from the known distribution

z , a discriminator is introduced to evaluate the generated data (and, hence, help the generator perform better). A zero-

sum game is played by these two roles, which improves the quality of the generation step by step under the framework

of GAN [17,4 8,4 9] . Thus, models with generator and discriminator can be set as the second class in which the information

stream is represented by the blue arrow lines nearby in Fig. 1 . Despite the astonishing success of GANs in image generation,

generating sentences and documents using GANs is seldom studied and remains a challenging problem. The main difficulty

of generating texts using GANs lies in the discrete nature of texts, which limits the differential propagation in GANs. Unlike

image pixels (which are represented as the real number within a certain range), in fact, words or tokens of documents are
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discrete and are usually represented as one-hot coding. This can be solved temporarily using the softmax function during

token selection. 

Sentence generation can also be treated as a decision-making process, which is sorted as the third class, where an agent

selects characters from a dataset based on a policy that leads to best long-term rewards [22,48] . This model information

stream is represented by the green arrow lines in Fig. 1 . 

2.5. Sentiment analysis 

In recent years, sentiment analysis has become increasingly popular for processing social media data on online communi-

ties, blogs, wikis, microblogging platforms, and other online collaborative media. Sentiment analysis is a branch of affective

computing research [31] that aims to classify text – but sometimes also audio and video – into either positive or nega-

tive – but sometimes also neutral [6] . Most of the literature is on English language but recently an increasing number of

publications is tackling the multilinguality issue [25] . 

While most works approach it as a simple categorization problem, sentiment analysis is actually a suitcase research

problem [4] that requires tackling many NLP tasks, including word polarity disambiguation [46] , concept extraction [5] ,

subjectivity detection [7] , personality recognition [27] , and aspect extraction [26] . 

Sentiment analysis has raised growing interest both within the scientific community, leading to many exciting open

challenges, as well as in the business world, due to the remarkable benefits to be had from marketing and financial fore-

casting [47] . 

3. Preliminaries 

The common way to achieve data augmentation is to generate labeled sentences which can capture the true data dis-

tribution. In order to capture the feature of the existing data distribution, we divide the generation process in two steps:

adding category information into the model and forcing the model to generate category sentences accordingly. In this sec-

tion, we outline the basic sentence generation models. 

It is difficult to generate natural sentences when the dictionary volume is large; because of the large searching space,

selecting the next token is time-consuming and precision-compromising. To limit the action space (dictionary volume), the

model is built at the character level. RNN, described in next section, is used as the basic sentence generator. Then, we

describe how we employed GAN and RL. 

3.1. Recurrent neural networks 

The most common way for sentence generation is using RNN, which has achieved impressive results [40] . All of these

methods are teacher-forcing models [45] and they predict the next token in a stream of text via supervised learning. There

are different compositions about the input and output numbers in RNN which enable it to be designed flexibly according

to different applications. In this paper, we apply RNN as the character predictor with one output and sequence of input and

make the best prediction of p(x t+1 | y t ) , where x t+1 is the predicted character and y t is the current state. 

3.2. Generative adversarial networks 

To the best of our knowledge, there are very few works on text analysis using GANs. In this paper, we take advantage of

GAN by applying RNN as the generator and the generated sentence is scored by the discriminator. A recent work [17] uses

VAE to solve the problem of the high variance in model training, and add the controllable information in the VAE. Unlike

that work, we encode the text stream during the last layer of the RNN and we generate the sentence from the original data

directly. After generation, the real sentences and the generated sentences are fed into the discriminator separately. Similar

to vanilla GAN models, it is a zero-game theory between the generator and the discriminator. 

3.3. Reinforcement learning 

Inspired by the model of SeqGAN [48] , sentence generation can also be regarded as a game-playing process, in which

the agent chooses next character based on the current state to achieve long-term rewards while the discriminator aims

to achieve immediate rewards. The main challenge lies in the policy gradient updating which has to be performed after

the sentence is generated, because we can only get the reward from the discriminator who gives the score over the whole

sentence. SeqGAN [48] addresses this by using Monte Carlo searching with rollout technique to get the reward from the

generated tokens. The drawback of this method is that it is time-consuming. Because the action space is reduced, in this

work the sentence generation time is shortened at the same time. 
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Fig. 2. Structure of CS-GAN: c is the structured category information, z is the input distribution, d g is the output sentence from the generator, s r and d r are 

the real label and sentence respectively, the dash arrows stand for the constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. CS-GAN model 

In this section, the proposed model (CS-GAN) is introduced. Recently, models like CAT-GAN [39] , Info-GAN [8] have been

trying to integrate category information into the generated data. Some models join the label as the input [17,39] , some

others regard the label as the target that needs to be predicted [8] . To make the sentence generation controllable, the label

information is used as the input. Inspired by the work of Hu and Yang et al. [17] , the controllable information c and the

sentence distribution z are concatenated together to be the prior information. In our framework, there are two parts which

are generator and descriptors respectively playing the min-max game. As we have described before, RNNs and RL are applied

in the generator. As to the descriptor which contains classifier and discriminator, and these two parts are for the labeled

synthetic sentences generation. 

4.1. Generator 

To avoid gradient vanish, in this paper we use LSTM as a generator. We use a classifier to ensure that the generated

sentence contains the label information. 

As we have described earlier, the category information is added at each generating step. The prior category vector con-

catenates word embedding at each time-step, which is widely applied in [37] . Together with the latent variable z , the gen-

erator that using the LSTM can be depicted by the following equations: 

f t = σ (W f [ x t ; z; c] + U f h t−1 + b f ) (1)

i t = σ (W i [ x t ; z; c] + U i h t−1 + b i ) (2)

o t = σ (W o [ x t ; z; c] + U o h t−1 + b o ) (3)

c t = f t � c t−1 + i t � σ (W c [ x t ; z; c] + U c h t−1 + b c ) (4)

h t = o t � relu (c t ) (5)

The above equations are the same as the ones of vanilla LSTM models, except for the concatenation term of current word

embedding x t , latent variable z , and the controllable information c . 

Based on the generated tokens, the agent (the generator) takes action a (the token set) and then the descriptors (dis-

criminator/classifier) return rewards about the current status. The structure of CS-GAN is shown in Fig. 2 . 

In this model description, we will present the generator and the descriptors (discriminator/classifier) respectively, where

the generator is to generate the category synthetic sentences, and the discriminator and the classifier are to evaluate them

in sentence validity and category accuracy respectively. 

The generator selects next token d t g based on the current states d <t 
g . Same with the case in SeqGAN [48] , there is also

no the immediate reward after the action. To address that problem, the rollout technique is deployed, and the generator

parameter is G γ which could be same with the G θg 
during the rollout process. Then the rollout sentences are fed into the

descriptors to get the rewards. 
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Generally, the generator tries to gain the maximum expect reward as follows: 

J(θg ) = E [ R T | w 0 , c, θg ] = 

∑ 

ˆ d g ∈ W 

G θg 
( ̂  d g | w 0 , c) Q 

G θg 

<D θd 
,D θc 

> 
(w 0 , ˆ d g ) , (6)

where R T is the reward of the rollout sentence, w 0 is the start state, c is the controllable information, θ g , θd , θ c are the

parameters of the generator, discriminator and the classifier respectively, ˆ d g is the generated token, D θg 
is the probability of

a sentence is real, D θd 
is the probability of the sentence in the right category, and G θg 

is the generated results based on the

latent variable ( w 0 , c ) through RNN-LSTM which can be depicted as follows: 

G θg 
( ̂  d g | w 0 , c) = p G ( ̂  d g | w 0 , z, c) = 

∏ 

t 

p( ̂  d t g | d <t 
g , z, c) , (7)

where current state w 0 = d <t 
g is the generated tokens before t , Q 

G θg 

<D θd 
,D θc 

> 
(w 0 , 

ˆ d g ) is the action-value function during the

selection process. Unlike SeqGAN, CS-GAN contains two roles in the status judgments, which help the generation to be

more adaptive. Meanwhile, the model is applied at character level, which restrains the size of the action space to a limited

number. To ensure the existence of the gradient in the sequence deciding process, softmax function is used when mapping

the real values to the tokens, so we have 

ˆ d t ∼ sof tmax (o t /τ ) , (8) 

where o t is the logistic vector from G θg 
( ̂  d t g , | w 0 , c) Q 

G θg 

<D θd 
,D θc 

> 
(w 0 , 

ˆ d g ) , and τ is the temperature which is normally 1. As

mentioned earlier, the reward comes from the discriminator and classifier simultaneously. To balance these two descriptors

when estimating the action-value function, one way is to resemble F-measure: 

Q 

G θg 

<D θd 
,D θc 

> 
(w 0 , ˆ d g ) = 

2 D θd 
D θc 

D θd 
+ D θc 

(9) 

where the last layer of the discriminator and the classifier is the softmax function, which normalizes these two output

values equally. 

According to Eq. (6) , the update in the generator parameters with respect to θ g can be derived as: 

θg ← θg + αt � θg 
J(θg ) , (10) 

where αt denotes the learning rate at step t . 

4.2. Descriptors 

For discriminator and classifier, CNNs are utilized. In particular, the structure of both classifier and discriminator are the

same as in [18] . The classifier not only distinguishes sentence categories, but also leads the category sentence generation.

Thus, we have the following equations for the classifier optimization: 

L C = Loss (< C(d r ; θc ) , s r > ) + Loss (< C(G (z; θg ) ; θc ) , ϕ(c) > ) (11) 

where C ( ·) is the logistic loss of the classifier, ϕ is a linear function of the controllable label generation, θ c and θ g are the

parameters of the classifier and the RNN model. The first term in the right hand side is the loss from the true sentence, and

the second term is the loss from the generated sentence. 

As to the discriminator, following the characteristic of GANs, the discriminator can be described as follows: 

L D = H E d g ∼(c,z) 
+ H E d r ∼data 

H E d g ∼(c,z) 
= E d g ∼(c,z) [ −log(1 − D (G (ϕ(c) , z, θg )) , θd )] 

H E d r ∼data 
= E d r ∼data [ −log(D (s r , d r , θd ))] 

(12) 

where d g and d r are the generated tokens and real tokens respectively, c is the controllable information, s r is the real data

label, θ g and θd are the parameters of the generator and the discriminator, ϕ is the linear function, z is the distribution of

the generated data. 

As the descriptors are strong, they can distinguish the generated data easily, which leads to poor behavior of the gener-

ator. To balance the two descriptors and the generator, we have to pre-train a sound generator at first using an RNN-based

model. During the training, the uniform distribution is adopted to generate the first character, and then the sentence is gen-

erated token by token. This model is depicted in Algorithm 1 . To avoid high discrimination results based on poor generation,

the discriminator will stop updating when the discriminator accuracy Dis acc is higher than 0.9. 
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Algorithm 1 The algorithm of CS-GAN. 

Require: generator G θg 
; roll-out G γ ;discriminator D θd 

; Classifier D θc 
; Dataset W = d 1: t 

1: Initialize the parameters of G θg 
, D θd 

and D θc 

2: Use the positive samples W to pre-train the generator 

3: γ ← θg 

4: Generate the negative samples using G γ for training D θd 
and D θc 

5: Pre-train discriminator and classifier 

6: repeat 

7: for g-steps do 

8: Generate a sequence d 1: t ∼ G θg 

9: for t in 1:T do 

10: Compute Q 

G θg 

<D θg ,D θd 

> 
using Eq. (9) with rollout samples 

11: end for 

12: Update parameters of generator in Eq. (10). 

13: end for 

14: for d-steps do 

15: if Dis acc < 0 . 9 then 

16: Update the parameters of discriminator with the generated sentences and real sentences using Equation 12. 

17: end if 

18: for classifier-epochs do 

19: Train the classifier with generated labeled sentences and the real labeled sentences using Equation 11. 

20: end for 

21: end for 

22: γ ← θg 

23: until model convergence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Experiments 

It is hard to make a good evaluation for text generation because there is no objective way to assess whether an artificial

sentence is more plausible or realistic than another. To this end, some works like SeqGAN [48] use BLEU score, which is de-

signed to evaluate machine translation quality. Zhang et al. [49] use Jensen–Shannon divergence between two distributions,

while works in [10,19,48] apply the negative log-likelihood (NLL) to measure the prediction. Because one task of CS-GAN

is to generate text, NLL is used as the one measurement in this work. Next, to validate the proposed model for category

sentence generation, sentiment analysis on a different dataset is performed, where the polarity classification accuracy is the

main measurement. 

5.1. Dataset 

We extract the sub-datasets from Amazon review dataset [28] , Yelp review dataset, 1 Stanford sentiment tree bank dataset

(SST), 2 NEWS dataset that crawled from NYTimes, Reuters and USAToday [43] , and Emotion dataset 3 which is provided by

CrowdFlower. 4 To make comparisons and the evaluate the model over small datasets, a small sub-dataset is selected from

those datasets, respectively (except for the sub-datasets from SST). ( Table 1 ) 

In the Amazon review dataset, there are two categories and the maximum length is no more than 120 characters, the

small sub-dataset which is named Amazon-50 0 0 contains 50 0 0 training sentences, 20 0 0 development sentences, and 20 0 0

test sentences, and the large sub-dataset Amazon-30 0 0 0 has 30,0 0 0 training sentences, 10,0 0 0 development sentences, and

10,0 0 0 test sentences. As to the sub-dataset from the NEWS and Emotions, the maximum sentence length is 154 and 150

respectively, and NEWS-150 0 0 together with Emotions-150 0 0 have the same size for the training set, development set and

the test set. The suffixes of “Amazon”, “NEWS” and “Emotions” represent the size of the training set. 

For the validation of the sentence length in sentiment analysis, we use the sub-datasets from Yelp and SST. Unlike the

dataset mentioned before, we extract four sub-datasets by the sentence length from SST and Yelp respectively, which are

Yelp-10 0 0, Yelp-80 0, Yelp-50 0, Yelp-20 0 and SST-120, SST-100, SST-80, SST-60 respectively (suffixes denoting the maximum

length of a sentence at character level). The details of those sub-datasets are shown in Table 3 . 

All of these experiments are running on the GTX-TITAN graphics card which is equipped with a 12GB GPU memory. 
1 http://yelp.com/dataset . 
2 http://nlp.stanford.edu/sentiment/treebank.html . 
3 http://data.world/crowdflower/sentiment- analysis- in- text . 
4 http://crowdflower.com . 

http://yelp.com/dataset
http://nlp.stanford.edu/sentiment/treebank.html
http://data.world/crowdflower/sentiment-analysis-in-text
http://crowdflower.com
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Table 1 

The details of the sub-datasets. 

Dataset name Classes Train Dev Test Max Len 

Amazon-50 0 0 2 50 0 0 20 0 0 20 0 0 120 

Amazon-30 0 0 0 2 30,0 0 0 10,0 0 0 10,0 0 0 120 

NEWS-150 0 0 7 15,0 0 0 50 0 0 50 0 0 154 

Emotion-150 0 0 13 15,0 0 0 50 0 0 50 0 0 150 

Yelp-10 0 0 5 15,0 0 0 50 0 0 50 0 0 10 0 0 

Yelp-800 5 15,0 0 0 50 0 0 50 0 0 800 

Yelp-500 5 15,0 0 0 50 0 0 50 0 0 500 

Yelp-200 5 15,0 0 0 50 0 0 50 0 0 200 

SST-120 2 4 4 40 553 1176 120 

SST-100 2 3475 421 906 100 

SST-80 2 2452 291 634 80 

SST-60 2 1556 167 397 60 

 

 

 

 

 

 

 

 

 

5.2. Compared methods 

To validate the different parts contributing to category sentence generation, we unstack the components of CS-GAN by

removing one item at the time. In the descriptor, the CNN structure is taken from [18] , which is a one-layer convolution on

top of the character vectors, and max-pooling is applied to get a dense vector for the final fully-connected layer. 

5.2.1. CS-GAN without RL 

To test the contribution of RL, we remove it from CS-GAN to check how results change in absence of RL. Without RL, the

generator deciding the next token mainly depends on the current status. All of the roles in CS-GAN are reminded, except

for the process of Monte Carlo search and the updating policy, so the rule of updating the generator parameters changes as

follows: 

J(θg ) = 

∑ 

ˆ d g ∈ W 

G θg 
( ̂  d g | w 0 , c) (13) 

As in the original CS-GAN, the discriminator measures the generated sentence by grading the score to the whole sentence,

while the classifier and the discriminator are all the descriptive roles whose functions are to map signals to features. 

Similarly, the classifier and the discriminator are trained according to Eqs. (11) and (12) , respectively. This model is shown

in Fig. 3 (a) and the algorithm is depicted in Algorithm 2 . 

Algorithm 2 The algorithm of CS-GAN without RL. 

Require: generator G θg 
;discriminator D θd 

; Classifier D θc 
; Dataset W = d 1: t 

1: Initialize the parameters of G θg 
, D θd 

and D θc 

2: Use real sentences W to pre-train the generator 

3: Pre-train the discriminator and classifier with real labeled sentences 

4: repeat 

5: for g-steps do 

6: Generate a sequence d 1: t ∼ G θg 

7: Update parameters of generator in Eq. (13). 

8: end for 

9: for d-steps do 

10: if Dis acc < 0 . 9 then 

11: Update the parameters of discriminator with the generated sentences and real sentences using Eq. (12). 

12: end if 

13: for classifier-epochs do 

14: Train the classifier with generated labeled sentences and the real labeled sentences using Eq. (11). 

15: end for 

16: end for 

17: until model convergence 

5.2.2. CS-GAN without RL & GAN 

Next, we remove GAN from CS-GAN without RL. This model is depicted in Fig. 3 (b), which can be treated as the RNN

model. The left roles are the generator and the classifier, and the discriminator is removed along with GAN. The algorithm

is depicted in Algorithm 3 . 



Y. Li et al. / Information Sciences 450 (2018) 301–315 309 

Fig. 3. The structures of the compared models. 

Algorithm 3 The algorithm of CS-GAN without RL&GAN. 

Require: generator G θg 
; Classifier D θc 

; Dataset W = d 1: t 

1: Initialize the parameters of G θg 
, and D θc 

2: Use the real sentences W to pre-train the generator 

3: Pre-train the classifier with the real labeled sentences 

4: repeat 

5: for g-steps do 

6: Generate a sequence d 1: t ∼ G θg 

7: Update parameters of generator in Eq. (13). 

8: end for 

9: for classifier-epochs do 

10: Train the classifier with generated labeled sentences and the real labeled sentences using Eq. (11). 

11: end for 

12: until model convergence 
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Fig. 4. The results of NLL from model CS-GAN, CS-GAN without RL and CS-GAN without RL & GAN in text data generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Experiment results 

The performance of CS-GAN in sentence generation is described in Section 5.3.1 , CS-GAN’s sentence feature capturing is

illustrated in Section 5.3.2 , and category sentence in supervised learning generalization is depicted Section 5.3.3 . 

5.3.1. Text generation 

To validate the proposed model in text generation, NLL is used as the measurement over the data of Amazon-50 0 0.

Results are shown in Fig. 4 . 

From Fig. 4 , we can see that CS-GAN has the best NLL convergence, CS-GAN without RL is in the second place, and

CS-GAN without RL and GAN performs the worst. In other words, both GAN and RL contribute to improving CS-GAN’s

performance in sentence generation. 

5.3.2. Feature representation 

In order to examine how well the features of the generated sentences have been captured, feature consistency among the

synthetic and real sentences is tested [49] . We extract the features from the top layer of the classifier, which is represented

as a 1024-dimensional vector f . Then, we use empirical expectation to represent the outer consistency between two distri-

butions, and covariance of the features over the real sentences and synthetic sentences to represent the inner consistency.

These two set values are scattered in Fig. 5 . The covariance is the 1024 features against the first feature (i.e., Cov ( f i , f 1 )) in

each dataset. 

As shown in Fig. 5 , all models produce consistency features with the real sentences, which means that it is easy to

achieve the inner consistency in one distribution. From the expectation, however, we can see that the features from CS-GAN

fit the real sentences best. Features from the other two models have some inconformity with those in the real sentences,

especially in the model without RL and GAN. From this perspective, we can see that it is hard to bridge the gap between

the two distributions, but CS-GAN can achieve both consistencies well. 

5.3.3. Text augmentation for classification 

A good generation can provide a solid training set which guarantees text augmentation in a classification task, and this

releases the pressure from the lack of labeled data. The selected examples of the generated category sentences by CS-GAN

are shown in Table 2 . 

From Table 2 , we can see that CS-GAN captures the category information. Though the generated sentences are short,

they are related to their label information. To qualitatively analyze the performance of the generalization with different

generation numbers in supervised learning, the number of the generated sentence is set as follows N generated = βN labeled ,

where β is generation ratio which is set to 0.025, 0.5, 1.0 respectively. Here N labeled denotes the number of labeled training

sentences, and N generated is the number of the generated sentences. The evaluation results are depicted in Fig. 6 . 

From the figure, we can see that when β is small (i.e., when there are few generated labeled sentences in the training

process), the classifier will overfit easily. As beta increases (that is, as more synthetic data are generated to help training),

the generalization ability of the model also increases, which suggests that the proposed framework can generate realistic

sentences that are able to help a classifier to learn better. 

To further test the effectiveness of the model in supervised learning, the datasets Amazon-50 0 0, Amazon-30 0 0 0, NEWS-

150 0 0, and Emotion-150 0 0 are used, and the generation ratio β is set to 1.0. The classification results show in Table 3 .
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Fig. 5. Left: the scatter plot of feature expectations from real sentences against the synthetic sentences generated by CS-GAN, CS-GAN without RL and CS- 

GAN without RL & GAN, respectively. Right: The scatter plot of feature covariances from the real sentences against the synthetic sentences that generated 

by CS-GAN, CS-GAN without RL and CS-GAN without RL & GAN, respectively. 

 

 

 

 

 

 

 

Except for the first row (which is the supervised learning by CNN), all rows are the result of CS-GAN and the compared

models that are related to CS-GAN. 

The table shows that in the smaller original labeled dataset with two categories, like Amazon-50 0 0, CS-GAN achieves

the best accuracy, then comes to CS-GAN without RL, the last one is CS-GAN without RL & GAN. It is just reversed in the

case of Amazon-30 0 0 0, and the difference in those models is slight. From this point, we can see that CS-GAN performs well

with a small labeled dataset with little category information. When there is a large labeled dataset with little category infor-

mation, the little category information will lead to a perfect discriminator, which decreases the generated sentence quality

and, hence, produces a worse data augmentation. That is why CS-GAN does not perform well on Amazon-30 0 0 0. In the
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Table 2 

The examples of the generated sentences. 

SST POSITIVE NEGATIVE 

This is really lead movie. As film and day waste. 

You take the one better. This movie is mess. 

Emotion LOVE EMPTY 

Love the warm Is telling a story? 

Oh thank you my dear Read the book boring 

RELIEF ANGER 

Read the book I hate the hat 

Thanks Jest the boy 

SURPRISE NEUTRAL 

Weather today is a gift to us Have a tea please. 

I hate that happend So the heat is here 

HAPPINESS SADNESS 

haha I hate it 

Enjoy the game No body is at eating 

FUN ENTHUSIAMSM 

Yeah Love the health 

Have the fun Love the eat 

NEWS SPORT BUSINESS 

Ball center with two teams There is a flat race on euro 

In a race, the man wade in river It is easy a pricing ran in tea 

ENTERTAINMENT US 

We see it ease a strong man U.S. tears a ratar in the u.s. 

Not a keen actor Japan for a real anneal stress 

WORLD HEALTH 

Hear the trade war end Done in a dead spar 

Europe end this under the stress Argue a 1 star new rush 

SCI-TEC 

Tale in fick nart ear at bet 

Nets play and in Brate 

Table 3 

The classification results on the different size dataset. 

Model name Amazon-50 0 0 Amazon-30 0 0 0 

CNN 84.83% 89.55% 

CS-GAN w/o RL&GAN 85.60% 89.67% 

CS-GAN w/o RL 86.18% 89.54% 

CS-GAN 86.43% 89.34% 

Model name Emotion-150 0 0 NEWS-150 0 0 

CNN 40.75% 72.08% 

CS-GAN w/o RL&GAN 39.32% 72.31% 

CS-GAN w/o RL 40.14% 72.09% 

CS-GAN 41.52% 74.33% 

Fig. 6. The results of the losses from CS-GAN using different numbers of generated data as training data, and β is the generation ratio. 
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Fig. 7. The accuracy of the sentiment analysis in the sub-datasets of SST and Yelp using the proposed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

multi-categories datasets, however, the model performs better than the compared models in the large sub-datasets, which

is reflected in the results of NEWS-150 0 0 and Emotions-150 0 0. In those cases, the large category information makes a less

perfect discriminator, which improves the quality of the generated sentences and, hence, leads to a better data augmenta-

tion. Thus, when category information is little, CS-GAN performs well with a small labeled dataset in supervised learning

(which remedies the lack of the data), but when the original dataset is large, the strength of CS-GAN is weakened. In any

case, the proposed model doubled the sentences number which helps the model achieve the best results when category

information is high. 

In the previous experiments, the maximum sentence length of the datasets is fixed. Therefore, to test the performance

of the proposed model in different maximum length sentences, the datasets extracted from SST and Yelp on the basis of

the sentence length are used. The results of the classification are shown in Fig. 7 . We can see that, in general, the shorter

the sentence, the better the results. When sentence length increases, average accuracy is lower but the full CS-GAN always

outperforms its downgraded versions in both datasets. This is mainly caused by the fact that the sentences generated by

CS-GAN are short, as it can be seen in Table 2 . This is a common sign in sequential generative models [21] : the optimization

for the likelihood objective function prefers giving the “safe” response when predicting the phrase. Hence, it is hard for

those variants to get a good sentence generation when faced with a long sentence, and that is why the classification results

decrease in all of the three variants with the increase of sentence length. 
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6. Conclusion 

In this paper, the proposed a new model for text generation, termed CS-GAN, which can capture sentence structure well

and include category information useful for supervised learning. CS-GAN is an ensemble of RNN, GAN, and RL. In the exper-

iments, we showed how each of these models contributes to the performance of the proposed model. The proposed model

performs well in supervised learning on the basis of the generated sentences, especially in the multi-categories datasets.

However, this advantage can be weakened by a large amount of data when there is little category information (two classes).

We also validated the proposed model on the task of sentiment analysis, where CS-GAN showed the best performance with

different sentence lengths, especially for a small labeled dataset with short sentence length. 

In the future, we plan to further explore sentence feature extraction and model a disentangled representation based on

different properties using the generative models. 
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