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Abstract

In this paper, we introduce a new matching method based on a novel locally affine-invariant

geometric constraint and linear programming techniques. To model and solve the matching problem in a

linear programming formulation, all geometric constraints should be able to be exactly or approximately

reformulated into a linear form. This is a major difficulty for this kind of matching algorithms. We

propose a novel locally affine-invariant constraint which can be exactly linearized and requires a lot

fewer auxiliary variables than other linear programming based methods do. The key idea behind it is

that each point in the template point set can be exactly represented by an affine combination of its

neighboring points, whose weights can be solved easily by least squares. Errors of reconstructing each

matched point using such weights are used to penalize the disagreement of geometric relationships

between the template points and the matched points. The resulting overall objective function can be

solved efficiently by linear programming techniques. Our experimental results on both rigid and non-

rigid object matching show the effectiveness of the proposed algorithm.

Index Terms

Feature matching, object matching, locally affine invariant, linear programming

I. INTRODUCTION

The problem of object matching in 2D images can be defined as matching a group of template

feature points representing an object to an instance of that object in a given scene image (Fig. 1).

Each feature point has a location (x, y) in the 2D image domain and a feature vector describing

the object’s local appearance around that location. Matched scene feature points should maintain

consistency with the template points in both local appearance and relative spatial (neighborhood)

relationships. The lines in Fig. 1 represent neighborhood relationships between template feature

points, i.e., if two feature points are connected by a line, they are neighbors. Object matching

has extensive uses in object recognition [6], detection and tracking [21], shape matching [21],

and image retrieval [36].

Assuming a global transformation between two groups of feature points, Random Sample

Consensus (RANSAC) [17] and its large number of variants [32] have been widely used to solve

matching problems. Although the RANSAC has the ability to tolerate a tremendous fraction of

outliers, such an ability is obtained by assuming only a global transformation between the two
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Fig. 1

(A) A GROUP OF template FEATURE POINTS (YELLOW CIRCLES) REPRESENTING A SPECTRUM MAGAZINE. GREEN LINES

SPECIFY NEIGHBORHOOD RELATIONSHIPS BETWEEN POINTS. (B) THOUSANDS OF FEATURE POINTS IN AN INPUT scene

IMAGE.

groups of feature points. Therefore, the RANSAC methods have difficulties handling objects

undergoing complex transformations.

The object matching problem has also been extensively studied as a graph matching problem

[15], [18]. Leordeanu and Hebert [23] proposed a spectral method working on a matrix where the

diagonal elements represent one-to-one assignment costs, and other elements represent pairwise

agreements between potential correspondences. The correspondences are then obtained by finding

the principal eigenvector of this matrix. This method uses distances between pairs of points as the

geometric constraints, which are only rotationally invariant. Cour et al. [14] proposed a spectral

relaxation method for the graph matching problem that incorporates one-to-one or one-to-many

mapping constraints, and presented proper bistochastic normalization of the graph matching

compatibility matrix to improve the overall matching performance. Other spectral methods for

graph matching includes [8], [11], [37], [41]. Torresani et al. [39] proposed a dual decomposition

method to decompose the original graph matching problem into “easier” subproblems. Lower

bounds provided by solving the subproblems are then maximized to obtain a global solution.

Torki and Elgammal [38] formulated the consistent matching problem as an embedding problem

where the goal is to embed all the feature matching costs and spatial arrangments in a Euclidean

space. Correspondences are then recovered by a bipartite matching on the embedded points. Liu
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and Yan [26] proposed an algorithm to discover all common visual patterns within two sets

of feature points. It optimizes the same objective function as that of [23] but with different

constraints. It showed its effectiveness in recovering visual common patterns no matter the

matchings between them are one-to-one or many-to-many. Other graph matching methods can

be categorized as relaxation labeling and probabilistic approaches [9], [12], [22], [25], [33], [42],

semidefinite relaxation [35], replicator equations [31], tree search [29], and RKHS methods

[40]. To automatically set the weights of different terms in the similarity matrix, supervised

[10] and unsupervised [24] learning methods optimizing the weights were proposed. However,

one major limitation of the graph matching methods is that order-2 edges can only provide

at most rotational invariant. Zass and Shashua [43] extended ordinary graphs to hypergraphs,

whose high-order edges can encode more complex geometric invariants. The method’s output

is a probabilistic (“soft”) result rather than traditional “hard” node-to-node results. In this way,

they were able to model the problem as a convex optimization problem and obtained a global

minimum. Duchenne et al. [16] used high-order (mostly 3 or 4) constraints instead of unary or

pairwise ones between template points, which result in a tensor representing affinity between

feature tuples. The resulting energy function can then be optimized using the power iteration

method.

The matching problem has also been modeled as mathematical programming problems. Chui

and Rangarajan [13] interpreted it as a mixed variable (binary and continuous) optimization

problem. The correspondence problem is viewed as a linear assignment solved by softassign and

deterministic annealing. Berg et al. [6] modeled the matching problem as a quadratic integer

programming problem. It uses pairwise relationships between feature points and penalizes both

rotation and scaling differences. Recently, linear programming has been used in object matching.

Jiang et al. [20] proposed a linear solution to the feature matching problem. The main difficulty of

this framework is to find geometric constraints which can be exactly or approximately linearized.

In [20], the vectors defined by pairwise points are used as the geometric constraints for its

objective function. They can only tolerate small local deformations and is not invariant to global

transformations, such as similarity or affine transformations. To solve this problem, Jiang and

Yu [21] explicitly modeled scaling and rotation, and approximated the resulting formulation

by a convex program. The resulting solution is invariant to global rotation and scaling. Its

extensive experimental results demonstrated the effectiveness and robustness of the pairwise
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geometric constraint in various object matching scenarios. In [19], a linear augmented tree

model was proposed, which allows arbitrary metrics for the pairwise costs on trees and it also

allows high-order constraints that couple all the nodes. After linearization, its objective function

can be efficiently optimized by dynamic programming. Zheng et al. [44] jointly optimized

the correspondences and transformations between feature points. The final objective function

is alternatively optimized in two steps. In one step, correspondences and transformations is

optimized by a linear programming model, but the resulting correspondences are continuous; in

another step, the continuous correspondences are mapped to the discrete solution space.

Along this line, we propose a new locally affine-invariant geometric constraint for the linear

programming based matching framework. For each template point, we represent it as an affine

combination of its neighboring points. Such affine combinations can be easily and efficiently

solved by least squares. As demonstrated in the next section, these representations are invariant to

affine transformations. Moreover, since the coefficients of each affine combination are calculated

by using only its corresponding point’s neighboring points, this constraint is a local one.

Our new geometric constraint has three major advantages: (i) our proposed geometric constraint

is locally affine-invariant. Therefore, it can handle more complex and natural transformations of

an object. (ii) Unlike the approximate linearization of the similarity-invariant constraint in [21],

the exact linearization of our new constraint requires much fewer auxiliary variables. Therefore,

it is asymptotically faster and is also easier to implement. (iii) For each template point, all of its

neighboring points are used to calculate the affine combination coefficients. It is a higher order

geometric constraint, which is more distinctive and can better exclude ambiguous matchings

[16].

II. METHODOLOGY

A. Problem Formulation

Let nt and ns be the numbers of template and scene feature points respectively, T ∈ Rnt×2

and S ∈ Rns×2 be the matrices recording template points’ and scene points’ 2D coordinates

respectively, pi = [xi, yi]
T ∈ R2 and qj ∈ R2 be the ith template and the jth scene points’

coordinates, and Npi
be the set of ordered points in the neighborhood of pi. The order of points in

each neighborhood is randomly set. The matching function m(·) matches every template feature

point pi to a feature point m(pi) in the scene set. The goal is to find the matching function m(·)
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that minimizes the overall objective function consisting of both feature and geometric matching

costs:
nt∑
i=1

{c(pi,m(pi)) + λ · g(pi,Npi
;m(pi),Nm(pi))

}
, (1)

where c(a,b) is the feature matching cost between the feature points a and b, g(·) is the

geometric cost function that measures the geometric dissimilarity between two sets of ordered

points {pi,Npi
} and {m(pi),Nm(pi)}, and λ controls the relative weight between the feature

and geometric cost terms.

The choice of features is not restricted to similarity or affine invariant ones, e.g., SIFT [27].

For general non-transformation-invariant features, the matching cost between two feature points

a and b, c(a,b), can be defined by the minimal distance across all possible similarity or affine

transformations T with parameters Θ,

c(a,b) = min
Θ

distance(feature(a), feature(T (b; Θ))). (2)

The feature matching costs between every template point and every scene point are pre-calculated

before the matching is performed. They are stored in a feature matching cost matrix C ∈ Rnt×ns ,

where Cij stores the cost of matching the ith template feature point to the jth scene feature point.

For the geometric constraints, unlike the formulation proposed in [20], [21], where only

pairwise geometric relationships are considered, our new formulation takes into consideration of

higher order (at least order 3) geometric constraints, which are more distinctive and therefore can

better exclude ambiguous matchings [16]. The neighborhood Npi
of pi is pre-defined before the

matching is performed. It remains an open issue how to properly define neighboring relationships

Npi
for each template point pi to better representing different objects. In this paper, we tested

two approaches: Delaunay Triangulation and k-nearest-neighbor (kNN). Detailed discussion of

the two approaches is in Section II-H. In the next two subsections, we first present a way to

model the matching function m(·) in (1) and then introduce a novel locally affine-invariant

geometric constraint for the geometric cost function g(·).

B. The Modeling of the Feature Matching Function

The matching function m(·) is usually modeled as a set of binary variables [14], [21], [23].

Similarly, we define a binary variable matrix X ∈ {0, 1}nt×ns to represent the matching function
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m(·). Xij = 1 or 0 denotes the matching between the ith template feature point and the jth

scene feature point is either “Yes” or “No”. Each row of X contains exactly one 1, meaning

every template point must be matched to exactly one point in the scene image.

We can then represent the first term in (1), the feature matching cost term, as

tr(CTX) =
nt∑
i

ns∑
j

CijXij. (3)

Because there is only one 1 in each row of X , only one feature cost for each template point (in

each row) of C would be added into the feature cost term.

For the ith row of X , the column index of the 1 in this row, specifies which scene point pi

would choose as its corresponding scene point. Let Xi denote the ith row of X , XiS calculates

the matched scene point’s coordinates for pi. Combining all rows of X , XS calculates the

matched scene feature points’ coordinates in the same order as the template points.

C. A Locally Affine-Invariant Constraint

The major difficulty of modeling (1) is to define the geometric cost function g(·). We propose

a geometric constraint to implicitly model it. Our geometric constraint has two requirements on

each template point’s neighborhood: (i) every template point must have at least three neighbors,

and (ii) every template point’s neighboring points must not be collinear, i.e., they do not lie on

a single straight line. Our goal is to create a way to characterize the geometric properties of the

neighborhood of each template point. To do so, we assume each pi can be exactly represented

by an affine combination of its neighboring points, i.e.,

pi =
∑

pj∈Npi

Wijpj, (4)

where W is a nt×nt weight matrix recording the affine combination coefficients for all template

points, and Wi is the ith row of W recording the affine combination coefficients for pi. Intuitively,

Wi reveals the local geometric layout around pi. There are two constraints on the weight matrix

W : Wij = 0 if pj /∈ Npi
, and each row must sum to one (equivalently, each point is represented

by an affine combination of its neighbors). The first constraint reflects that this matrix only

describes the local geometric properties of each point. The second makes the representation

invariant to global translation.
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It is easy to prove that a point can always be exactly represented by the affine combination

of its neighbors, if the above mentioned two requirements are satisfied. Assuming pi has only

three neighbors p1, p2, and p3, the affine combination coefficients Wi for pi can be obtained

by first solving the following linear equations: p1 p2 p3

1 1 1

 W̃ T
i = QW̃ T

i =

 pi

1

 . (5)

Because p1, p2 and p3 are not collinear, the matrix Q has full rank. W̃ T
i = Q−1[pT

i 1]T is

the exact solution of the affine combination coefficients for pi. We can then fill Wi using W̃i:

Wij = W̃il if pj is the lth neighbor of pi, and Wij = 0 if pj /∈ Npi
. If pi has more than 3

neighbors, we can still obtain an exact affine combination by just using the first three neighbors

and setting all other neighbors’ weights to 0. In practice, we use least squares to minimize the

error of each point’s affine combination. Since least squares guarantees obtaining a solution with

minimal error under L2 norm, and we just showed at least one solution with zero error exists,

the solution by least squares is also an exact representation of that point. Although there might

be an infinite number of affine representations for a point, any one of them can be used in our

framework. We choose least squares because one of its desired properties is that it tends to

assign nonzero weights to all neighbors [7], which means that the local geometric properties of

each point are described by all of its neighbors.

We calculate the reconstruction weights W̃i for each point pi separately and transform them

into the matrix form W by the aforementioned scheme. The representation error for any template

point pi is always zero no matter what type of norm is used, i.e.,∥∥∥∥∥pi −
∑
j

Wijpj

∥∥∥∥∥
0,1,2,··· ,F

= 0, for i = 1, · · · , nt. (6)

For this particular method, we choose L1 norm for the representation error, since it can be

exactly linearized (Section II-F). Obviously, the error function (6) is affine invariant:

0 =

∥∥∥∥∥pi −
∑
j

Wijpj

∥∥∥∥∥
1

(7)

=

∥∥∥∥∥Api −
∑
j

WijApj

∥∥∥∥∥
1
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=

∥∥∥∥∥(pi + t)−
∑
j

Wij(pj + t)

∥∥∥∥∥
1

,

where A and t denote an arbitrary 2 × 2 affine transformation matrix and an arbitrary 2 ×

1 translation vector, respectively. Summing up all template points’ reconstructions (7) and

reformulating them into a matrix form result in

‖(I −W )T‖ = 0, (8)

where I ∈ Rnt×nt is the identity matrix, T ∈ Rnt×2 records template points’ 2D coordinates,

and || · || denotes the summation of all absolute values of elements in a matrix.

As we mentioned in Section II-B, XS represents the matched scene feature points in template

points’ order. Therefore, substituting XS for T in (8) leads to our geometric cost term, the

second term in (1). Without any feature information, we seek the X ∈ Rnt×ns matrix which

best preserves the geometric properties of the template point set specified by its weight matrix

W :

arg min
X

‖(I −W )XS‖ . (9)

However, there are degenerate cases. On one hand, matching all template points to one scene

point also leads to a zero geometric cost because
∑

j Wij = 1. Fortunately, in the object matching

tasks, features have discriminative power. Those degenerate cases usually result in very large

feature costs and thus are not likely to be the optima of the objection function (1). Even when

the features used are not distinctive enough, we can further add constraints into our optimization

model to explicitly exclude those degenerate cases (Section II-E). On the other hand, some parts

of an object may be folded. If the features are invariant to such local deformations, matching

several template points to one scene point also minimizes the error function (6) and should be

considered as a correct matching (Section III-G).

D. Relation to Locally Linear Embedding [34]

Our affine invariant is inspired by the Locally Linear Embedding (LLE) and has a similar

formulation, but our invariant is different from LLE in essence. Our invariant assumes each point

being represented by an “affine” combination of its neighboring points, while LLE assumes a

“convex” combination. Reconstruction errors by our proposed invariant are affine-invariant (7).

In contrast, LLE’s reconstruction error for each point is not transformation-invariant, thus its

“convex” combination cannot be used in this matching framework.
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E. The Overall Objective Function

Summing up the feature cost term (3) and the geometric cost term (8) leads to our overall

objective function:

minimize
X

tr(CTX) + λ ‖(I −W )XS‖ (10)

subject to X ∈ {0, 1}nt×ns ,

X1ns = 1nt ,

XT1nt ≤ wns (optional),

where wns ∈ Rns denotes a column vector of ns constant number ws.

There are three constraints:

• X ∈ {0, 1}nt×ns denotes the matching between a template and a scene feature point is

either “Yes” (1) or “No” (0).

• X1ns = 1nt denotes all template points should be matched into the scene point set. If one

template point’s corresponding scene point is occluded or not detected, minimization of the

objective function would prefer matching it to another scene point which well approximates

that template point’s local geometric properties.

• XT1nt ≤ wns allows matching at most w (w < nt) template points to one scene point and

thus avoids the degenerate cases we mentioned in Section II-C. However, in practice, this

constraint is usually not necessary since matching all template points to one scene point

usually leads to a very large feature matching cost. We used this constraint in Section III-A,

III-B (w = 1) and Fig. 13.(4) (w = 4).

F. Linearization and Relaxation

The problem (10) has a nonlinear objective function with integer constraints. It is NP-hard and

cannot be efficiently solved. However, because λ > 0, the second term of (10) can be exactly

linearized in the following way:

minimize
xi

∑N
i=1 |xi| ⇔ minimize

xi, ui

∑N
i=1 ui

subject to xi ≤ ui, xi ≥ −ui
for all i = 1, · · · , N ,
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where ui is the ith auxiliary variable representing the upper bound of |xi|.

We further relax the binary constraints, X ∈ {0, 1}nt×ns , to a continuous domain [0, 1]nt×ns

to convert the original problem (10) into a linear programming (LP) form:

minimize f(X) = tr(CTX) + λ1T
nt
U12 (11)

subject to X ≥ 0,

X1ns = 1nt ,

(I −W )XS ≤ U,

(I −W )XS ≥ −U,

XT1nt ≤ wns (optional), (12)

where U ∈ Rnt×2 is an auxiliary variable matrix representing upperbounds for each entry of

‖(I −W )XS‖.

G. Numerical Scheme

Without any simplification trick, the number of variables in our LP model (11) is proportional

to nt × ns. In contrast, the number of variables of the LP model in [21] is proportional to

nt × ns × the number of scaling discretizations. Moreover, in the first step of the LP method

in [21], it needs to solve 4 such LP problems because it models rotation as 4 different linear

constraints. Therefore, our algorithm is asymptotically faster than that in [21].

We utilize the successive trust region shrinkage method proposed in [20] to solve our LP

problem (11). For each template point pi, we set a trust region Di in the scene image, only

scene points inside its trust region are considered as the template point’s matching candidates.

For instance, for a template point pi, if q1, q2, q3 are inside and q4 is outside its trust region.

Then only Xi1, Xi2, and Xi3 need to be optimized in (11), and Xi4 is fixed to 0 during the

optimization process. We successively shrink each template point’s trust region and refine its

matching candidates to gradually obtain accurate matching results. In the first iteration, for each

template point pi, we set its trust region D
(1)
i as the entire scene image, and all scene feature

points are used in the optimization model (11) (Fig. 2.(a)). The continuous result in the domain

[0, 1]nt×ns obtained in the first iteration is denoted as X(1), and the resulting matched scene

points can be calculated as X(1)S. We denote the ith row of X(1)S as [X(1)S]i, which are the
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(a) (b) (c)

Fig. 2

ILLUSTRATION OF THE SUCCESSIVE TRUST REGION SHRINKAGE SCHEME IN SECTION II-G FROM A TEMPLATE POINT pi’S

VIEW. (A) IN THE FIRST ITERATION, ALL SCENE POINTS ARE CHOSEN AS MATCHING CANDIDATES FOR THE TEMPLATE

POINT pi . (B) IN THE SECOND ITERATION, ONLY SCENE POINTS INSIDE THE TRUST REGION D
(2)
i ARE CHOSEN AS

MATCHING CANDIDATES FOR pi . BINARY VARIABLES CORRESPONDING TO MATCHING TO OTHER SCENE POINTS ARE FIXED

TO 0. (C) IN THE THIRD ITERATION, ONLY SCENE POINTS INSIDE THE TRUST REGION D
(3)
i ARE CHOSEN AS MATCHING

CANDIDATES FOR pi . BINARY VARIABLES CORRESPONDING TO MATCHING TO OTHER SCENE POINTS ARE FIXED TO 0.

coordinates of the ith matched scene point. In the second iteration, for each template point pi,

we set a trust region D(2)
i with diameter r(2) centered at [X(1)S]i such that not all scene points

would be inside its trust region. Only scene points inside each trust region are then considered

as matching candidates for that template point; other scene points are ignored for this template

point, i.e., binary variables corresponding to matching to them are always set to zero (Fig. 2.(b)).

The resulting matched scene points’ coordinates obtained in the second iteration are calculated

as X(2)S. In the third iteration, a smaller r(3) is set so each template point has fewer matching

candidates in the trust region D
(3)
i (Fig. 2.(c)). Similar operations are then performed in latter

iterations. To map the final continuous results obtained in the nth iteration, X(n), to the discrete

solution space, we fix all but one rows of X(n), and try to set 1 to each column of the row that

are not fixed. The column with the minimum objective function value is then set to 1 for that

row. We perform this operation for all rows. In this way, we obtain a discrete X with exactly

one 1 in each row.

The above scheme works efficiently when both the numbers of template points and scene

points are small (less than 100). When the numbers of features points are large, i.e., the size of
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ACTUAL COMPUTATION TIME OF 1ST ITERATIONS OF OUR PROPOSED METHOD WITH DIFFERENT NUMBERS OF TEMPLATE

AND SCENE FEATURE POINTS.

X is very large. We use the lower convex hull trick in [20] to reduce the computation complexity.

For each template point, we view its matching scene candidates as a 3D point cloud with the

3rd dimension as their feature costs. A lower convex hull with respect to the 3rd dimension

is calculated and only scene candidates on the convex hull are further refined as the matching

scene candidates. In this way, the number of each template point’s matching candidates is further

reduced and is usually less than 100.

LP with tens of thousands of variables and thousands of constraints can be solved within

seconds on a standard PC using state-of-the-art solvers, such as CPLEX and Gurobi. In our

experiments, we use MATLAB with a non-commercial solver, lpsolve [1], which employs the

simplex methods. Typically, to match 100 template points and thousands of scene points, each

LP iteration takes less than 1.5 second on an Intel E6850 3.0GHz CPU, and the LP trust

region shrinkage runs for 4-8 iterations. Note that the running time can be further shortened

by implementing the method in C/C++.

We performed an empirical speed test using synthetic data to test our method’s computation

time with varying numbers of template and scene points. The template and scene points’ co-

ordinates and the feature cost matrix were randomly generated. We increased the number of

template points from 100 to 300 and the number of scene points from 1000 to 3000. Every
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(a) (b) (c)

Fig. 4

ILLUSTRATION OF NEIGHBORHOODS DEFINED BY DELAUNAY TRIANGULATION (DT) AND kNN. (A) A TEMPLATE POINT

SET ON THE SILHOUETTE OF A HORSE SHAPE [4]. (B) NEIGHBORHOODS DEFINED BY DELAUNAY TRIANGULATION. IF TWO

TEMPLATE POINTS ARE CONNECTED BY A LINE, THEY ARE NEIGHBORS. (C) NEIGHBORHOODS DEFINED BY kNN WITH

k = 5. IF AN ARROW IS POINTED FROM POINT A TO POINT B, B IS A’S NEIGHBOR.

combination of numbers of points was tested and the computation time of the 1st iteration with

most scene points was recorded (Fig. 3). The computation time increases sub-linearly as the

number of scene points increases and quadratically as the number of template points increases.

Therefore, the computation time depends mainly on the number of template points but much

less on the number of scene points.

H. Two Ways of Defining Neighborhoods

It remains an open issue how to define meaningful neighborhoods for template points in

different applications. In this paper, we tested two ways of defining neighborhoods: Delaunay

Triangulation (DT) and kNN with k = 5, 9, or 13. As we observed in our experiments (Section

III-A, III-B, III-C and III-D), the two ways result in similar matching performance. However, in

some cases, one of the approaches might generate smaller matching errors. Generally speaking,

DT is more suitable for matching an object transforming globally (e.g., matching cases in Section

III-B) while kNN better tolerates objects’ local deformations (e.g., matching cases in Section

III-A). Note that in some cases Delaunay Triangulation might associate a template point with

only two neighbors. In such cases, we randomly choose another point near it as its 3rd neighbor

May 9, 2012 DRAFT



15

1

2

3

4
5

6
7

8

10

11
13
15

18
19

22

2324 25

27
29

30

21

9

12
14

20

26 28

16
17

0

0

0

0

0

0

0
1

2

3
4

5
8

10

11
13
15

17
19

21
22 23

24 25

27 28 30

76

9

12
14

20
26

29

16
18

0

0

0

0

0

0

0

Fig. 5

AN EXAMPLE MATCHING CASE FROM THE house SEQUENCE WITH FRAME SEPARATION LEVEL = 90. (LEFT) THE 1ST FRAME

AND MANUALLY LABELED LANDMARKS IN IT, WHICH ARE USED AS TEMPLATE POINTS. (RIGHT) THE LABELED POINTS IN

THE 91ST FRAME ARE USED AS SCENE FEATURE POINTS. OUR METHOD’S MATCHING RESULTS ARE LABELED BY NUMBERS

IN THE FIGURE. A 0.0% MATCHING ERROR IS ACHIEVED IN THIS CASE.

to fulfill the three-neighbor requirement mentioned in Section II-C. We illustrate the differences

between the two ways using one example in Fig. 4. In Fig. 4.(a), points on the silhouette of a

horse shape [4] are used as template points. Neighborhoods defined by Delaunay Triangulation

are shown as lines in Fig. 4.(b). Points on the convex hull are defined as neighbors although they

might be far away from each other. For instance, points on the head and the tail are defined as

neighbors; therefore, the geometric cost term would penalize the difference between the head’s

and the tail’s transformations. In contrast, as shown in Fig. 4.(c), neighbors defined by kNN are

more locally connected. The geometric cost term would less penalize the difference between

transformation between the head and the tail.

III. EXPERIMENTS

In our experiments, we used Shape Context [5] with its default parameter setting as features

for the first three experiments and SIFT features [27] for the remaining ones. Feature matching

cost is calculated as the L2 distance between two feature vectors. For each matching case, we

normalized feature matching costs with respect to their maximum value to let them span the

range [0, 1], and set λ = 0.05, 1 or 10 depending on how flexible the object is. For the first

four experiments, we tested two ways of defining neighborhoods: Delaunay Triangulation (DT)

and kNN with k = 5, 9 and 13. For the rest of the experiments, we used DT. We measured
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Fig. 6

AN EXAMPLE MATCHING CASE FROM THE hotel SEQUENCE WITH FRAME SEPARATION LEVEL = 90. (LEFT) THE 2ND FRAME

AND MANUALLY LABELED LANDMARKS IN IT, WHICH ARE USED AS TEMPLATE POINTS. (RIGHT) THE LABELED POINTS IN

THE 92ND FRAME ARE USED AS THE SCENE FEATURE POINTS. OUR METHOD’S MATCHING RESULTS ARE LABELED BY

NUMBERS IN THE FIGURE. 2 OUT OF 30 TEMPLATE POINTS ARE WRONGLY MATCHED IN THIS CASE (SHOWN IN RED).

different methods’ matching errors as either the percentage or the number of wrong matchings.

We utilized the lower convex hull trick mentioned in Section II-G for all but the first three

experiments. (The first three experiments have a small number of template and scene points,

thus requiring no low convex hull speed-up.)

A. CMU House and Hotel Sequences [3], [2]

In our first experiment, we used the CMU House [3] and Hotel [2] sequences to test our

method’s performance and compare it with those of other methods. The two sequences consist

of 111 frames and 101 frames, respectively. We followed the experimental setup in [10]. Each

frame is manually labeled with the same 30 landmarks across entire sequences1. We evaluated

our method’s performance by creating image pairs using two frames in a same sequence but

are separated by a specific number of in-between frames. All such image pairs are tested as

the frame separation level increases from 10 to 90. w was set to 1 in this experiment because

we were looking for exact one-to-one matchings. We also set λ = 0.05 to allow more local

deformations. Matching errors were then calculated as the percentage of wrong matchings. We

1The manual labeling can be obtained from http://tiberiocaetano.com/data/
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TABLE I

MATCHING ERRORS BY DIFFERENT METHODS WITH VARYING FRAME SEPARATION LEVELS FOR THE CMU house, CMU

hotel, HORSE ROTATION, AND HORSE SHEAR SEQUENCES. RESULTS OF [14] AND [10] ARE OBTAINED FROM [10]. OUR

METHOD WITH kNN DEFINED NEIGHBORHOODS GENERATES 0.0% AND 1.04% AVERAGE MATCHING ERRORS ON THE house

AND THE hotel SEQUENCES, RESPECTIVELY. OUR METHOD WITH DELAUNAY TRIANGULATION DEFINED NEIGHBORHOODS

GENERATES 0.0% AVERAGE MATCHING ERRORS ON HORSE ROTATION AND HORSE SHEAR SEQUENCES.

Sequence Methods
Frame Separation (Frames)

10 20 30 40 50 60 70 80 90

CMU house

Our Method + kNN (k = 5) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Our Method + DT 0.16% 0.0% 0.22% 0.92% 1.31% 5.53% 13.4% 10.2% 12.1%

Learning + Linear [10] 0.0% 0.0% 0.0% 0.0% 3.17% 3.92% 7.18% 11.0% 13.3%

Learning + Quadratic [10] 0.0% 0.10% 0.44% 1.85% 1.01% 17.2% 7.06% 11.5% 13.3%

Balanced [14] 0.0% 0.0% 0.0% 0.87% 0.0% 1.57% 10.8% 15.7% 22.9%

CMU hotel

Our Method + kNN (k = 5) 0.15% 0.49% 1.03% 1.64% 1.63% 1.14% 2.15% 1.59% 1.82%

Our Method + DT 0.07% 0.16% 0.94% 1.97% 2.22% 1.46% 2.37% 2.22% 4.24%

Learning + Linear [10] 0.22% 0.24% 2.20% 1.67% 6.47% 12.6% 15.3% 18.6% 25.6%

Learning + Quadratic [10] 0.56% 1.36% 3.19% 5.0% 7.64% 12.3% 12.7% 16.7% 7.78%

Balanced [14] 0.0% 0.0% 0.0% 1.0% 1.37% 12.1% 25.7% 28.6% 34.4%

Horse Rotation

Our Method + kNN (k = 5) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 21.2%

Our Method + DT 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Learning + Linear [10] 0.0% 2.19% 15.5% 51.6% 83.0% 89.0% 91.2% 87.3% 87.0%

Learning + Quadratic [10] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.84% 0.08%

Balanced [14] 0.0% 0.0% 0.0% 0.0% 3.65% 25.5% 52.1% 68.2% 67.2%

Horse Shear

Our Method + kNN (k = 5) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Our Method + DT 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Learning + Linear [10] 0.10% 0.16% 0.62% 0.63% 1.21% 4.63% 4.72% 7.39% 9.68%

Learning + Quadratic [10] 0.52% 1.42% 2.73% 7.43% 15.5% 20.2% 23.8% 34.7% 37.1%

Balanced [14] 0.0% 0.0% 0.0% 0.0% 4.69% 5.72% 13.5% 26.6% 38.0%

tested our method with neighborhoods defined by Delaunay Triangulation and kNN. The results

show that the kNN with k = 5 generates the best matching performance. This is due to the

existence of large local deformations between template and scene points. We compared our

method with the balanced graph matching [14] and the learning-based graph matching method

[10] with linear and quadratic objective functions.

The first row of Table I shows the matching errors obtained by the tested methods on the

house sequence. Our method with kNN (k = 5) defined neighborhoods consistently generates

0.0% matching errors over all frame separation levels and outperforms all other methods we
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Fig. 7

EXAMPLE MATCHING CASES FROM THE HORSE “ROTATION” AND “SHEAR” SEQUENCES USING SHAPE CONTEXT [5]

FEATURES. (A) THE 1ST FRAME IN BOTH SEQUENCES. (B) THE 91ST FRAME IN THE “ROTATION” SEQUENCE. LABELED

LANDMARKS IN IT ARE USED AS SCENE POINTS. MATCHING RESULTS ARE SHOWN AS NUMBERS. (C) THE 91ST FRAME IN

THE “SHEAR” SEQUENCE. LABELED LANDMARKS IN IT ARE USED AS SCENE POINTS. MATCHING RESULTS ARE SHOWN AS

NUMBERS. 0.0% MATCHING ERRORS ARE ACHIEVED IN BOTH CASES.

compared with. An example matching case by our method is shown in Fig. 5. The second row

of Table I shows the matching errors by different methods on the hotel sequence. Our method

again outperforms all other methods we compared with and generates a 1.04% average matching

error. As shown in the example in Fig. 6.(b), all matching errors by our method are caused by

mismatching the 17th and the 23rd template points, which have very similar features and are

spatially close to each other.

B. Horse Rotation and Shear Sequences [10]

We followed the experimental setup in [10]. A 35-point-set labeled on the silhouette of a

horse [4] is obtained from [10]. The “rotation” sequence is generated by rotating the horse point

set by 90 degrees, and the “shear” sequence is generated by shearing it horizontally to twice

its width. Each sequence consists of 299 frames. We created matching cases similarly to the

previous experiment as pairs of images separated by a specific number of frames. Although the

Shape Context feature is not transformation invariant, it was still used in this experiment to

create more challenging matching cases. We set w = 1 because this experiment also looks for

exactly one-to-one matchings. Since these two sequences contain only global transformation, we
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TABLE II

MATCHING ERRORS (THE PERCENTAGE OF WRONG MATCHINGS) OF MATCHING CASES IN SECTION III-C BY OUR

PROPOSED METHOD.

Matching Case Our Method+DT
Our Method + kNN Our Method + kNN Our Method + kNN

(k = 5) (k = 9) (k = 13)

h% = 10% 0.64% 0.67% 0.62% 0.62%

h% = 20% 2.95% 2.88% 2.97% 2.97%

h% = 30% 10.8% 10.9% 10.9% 10.8%

h% = 40% 21.9% 22.0% 22.1% 23.0%

h% = 50% 42.0% 42.0% 41.7% 41.8%

set a larger weight to the geometric cost term, λ = 1.0. However, unlike the previous experiment,

neighborhoods defined by Delaunay Triangulation resulted in better matching performance than

kNN in this experiment. This is because Delaunay Triangulation is more likely to take template

points on the convex hull as neighbors even though they are far away from each other, which

better enforces a global transformation between template points and matched scene points.

Matching errors by different methods are shown in the third and fourth rows of Table I. Our

method with Delaunay Triangulation outperforms all other compared methods and achieves 0.0%

matching errors on both sequences. Our method with kNN also achieves 0.0% matching errors

on all frame separation levels except the 90 one for the “rotation” sequence. Example matching

cases from both sequences are shown in Fig. 7.

C. Synthetic Data with Missing Points

To test our method’s robustness when template points’ corresponding points are either not

detected or occluded in the scene image, we created an experiment with random points using

Shape Context [5] as features. For each matching case, we uniformly spread random points in

the region [100, 500]× [100, 500] as template feature points. To generate scene feature points, we

deleted h%× nt number of points from the template point set to simulate the effect of feature

point mis-detection or occlusion, and added h% × nt number of randomly spread points in

[0, 600]×[0, 600] as outliers. For each 10%, 20%, 30%, 40% and 50% occlusion and outlier level,

we created 100 matching cases and matched them using our proposed method. We measured

matching errors as the percentage of wrong matchings of undeleted template points. The statistics
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Fig. 8

AN EXAMPLE MATCHING CASE FROM SECTION III-C WITH NEIGHBORHOODS DEFINED BY DELAUNAY TRIANGULATION.

(A) TEMPLATE POINTS (RED DOTS) WITH NEIGHBORHOODS DEFINED BY DELAUNAY TRIANGULATION (GREEN LINES). (B)

SCENE POINTS WITH 50% UNDELETED POINTS (BLUE CIRCLES) AND 50% OUTLIER POINTS (MAGENTA CIRCLES). (C)

MATCHING RESULTS BY OUR PROPOSED METHOD. 3 OUT OF 50 UNDELETED TEMPLATE POINTS ARE WRONGLY MATCHED.

of errors on the matching cases are shown in Table II. Our method is able to correctly match most

undeleted template feature points even when 50%×nt template points are deleted and 50%×nt

random points are added as outliers. One example matching case of 50% occlusion and outlier

level is shown in Fig. 8. As illustrated in the matching results (Fig. 8.(c)), if a template points

is not detected or occluded, our method tends to match it to another template point that best

preserves the geometric properties of that deleted template point.

D. INRIA Datasets [30]

In our next experiment, we tested 4 sets (boat, bark, graf, and wall) of images from the

INRIA datasets used in [30]. Each set contains 6 images. The boat and bark sets contain images

undergoing scaling and rotation of natural scenes, while the graf and wall contain images of

planar walls taken from different viewpoints. We created template points from the 1st frames of

each set (Fig. 9) and matched them to the remaining images in the four sets. The ground truth

of transformation parameters are provided with the images. To measure the matching errors, we

first transformed template points with their ground-truth transformation parameters. The distance

between each transformed template point and its matched scene point is calculated. If such a

May 9, 2012 DRAFT



21

(a) (b) (c) (d)

Fig. 9

THE 1ST FRAMES IN THE (A) boat, (B) bark, (C) graf, AND (D) wall SETS FROM THE INRIA DATASETS [30]. TEMPLATE

POINTS ARE SHOWN AS YELLOW DOTS. NEIGHBORHOODS DEFINED BY DELAUNAY TRIANGULATION ARE SHOWN AS

GREEN LINES.

distance is greater than 1.5 pixel, this matched scene point is counted as a wrong matching. The

total number of mismatched points is then calculated as matching errors. Note that matching

errors result from two aspects: (i) some template points’ corresponding feature points are not

detected in the scene image; (ii) wrong matchings caused by matching methods.

For the template points in the boat and bark sets, we chose them as SIFT feature points in

the central area with scales greater than 6. This strategy is used to increase their corresponding

points’ probabilities of being detected in the scaled images. For the template points in the graf

and wall sets, we used inerest points detected by MSER [28] in the central area of the first image.

The two parameters of MSER, minimal region size and minimal margin, were set to 30 and

15, respectively. We further excluded duplicate points and points with scales less than 2. SIFT

descriptor is used to calculate feature vectors at those detected salient locations. For the feature

point in the scene images, we used SIFT descriptors’ and MSER detectors’ default parameter

settings. We tested our method using the two different neighborhoods: Delaunay Triangulation

and kNN with k = 5, 9 and 13. The LP method proposed in [21] is used for comparison.

Because the code of [21] has a pre-set scaling range, it was not tested on the 4th-6th images in

the bark and boat sets.

Matching results by our method with Delaunay Triangulation defined neighborhoods are shown

in Fig. 10. The matching errors of tested methods are shown in Table III. The two different

neighborhoods give similar matching performance on these sets when used in our method. For
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(1)
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(3)
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Fig. 10

MATCHING THE TEMPLATE POINTS IN FIG. 9 WITH NEIGHBORHOOD DEFINED BY DELAUNAY TRIANGULATION TO OTHER

IMAGES IN THE (1) boat, (2) bark, (3) graf, AND (4) wall. UNMATCHED SCENE FEATURE POINTS ARE MARKED IN LIGHT

BLUE. (A)-(E) THE 2RD TO THE 6TH FRAMES IN THE FOUR SETS.

the boat and bark sets, since the images are only undergoing similarity transformations, our

method has similar performance as the LP method in [21]. The results of the two sets showed

that our neighborhood structures are able to handle large scaling. For the graf and wall sets, our

method outperforms the LP method in [21] because our method’s locally affine constraints can

better tolerate complex deformations.

E. Rotated and Occluded Objects in Cluttered Background

We modeled an IEEE Spectrum magazine (Fig. 1.(a)) and matched it to its transformed

instances in scene images with cluttered background (Fig. 11). For the template point set, points

were selected as SIFT points with scales between 2 and 10, and their neighborhoods are defined
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TABLE III

MATCHING ERRORS (THE NUMBERS OF WRONG MATCHINGS) OF MATCHING CASES IN FIG. 10 BY OUR METHOD AND THE

METHOD IN [21].

Matching Case The Method in [21] Our Method+DT
Our Method+kNN Our Method+kNN Our Method+kNN

(k = 5) (k = 9) (k = 13)

boat 2 (Fig. 10.(1a)) 29 out of 64 30 out of 64 30 out of 64 30 out of 64 30 out of 64

boat 3 (Fig. 10.(1b)) 27 out of 64 30 out of 64 30 out of 64 30 out of 64 30 out of 64

boat 4 (Fig. 10.(1c)) n/a 40 out of 64 40 out of 64 40 out of 64 41 out of 64

boat 5 (Fig. 10.(1d)) n/a 42 out of 42 40 out of 64 42 out of 64 42 out of 64

boat 6 (Fig. 10.(1e)) n/a 55 out of 64 55 out of 64 55 out of 64 55 out of 64

bark 2 (Fig. 10.(2a)) 38 out of 67 39 out of 67 39 out of 67 39 out of 67 39 out of 67

bark 3 (Fig. 10.(2b)) 60 out of 67 60 out of 67 60 out of 67 60 out of 67 60 out of 67

bark 4 (Fig. 10.(2c)) n/a 19 out of 67 19 out of 67 19 out of 67 19 out of 67

bark 5 (Fig. 10.(2d)) n/a 13 out of 67 13 out of 67 13 out of 67 13 out of 67

bark 6 (Fig. 10.(2e)) n/a 45 out of 67 45 out of 67 45 out of 67 45 out of 67

graf 2 (Fig. 10.(3a)) 10 out of 34 10 out of 34 10 out of 34 10 out of 34 10 out of 34

graf 3 (Fig. 10.(3b)) 31 out of 34 7 out of 34 8 out of 34 7 out of 34 7 out of 34

graf 4 (Fig. 10.(3c)) 31 out of 34 8 out of 34 8 out of 34 8 out of 34 10 out of 34

graf 5 (Fig. 10.(3d)) 33 out of 34 12 out of 34 14 out of 34 12 out of 34 13 out of 34

graf 6 (Fig. 10.(3e)) 34 out of 34 16 out of 34 16 out of 34 16 out of 34 16 out of 34

wall 2 (Fig. 10.(4a)) 20 out of 35 10 out of 35 10 out of 35 10 out of 35 10 out of 35

wall 3 (Fig. 10.(4b)) 27 out of 35 7 out of 35 8 out of 35 7 out of 35 7 out of 35

wall 4 (Fig. 10.(4c)) 29 out of 35 8 out of 35 8 out of 35 8 out of 35 10 out of 35

wall 5 (Fig. 10.(4d)) 31 out of 35 12 out of 35 14 out of 35 12 out of 35 13 out of 35

wall 6 (Fig. 10.(4e)) 35 out of 35 16 out of 35 16 out of 35 16 out of 35 16 out of 35

by Delaunay Triangulation. Although there were many outlier feature points (> 1000) in the scene

images, and some template points’ corresponding scene points were not detected or intensionally

occluded (Fig. 11.(d)), our method still was able to match the magazine to the scene images

robustly.

F. Objects Undergoing Articulated Deformations

Our local geometric constraint only tries to maintain each point’s local geometric properties

and thus can match objects undergoing articulated deformations. In Fig. 12, we show an ex-

periment of matching a toy worm with distinctive features (Fig. 12.(a)) to its bended instances

in scene images. To define the neighborhoods for template points, we manually removed some

edges after calculating the Delaunay Triangulation of template points to avoid building strong
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Fig. 11

MATCHING THE Spectrum MAGAZINE (FIG. 1) IN SCENE IMAGES WITH CLUTTERED BACKGROUND. (A) THE MAGAZINE IS

NOT ROTATED. (B) THE MAGAZINE IS ROTATED BY 90 DEGREES. (C) THE MAGAZINE IS ROTATED BY 180 DEGREES. (D) THE

MAGAZINE IS PARTIALLY OCCLUDED BY A HAND. UNMATCHED SCENE FEATURE POINTS ARE MARKED IN LIGHT BLUE.

connections between different moving parts. Results in Fig. 12.(c) and 12.(d) demonstrate the

advantages of our local geometric constraint over the global constraint proposed in [21].

G. Real Videos

We did experiments on real videos, two taken by ourselves (the Computer and Spectrum

magazine videos) and two obtained from the YouTube (the butterfly and honeybee videos).

Similar to the matching experiments in Section III-E, we used SIFT points in the selected object

regions as template points and built their neighboring connections through Delaunay triangulation

(Fig. 13.(a)). We applied our method to every single frame of those videos and did not utilize

any temporal information. The algorithm does not need initialization and can track an object

undergoing large and complex deformations. We compared our method with the LP based method

in [21] using those videos.

The Computer magazine and butterfly videos consist of mostly similarity transformations,

with local deformations and some occlusions (Fig. 14.(1) and 14.(2)). For these two videos, our

method has similar matching accuracy as the LP method in [21] (Fig. 13.(1) and 13.(2)) but has

an asymptotically faster running speed.

The Spectrum magazine video consists of mostly affine transformations and non-rigid defor-

mations (Fig. 14.(3)). On this video, our method outperformed the LP method in [21] because

our geometric constraint is affine-invariant, and its local property enables it to handle larger non-

rigid deformations. One such example is shown in Fig. 13.(3) where the magazine is wrapped
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(a)

(b)
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Fig. 12

MATCHING A TOY WORM UNDERGOING ARTICULATED DEFORMATIONS. (A) THE ORIGINAL IMAGE OF THE TOY WORM. (B)

THE TEMPLATE POINTS AND THEIR NEIGHBORHOOD RELATIONSHIPS. (C) AND (D) TWO EXAMPLES OF MATCHING THE TOY

WORM MODEL TO ITS INSTANCES THAT HAVE UNDERGONE ARTICULATED DEFORMATIONS.

inwards. The global geometric constraint of [21] prefers scaling the template point set globally.

Our local constraint tries to maintain each point’s local geometric properties so it can better

handle such non-rigid deformations.

The honeybee video looks simple, but it has fewer distinctive feature points than the other

videos which makes matching the honeybee a more challenging task (Fig. 14.(4)). Our method

outperformed the LP method in [21] when a large portion of corresponding feature points are

missing in the scene images. Fig. 13.(4) shows such an example where only a fraction of the

feature points on the honeybee’s tail part were detected. The global geometric constraint of the

LP method in [21] favors all matched scene points maintaining a similar geometric structure

as the template points. It matches part of the tail correctly but wrongly matches other parts

to the background (Fig. 13.(4c)). In contrast, our geometric constraint only tries to keep local

geometric structures and thus can match disappeared feature points to shrunken neighborhoods.

The result by our method is shown in Fig. 13.(4d) where the tail part is correctly matched.

IV. LIMITATIONS AND CONCLUSIONS

Distinctive feature points. Although our method allows more complex geometric transfor-
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Fig. 13

SAMPLE COMPARISON RESULTS BY OUR METHOD AND THE LP METHOD IN [21] ON VIDEOS. (A) TEMPLATE POINTS. (B)

SCENE FRAMES. (C) MATCHING RESULTS BY THE LP METHOD IN [21]. (D) MATCHING RESULTS BY THE PROPOSED

METHOD. VIDEO RESULTS: HTTP://WWW.YOUTUBE.COM/WATCH?V=QZPYP0DTENA&LIST=PL5315098DD6D1F04C

mations, in our experiments we observed that our method also requires more distinctive feature

vectors than the LP method in [21] does. If an object has fewer distinctive feature points and

undergoes only similarity transformation, the LP method in [21] would outperform our method.

One such example is the bear sequence in [21]. Two factors contribute to this phenomenon: (i)

the optional constraint (12), which prevents the method from matching too many template points

to one scene point, becomes less effective in the relaxed model in the continuous domain (11).

Therefore, when features are not distinctive, template points may tend to match to only a few

scene points to primarily minimize the geometric cost. (ii) Our locally affine invariant allows

more freedom on geometric transformations, and provides weaker constraints when matching an
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(1)

Frame 1 Frame 72 Frame 414 Frame 614 Frame 875

(2)

Frame 2 Frame 55 Frame 133 Frame 228 Frame 276

(3)

Frame 2 Frame 47 Frame 104 Frame 188 Frame 305

(4)

Frame 36 Frame 84 Frame 230 Frame 306 Frame 344

Fig. 14

SAMPLE MATCHING RESULTS BY OUR METHOD FROM (1) THE Computer MAGAZINE SEQUENCE, (2) THE butterfly

SEQUENCE, (3) THE Spectrum MAGAZINE SEQUENCE, AND (4) THE honeybee SEQUENCE. UNMATCHED SCENE FEATURE

POINTS ARE MARKED IN BLUE.

object undergoing only similarity transformation.

Occlusion handling remains a challenging problem for the graph matching [23], [16] and

the LP based matching [20], [21] frameworks. Unlike the RANSAC methods, which can easily

determine outliers as those violating a global transformation model, feature matching methods

allow local deformations and therefore have difficulties determining occluded template points.

Moreover, determining occluded points in the matching process may require additional binary

variables, which makes this NP-hard problem even more difficult.

Appropriate weights in the objective function (11) are application-dependent and should be

set case by case. However, some pre-processing steps, such as normalizing feature matching

costs, can ease the search of appropriate weights. For a specific application, learning techniques

[10], [24] can be used to determine the best weights.
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In this paper, we presented a novel locally affine-invariant constraint for the LP-based object

matching framework. This constraint depends on exactly representing each point by an affine

combination of its neighboring points. Such representations were proved to be exact and can

be easily solved by least squares. Our proposed constraint showed several advantages over

those in previous works. Experiments on various matching cases for rigid and non-rigid objects

demonstrated the effectiveness and efficiency of our proposed algorithm.
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