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Abstract—In this paper, we propose a novel predictive model,
Active Volume Model (AVM), for object boundary extraction.
It is a dynamic “object” model whose manifestation includesa
deformable curve or surface representing a shape, a volumet
interior carrying appearance statistics, and an embedded las-
sifier that separates object from background based on curren
feature information. The model focuses on an accurate repre
sentation of the foreground object’s attributes, and does at
explicitly represent the background. As we will show, howeer,
the model is capable of reasoning about the background statics

thus can detect when is change sufficient to invoke a boundary

over boundary gaps. The image region inside or outside a
model surface can be obtained based on the model's shape
and position, so region analysis strategies have been gedpo
to assist in evolving the model. To further take advantage of
prior knowledge, statistical priors can be learned fronniray
examples to capture variations in the shape and appearénce o
an object of interest.

In this paper, we propose a new deformable model based
approach to object boundary extraction. The new model,

decision. When applied to object segmentation, the model ai Active Volume Model (AVM), can integrate constraints from

ternates between two basic operations: (1) deforming accding
to current Region of Interest (ROI), which is a binary mask
representing the object region predicted by the current moel,
and (2) predicting ROI according to current appearance staistics
of the model. To further improve robustness and accuracy whe
segmenting multiple objects or an object with multiple parts, we
also propose Multiple-Surface Active Volume Model (MSAVM),
which consists of several single-surface AVM models subjet¢o
high-level geometric spatial constraints. An AVM’s deformation
is derived from a linear system based on Finite Element Methd
(FEM). To keep the model's surface triangulation optimized
surface remeshing is derived from another linear system basl
on Laplacian Mesh Optimization (LMO) [26], [27]. Thus efficient

optimization and fast convergence of the model are achieved

by solving two linear systems. Segmentation, validation ah
comparison results are presented from experiments on a vagty
of 2D and 3D medical images.

Index Terms—Segmentation, Deformable Models, Active Vol-
ume Models, Multiple Surface Models.

I. INTRODUCTION

multiple sources, including but not limited to edges, regio
information, statistical priors, and geometric/spatigbgs. We
investigate not static priors but dynamic ones learnedirma-|
during model deformation.

In the remainder of the Introduction section, we will review
deformable models and previous works that utilize defolmab
models for segmentation by integrating various image-thase
or prior constraints. Then we discuss in more detail the hove
aspects and contribution of AVM and its multiple-surface
extension, MSAVM.

A. Shape-based Deformable Models

Since the introduction of Snakes [12] by Kases al. in
1988, active contours have been applied to various problems
in image processing, such as segmentation, feature @rtract
shape modeling, and visual tracking. Representing the mode
boundary parametrically(s) = (z(s),y(s)), the snake mod-
els are splines with smoothness constraints and influenged b
image forces. The original snake model was formulated to

Image segmentation is an important task in medical image irize the energy function

analysis. The main challenge is to retrieve high-levelrimfa-
tion from low-level image signals while minimizing the efte
of noise, intensity inhomogeneity, and other factors. Hmve

because of the variety and complexity of images, the desi%n
of robust and efficient segmentation algorithm is still ayver
challenging research topic. To address the chaIIengeseImoc?
based methods have been widely used with consideraBP
success. Most noticeable are two types of models: defomwam

models [1], [2], [12], [21], [36], [39], [43], and statist

shape and appearance models [5], [6], [15]. Compared
local edge-based methods, deformable models have smooﬂ&
curves or surfaces represent object boundary, which cdgéri
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B(C) = [ (alvi(o)P + Blvan o)+ AP(C(s))ds. (1)
here o, 8 and A are real positive constants to weight the
moothness constraints and image forces, BA@(s)) is a
tential which is based on some image features, such as
Fensity, gradient and edges. Other parametric deforenabl
models were proposed to incorporate overall shape contsrai
[61], [36] and to increase the attraction range of the o&gin
akes byGradient Vector Flon(GVF) [39].
nother class of deformable models is level set based
geometric models [8], [21]. This approach represents aurve
and surfaces implicitly as the level set of a higher-dimenai
scalar function. The evolution of these implicit modelsaséd
on the theory of curve evolution, with speed function specif
ically designed to incorporate image gradient information
Because these models do not need explicit parameterization



they can handle topology changes very naturally. Hence theen proposed in the level set framework. In [2], the piesewi

level-set approach is commonly used in segmenting multipgenstant function is minimized within the level set framekvo

objects [10] and achieves good results in tubular structege by Chan and Vese:

mentation [37]. Coupled surface constraints and the choaltf

implementation of level set active contours [17] also pdevi E(C) =\ //R [I(p) — cildp + Az //R [1(p) — caldp

thetirgiezx;ktniglg of capturing variable degrees of localness i +uLength(C) + vArea(R;), 3)
One of the geometric models most closely related to thethere\;, A2, 1 and v are positive constants to balance the

original Snake model is th&eodesic Active Contounodel contribution of each termR; andR,, correspond to the interior

[1], whose level set function is foreground and exterior background regions of the confour
1 c1 andcs represent the mean intensities of interior and exterior
E(C) :/ g(IVI(C(s))))|C (s)|ds, regions respectively, and(p) refers to the image intensity
0 value at pixelp.
whereg(|V1]) = #7 2) Another approach in [41] is able to segment images that
1+ |VIf? consist of several regions, each characterizable by giadis-s

where C' represents the front (zero level set) curve of thécs such as the mean intensity and variance. The approach
evolving level set function. When minimizing the level seth [30] applies a multi-phase level set representation  se
function, the front curve deforms along its normal direstiomentation assuming piecewise-constant intensity withie o
C", and this speed is controlled by the speed funcligi I|). region. It is considered as solving a classification problem
The speed function depends on the image gradiehtand because it assumes the mean intensities of all region slasse
it is positive in homogeneous regions and close to zero & knowna priori, and only the set of boundaries between
edges. Hence the curve deforms at a velocity proportionalfggions is unknown. In [38], piecewise-smooth approxiorai

its curvature in homogeneous areas and stops at strong.edgeshe Mumford-Shah functional are derived for multiphase
cases in a variational level set framework. The optimizatio

i . of the framework is based on an iterative algorithm that

B. Integrating More Constraints in Deformable Models o qyimates the region mean intensities and level sesihap

1) Region information: Both the original Snake andseparate step§&eodesic Active Regid@8] is another method
geodesic active contours rely on image gradient inforrmatithat integrates edge and region based modules in a level set
to deform, so they are sensitive to noise and spurious edgieamework. In summary of the above approaches, they all as-
Both of them are prone to stop at undesirable local minima $ume the distributions within regions to be piecewise-tamts
their corresponding energy functions. Thus initializatioust piecewise-smooth, Gaussian, or Mixture-of-Gaussianclvhi
be chosen very carefully. Typically, the models are ingeedl may limit their effectiveness in segmenting objects whase i
close to the object boundary to avoid getting stuck in sucbriors have textured appearance and/or complex multiainod
local minima. In order to address the limitations and develantensity distributions.
more robust models for boundary extraction, region-based2) Statistical priors: Statistical modeling approaches can
parametric and geometric deformable models are proposkd add constraints from prior off-line learning. Cootetsal. pro-
have become increasingly popular. posed methods for buildingctive shape mode[§] andactive

The basic idea is to deform an active contour using tteppearance model§5], by learning patterns of variability
region statistics information from the interior and exterof from a training set of annotated images. Integrating haytel
the contour. Compared to edge-based models, region-bakedwledge, these models deform in ways constrained by the
models are promising since the region information can helining data and are often more robust in image interpoetat
the model overcome many local minima and converge khage interpretation based on a shape-appearance joort pri
the desired object boundary. Furthermore, because regiomdel can be conducted through image search [6], or by
based approaches incorporate image region statisticshwhinaximizing posterior likelihood of the model given image
can be considered as global image information, they are léstormation in a Bayesian framework [40]. The shape prior
constrained by the initial position, and less sensitiveds®.  knowledge can also be used in an active contour’s framework.

A well-known example for the region modeling cost funcThe approach in [15] estimates the maximum a posteriori
tion is the Mumford-Shah functional [25]. The segmentatiofMAP) position and shape of the object in the image being
problem, as formulated by Mumford and Shah, can be definselgmented, based on prior shape information and image in-
as follows: given an observed image, find a decomposition formation in each step of the level set evolution. Another
Q; of Q, whereQQ C R?, such that the new “segmented’approach in [9] utilizes kernel principal component anislys
imagew varies smoothly within eack;, and discontinuously (KPCA) and encodes shape priors and image information
across the boundaries 6f;. The simplified case is obtainedinto two energy functionals entirely described in terms of
by restricting the segmented imagédo be piecewise-constantshapes. In medical imaging, shape priors particularly have
(i.e.,u = constant; inside each componefl;) or piecewise- been introduced to cardiac segmentation [14], [44], and to
smooth functions. The problem is often called the “minimaleformable models for constrained segmentation of bladder
partition problem”. In the recent few years, solutions foand prostate [7]. One limitation of the statistical modslsni
several simplified cases of the Mumford-Shah functionakhathe laborious training data collection and annotation pssc



3) Spatial constraints: Furthermore, in many medical model surfaces’ spatial interrelations. Integrating theainic
imaging applications, we are interested in simultaneoudlystance constraint strategy with other energy terms based
extracting several boundary surfaces that are coupleddh swbject region information, MSAVMs are less sensitive tdiai
a way that their relative positions are known and the digangositions and yield more accurate segmentation results.
between them are within a specific range. Clearly, integgati Being a parametric model fitting approach, the AVM's
this high-level spatial constraint into the segmentatiavdel convergence is fast, typically taking no more than 30 iteret
will further improve accuracy and robustness. A 2D method8everal factors contribute to this efficiency: (1) AVM foess
[35] segments left ventricular Epi- and Endocardial bosdepn modeling the foreground object and then reasons about the
using coupled active contours but needs a precise manbatkground, instead of modeling the background explicitly
initialization. In 3D, Zenget al. [42] incorporated spatial (2) the model’s deformations can be solved in a linear system
constraints about brain’s gray matter and white matter inénd (3) multiple external constraints are combined in a @rob
a level set framework which greatly improved cortex segmeh#istic framework and together contribute to long-rangecés
tation accuracy. In [18], a graph-theoretic approach dgetecoming directly from the predicted object region’s bourydar
multiple interacting surfaces by transforming the problem Compared to traditional parametric deformable models [4],
into computing a minimum s-t cut. Deformation of multiplg12], [36], [39], AVM is unique in its ability to probabilistally
surfaces in [20] has intersurface proximity constraintsjolv  and adaptively predict the object region, even when the inode
allows each surface to guide other surfaces into place. Adl still far-away from the object boundary. The predicted
of the three 3D methods [18], [20], [42] require manuallpbject region of interest (ROI) is used to derive effective
specifying the expected thickness between surfaces aslmotimg-range forces that make the model evolve quickly and
based constraint. overcome local minima caused by noise. As we will show in
our experimental results (Table V), the estimated ROI is not
only applicable to AVM but useful to other parametric models
and level set models. Using the ROI, another parametric mode

In this paper, we propose a novel volumetric dedeforming undefT-Snake[22] like forces converges quickly
formable model which we term the Active Volume Mod-and accurately; and a level set model, sucksasdesic Active
els (AVM). Compared with active contours [12] and active&ontours (GAC) [1] or 3D Active Contours Without Edge
shape/appearance models [6], the AVM is a generative objé&CWE) [2], also gives more accurate segmentation results.
model that does not require off-line training but generatesAlthough the estimated ROI can be integrated in a level
useful appearance priors about the object. Using nonparameset framework, we choose to couple it with a parametric
statistics of its volumetric interior to represent the fmaund finite element (FE) triangulation model because of efficjenc
object’s appearance, the model focuses on an accurate modet accuracy concerns. In our experimental evaluationgusin
ing of the foreground object’s attributes and embodies aibjevarious noisy medical images (Section 1V-B), AVYM deforms
feature statistics learned adaptively as the model deforfaster than level set methods suchGEndesic Active Contours
toward object boundary. With additional information abthe (GAC) [1] andActive contours without edg¢®]. Even though
overall image feature statistics, the model also estimtites there are thousands of vertices (or nodes) on the surface of a
background statistics so that a Bayes classifier can beegppBD AVM, the model’'s deformation speed is still less than 30
to predict dynamically the object region (Section II-C).ites seconds per iteration. Further, the converged 3D AVM model
object-region prediction framework, the model is capalfle & directly a smooth mesh representing the segmented object
probabilistically integrating constraints from multiplésual surface. Therefore it does not need any post-processipg ste
cues. such as surface reconstruction, as required by level set; it

The AVM model's shape is represented by a parameti@dso preserves topology thus does not produce small holes or
spline curve in 2D [34] or a simplex mesh (or finite-elemernislands inside, while level set methods often do give result
triangulation) in 3D [33]. Its volumetric interior carrighe with spurious holes/islands.
various visual appearance feature statistics. An advantdg The remainder of the paper is organized as follows. In
the AVM formulation is that it allows the forces generate®ection I, we introduce the model’s representation, thjeaib
from the predicted object region to naturally become part oégion prediction module of AVM, and the dynamic spatial
a linear system (Section 1lI-A), the solution of which givesonstraint integrated in MSAVM. In Section Ill, we present
the deformation of the model to minimize an energy functiohow to deform the model, and in 3D how to maintain the
designed to deform the model toward object boundary. mesh’s quality when deforming. In Section IV, experimental
3D, to keep the quality of the AVM’s surface triangulatiorresults of 2D and 3D medical image segmentation using AVM
from degenerating during deformation, we utilize a surfagend MSAVM are presented, and the models are compared to
remeshing technique based on Laplacian Mesh Optimizatiother parametric model and non-parametric level set models
(LMO) [26], [27]. Then we conclude the paper and discuss future work in Section

We further propose the Multiple-Surface AVMs (MSAVM)V.

[32] to segment multiple coupled objects simultaneousiy. |

stead of setting up fixed inter-surface distance constaiut- Il. THE ACTIVE VOLUME MODELS

ing initialization, MSAVM dynamically updates the distanc An AVM is a deforming solid that minimizes internal and
constraints between the interacting surfaces based oerturexternal energies [33], [34]. The internal constraint easithe

C. Active Volume Models



compute the implicit representation of AVM model’s shape to
be used in region-based external energy terms. The Eunlidea
(2)
(@) (b) distance transform for the model shapeBy definition (2 is
Fig. 1. Comparing heart Left Ventricle segmentation byetaton and by phounded since it refers to the image domain. The shape defines

distance transform is applied to embed implicitly an evudyvi
model’s surface in a higher dimensional distance function.
triangulation models. (1) A tessellation model with 4020 vertices. Notice " i : :
that the two poles exert very strong forces to drag otheicesrtwhich causes a partition of domain: the region that is enC|osed[bY[RA]’

\ \ B. Implicit Shape Representation of AVM
(1) The implicit shape representation using level set [21] make
a model's shape an “image”, which greatly facilitates the
integration of boundary and region information [11]. We
Let ® : Q — RT be a Lipschitz function that refers to the
the incorrect result. (2) A Finite Element Triangulation aebwith 40,962 the background(2 — R ], and on the mode[A]. Given these

vertices. (a)-(b) Two different views. definitions, the implicit shape representation is consider
0, x €A

model has smooth boundary surface. The external congraint Pa(x) = TED(x,A) >0, xRy , (6)

come from image data, prior, and user defined features. In —ED(x,A) <0, x€[2—Ry]

this section, we introduce the representations of AVM, ardhere ED(x, A) refers to the minimum Euclidean distance
introduce the novel object boundary prediction module ®fetween the image pixel/voxel location and the model
AVM. surfaceA.

The shape of a 2D AVM is defined similarly to active Different from most deformable models, one of the novel

contours [12], as a spline curve that has associated émstiéeatures of AVM is its adaptive object boundary prediction

and rigidity. Representing the model boundary paramélyica sche.me. The model alternates betyveen two operatiohs_: de-
v(s) = (z(s),y(s)), the internal energy term of 2D AVM is forming according to the current object boundary predittio

defined similarly to Active Contour Models. and predicting object boundary according to current appear
ance statistics of the model. Using this on-line prediction

1 . . . . .
o 9 9 mechanism, the expected object information updates aditoma
Eint 74 (a(s)vs ()" + Bs)[Vas ()] ds. () cally while the model deforms. And long-range external ésrc
In [4], Cohenet al. used tessellation to build a 3D ﬁniteare genﬁrated(;rolm tr:je fpredlcted Odb]iCt Boungary to eftelyti
element method (FEM) surface for 3D deformable mod(‘;f-lftractt € mode tp eform toward the boundary.
representation. The tessellation can be either a cylinder External constraints from any sources can be accounted by
present . . . y Lg;?robabilistic integration. Let us consider that each c@mst
an ellipsoid. The model works well in the cylinder case, b o L
corresponds to a probabilistic boundary prediction module

fails us_ing an eIIipsoiq. T_he_pr_oblen_‘n Is th"’.‘t the distribati and it generates a confidence-rated probability map to atelic
of vertices on the ellipsoid is in quite an irregular mannej. . elihood of a pixel being-+1 (object class), or—1

The vertices near the two poles exert strong internal forctenson object class). Suppose we haveindependent external

;%gﬁgtﬁ;hgiggﬁcgniz \;Vrgfgs?r?uze;'sgzﬂgteeﬁ :ﬁﬂ?rag ¢ constraints derived from image information, the featuredus
9 9 psoibAg in the kth constraint isf.. L(x) denotes the label of a pix&l

mterna’ll forces ge_nerated near the poles adversely affiect ur approach of combining the multiple independent modules
model’'s deformation. .

In order to solve the above problem in tessellated FE%r?ﬁF:ﬂ)rlllgg rg:s Bayes rule in order to evaluate the final
meshes and enable the model to match closely object bound- ’
ary, 3D AVM adopts a polyhedron mesh as the model repre-Pr(L(x)|f1, f2, ., fn) =

sentation which places vertices regularly on the model.eMor  (py(f, fo. ..., f|L(x))Pr(L(x))/(Pr(fi, fos s fn))

specifically, a 3D AVM is considered as an elastic solid and i :
defined as a finite element triangulatidn which can consist oPr(fILE)Pr(f2 Lx)...Pr(fal L) Pr(L(x)). (7)

of tetrahedrons, octahedrons or icosahedrons. Using the fin
element method, the internal energy function can be writtenFor each module, the class-dependent probability
compactly as: Pr(fi|L(x)) is estimated based on the AVM model’s
1 current statistics about featurg, as well as the overall
Ein: = B / (Bv)T D(Bv)dA, (5) feature statistics in the image. The derivation is as falow
A

whereB is the differential operator for the model vertices Pr(fi(x)) = Pr(fi(x), L(x) = +1) + Pr(fs(x), L(x) = 1)

on the mesh and is the stress matrix (or constitutive matrix). = Pr(fi(x)|L(x) = +1)Pr(L(x) = +1)
A more detailed explanation can be found in [19]. +Pr(fr(x)|L(x) = —1)Pr(L(x) = —1), (8)



wherePr(f(x)) is the overall probability of observing, (x)
at pixel/voxel locationx for the kth feature.Pr(fx(x)) is
known since it can be estimated using ttté feature’s over- (
all probability distribution in the entire image. Furtheore,
assuming the current AVM model is either completely inside
or largely overlapped with the foreground object, the medel
interior appearance reflects foreground object appea.rant:g N 4‘51
&

1)

Thus, we can approximate the probability of featyiein
the foreground,Pr(fi(x)|L(x) = +1), using the feature’s BB
distribution in the current AVM model. Both probability
density functions,Pr(fx(x)|L(x) = +1) and Pr(fi(x)),

are estimated using a nonparametric kernel-based dens@/
estimation method [11]. They are defined as:

Pr(folLe) = +1) = g [ (OIS

Prif) = o [ [ 2B o)
12 JJo h

whereR  is the AVM’s model-interior regiong is the whole
image domainy represents a pixelivoxel in the domain of (a) (b) (© (d)
integration, ' is the kernel density function, antl is the Fig. 2. Left Ventricle endocardium segmentation using a 2fva volume
kernel size. In this paper, we defidé as a uniform box and model. (l) The model drawn on the or_ig@nal heart image, (E)hhnary map
the kernel size a8. The p.d.fs thus estimated can represe ) d?;tgggée?ra%féﬁem %(f’utﬂ(iagofrggﬁg@r;??E)Iethues'gﬁ’m'fy&gd%t’gurfép
complex multi-modal distributions. estimated by the boundary prediction module using gradmagnitude

For the pixe|/voxe|x, given the known overall feature feature, (a) th_e initial model, (b) the model after 8 itGJBH',_ (c) _the model
distribution, Pr(fk(x)), and the approximated foregrouncf\fter 18 iterations, and (d) the final converged result &eiterations.
feature distribution, Rif.(x)|L(x) = +1), we can now reason

about the feature distribution in the background, L . . .
region is considered as the current object R@I, and its

Pr(fr(x)|L(x) = -1) = boundary represents the predicted object boundary. Due to
Pr(fi(x)) — Pr(fi(x)|L(x) = +1)Pr(L(x) = +1) noise, there might be small holes that need to be filled before
Pr(L(x) = —1) (10) extracting the boundary aR.

The progressive ROl updating can be clearly seen from a 2D
The prior independent of image featurd¥;(L(x)), in (7) AVM example in Figure 2. In the example, the ROI (Figure
and (10) can be assumed uniforf:(L(x) = +1) = 0.5 and 2.(2)) evolves according to the changing object appearance
Pr(L(x) = —1) = 0.5. Alternatively, spatially-varying prior statistics (estimated by current model’s volumetric irater
is another choice. At the end of Section II-F, we define $fatistics). And the image forces generated by the ROI regio
spatially-varying prior using two distance-related Fefomic- energy term (12) deform the model to converge to the object
tions in (1I-F) to control the prior values aPr(L(x) = +1) boundary.

and Pr(L(x) = —1). In Figure 4.(2) and (3), we show the Besides intensity featurgx), other features such as image
segmentation results with and without the spatially-vagyi gradient and texture can also be used in our framework. Take
prior, respectively. image gradient as an example. Since in most applications

In this paper, we show that by considering the pixel intgnsiboth object and background regions have similar gradient
i(x) feature, the above framework generates reasonable edigtributions but object boundaries have a different grati
mates of background feature statistics (10) and conskgterdistribution, following the estimation method above, wenca
gives good estimations of the object region on a variety obtain a probability (and binary) map of the object boundary
medical images. In Figure 2.(4), we show the predicted object boundary map

Once the posterior probabilitiegBr (L (x)|f1, f2, ..., f») are using gradient magnitude as feature. In our previous work
estimated, we apply the Bayesian decision rule to obtd®3], [34], we did allow the integration of the boundary
a binary map Pz whose foreground represents the obmap estimated using image gradient in our model's energy

ject region. That is,Pg(x) = 1 (x belongs to the ob- function. However, due to image noise, small spurious edges
ject) if Pr(L(x) = +1|f1,f2, -, fn) > Pr(L(x) = or gaps exist in the predicted boundas.d., Figure 2.(4)).
—1|f1, f2, .-, fn), and Pg(x) = 0, otherwise. The probability And we found that in many medical image segmentation
of error for the decision at pixek is min(Pr(L(x) = experiments, having the gradient-based boundary infoomat
+11f1, foy ooy fn), Pr(L(x) = =1|f1, fo, .oy [n))- in our framework did not improve performance. Thus, in this

After obtaining the binary maPs, we apply a connected paper, we use only the image intensity feature and its piestiic
component analysis algorithm dPy to retrieve the connected object ROI to derive image forces that deform AVM.
component that overlaps the current model. This connectedrlhe initialization of an AVM model is very flexible. In 2D,



initialization is done by asking a user to manually place at local minima or leak out to incorrectly converge at a ngarb
simple shape, such as a circle with specified center andsadibject's boundary. Often such mistakes can be avoided by
or a polygon defined by a set of user-input points. And in 3[2pnsidering spatial constraints between multiple objectsr

a user can either initialize the model with a simple shape, fmstance, by integrating the spatial constraints in a pleii
instance an ellipsoid with user-specified radius and aaigort, surface based deformable model framework [7], [32], [42] an
or initialize it with a standard atlas that has similar stame deforming all interacting surfaces simultaneously toasttthe
as the object to be segmented. In order for the initial medebbject boundaries with better accuracy.

appearance to be a good approximation of the foregroundA MSAVM is initialized as several AVMs inside an outer
object’s appearance, the initial model should be placdteeit AYM . And each AVM has its own predicted ROI. We
completely inside or largely overlapped with the object.  introduce a novel adaptive spatial constraint to consttiaén
multiple model surfaces’ deformation. To do that, we add int
the energy function a new energy terfy;;, which is derived

D. Definition of Energy Functions A )
) . from the spatial distance constraint. Then the energy fonct
In order to fit to the boundary of an object, the AVM mode]lor the ith surface of MSAVM is defined as:

is driven by the internal smoothness term, and the region
data term which is derived from image informatidre(, the E = Eint + Er + Egist, (13)

i ROI). Th Il f ion i fi : : . .
estimated ROI) e overall energy function is defined as where Ej,, is the same as the intemnal energy in (LE)

E=FE;,; + Eeyt = Eiy + ER, (11) is the external energy term derived from the predicted abjec
ROI, which we will define in (17).

whereE;, is defined in (4) for 2D and (5) for 3D. The weight \ye construct two distance-related Gaussian Mixtures func-

factor betweent;,,; and E.,; is implicitly embedded in¥;,,, tions, gr(dist) and gp(dist), to control the weights ofx

(a(s) and3(s) in (4) for 2D and in (20) for 3D). andE,;,,:, respectively. The functions are defined based on the

Given the current model, a Region of Interest (RM) gistance value between surfaces. Lej be surface indices,
representing the predicted object region can be compuigd ean distance value of thiga surface to other surfaces is
by the prediction module introduced in Section II-C. Let U§efined as:

denote the signed distance transform of the ROl boundary [y dist(v)dA
e 1ST(V i

shape a® . Combining®; and the current model’s implicit dist; = where
shape representatiof, in (6), the region-based external Ja, dAi
energy term is defined as: dist(v) = vmi§4(|q)Af V)], (14)
J1,JFT
Er = / PA(V)PR(V)dA. (12)  wherev is a vertex on theth surfaceA;, and @, is the
A

implicit representationi ., signed distance transform) of the
The multiplicative term provides two-way balloon forcegth surfaceA ;.
that deform the model toward the predicted ROI boundary. The two distance-related Gaussian Mixtures functionsef th

This allows flexible model initializations either overlapg ;th surface are defined in (15) and illustrated in Figure 3.(1)
the object or inside the object.

(ef(distfﬁi)Q/Qof +aef(distfﬂi)2/20§)
(14 a)
dist) = k- (1 — gr(dist)). (15)

)

gr(dist) =

E. Topology

Being a parametric model that deforms toward the estimateng(
object region boundary, AVM preserves topology during defo
mation. However, as we will show in the next Section II-F and In the above definitions, a greatemeans thayr (dist) has
in experiments, segmenting an object of arbitrary topolcayy a higher lower bound angy, (dist) has a lower upper bouns.
be handled by initializing multiple AVMs coupled togetheris a constant used to control the relative weight of the dista
one for each structure in the object. Therefore, in this #amconstraint term. In all our experiments, and x are set as
work, we assume the correct topology of the object is known5 and 1.0, respectivelyo; andoy (01 < o9) are standard
and then initialize AVMs with that topology to segment theleviations of the two Gaussians, which are empirically set a
object. We argue that, when segmenting organs with known5 x dist; and1.5 x dist; for all the experiments.
topology in medical images, this strategy can be more reliab Using the distance-constrained weight functiogg(dist)

than using models that can freely change topology. and gp(dist), the energy termsr and Eg;,: in (13) are
defined as:
F. Multiple-Surface Active Volume Models Ep = / gr(dist(v))®a (V)@ (v)dA, (16)
A

In some medical images, there may not be enough infor-
mation €.g., contrast) that can be derived from the images Eiist = / gp(dist(v))(dist(v) — dist;)?dA.  (17)
to clearly distinguish the object boundaries of interegtisT A
could be due to neighboring objects having very similaugss | _ _ - :
The outer AVM is required because of an assumption in ouriapat

types, or due_to limitations in medical imaging technologysstance constraint—that the distances of a surface’stgpdinother surfaces
Therefore, a single surface based deformable model may st@pw a unimodal distribution with mode at the mean distanc



gp(dist) 9r(dist) MSAVM maintains the fast convergence and flexible ini-

tialization properties of AVM. Instead of setting a static
1) Y spatial constraint manually or empirically, after eachat®sn,
‘ ' MSAVM updates each surface’'s mean distance valug
—  dist = dist based on the spatial relationship among its current model su
Fimeldist) Faes(dist) faces. Theyr(dist) and gp(dist) functions for each surface

are then shifted accordingly to make sure the né&wt still

corresponds to the centerline of these functions. This persu

vised strategy for online learning of spatial distance t@iirsts
between MSAVM’s multiple surfaces, coupled with its AVMS’
Tist dist Tist dist online learning of region appearance statistics, make M3AV

Fig. 3.  Functions to control the spatial constraints. (1pt&ice-related possess both gdaptlve spatial Con.StramtS and adaptiianreg

Gaussian Mixtures functions to balance the contributiohthe region term Dased constraints. These properties allow MSAVM to often

and the spatial constraint term, and (2) distance-relateenFfunctions to  have even more flexible initialization and faster conveogen

embed spatial constraints into the ROl boundary prediatmdules. than the original AVM, as we will show in our experiments
(Table VI and Figure 22).
In MSAVM, by designing the weight functiong;z(dist)

Max andgp(dist), and constraining a vertex’s deformation so that
its smallest distance to other surfaces is close to its selgfa
mean distance, we implicitty make the assumption that the

Min distances (to other surfaces) of a surface’s verticesviolo

unimodal distribution whose mode is at the mean distance.

However, instead of a static unimodal distance distrilmytio

MSAVM adaptively modifies its distance constraint as the

mean distances between surfaces change along with model de-

formation. Thus, the mode.¢., mean distance) of a surface’s
distribution changes as the model deforms, and the modes
of different surfaces’ distributions are separately kepd are

Max usually different from each other. Compared with the diséan
constraint function in [42], which assumes constant distan
between surfaces thus only works well in the case of brain

Min segmentation because of a nearly constant thickness of the

cortical layer, the MSAVM’s adaptive distance constraisit i

more general. It can not only be used to segment brain gray

matter and white matter, but also has very good performance

2

(1)

Max
(2)
Min

3)

Max

4) in extracting ventricles from heart and lungs in the thorax,
Min even though distances between these coupled ventricutar su
(d) faces vary greatly. In a heart (or lung) segmentation case,

Fig. 4. (a) Results of distance-related Gaussian Mixtwestfons, (b) results @n MSAVM s always initialized with the correct topology,
of distance-related Fermi functions, (c) results withomati@l constraint, (d) with the outer AVM representing the epicardial (or thorax)
the color bar used to map the distance information, (1)-(Btabce-Color ; ; ;

(DC) mapping of Gray Matter segmentation, the range foradis between surface a_md the inner AVMs representing the endocardial _(or
Gray Matter and White Matter is~215 voxels, and (3)-(4) DC mapping of |€ft and right lung) surfaces. Figure 4 shows two segmentati

heart segmentation, the distance range~&2 voxels. results by Distance-Color (DC) mapping the spatial distanc
information into color space.
Next, we discuss an alternative way of integrating the
spatial constraint in MSAVM, by modifying the pixel label
Given a vertexv on theith surface, its minimum distanceprior Pr(L(x) = +1) and Pr(L(x) = —1) in the object
value to all the other surfacest(v) can be calculated basedROI estimation module (Section II-C, (7 and 10)). Instead of
on (14). According togr(dist(v)) and gp(dist(v)) (Figure assuming a uniform prioi.e., Pr(L(x) = +1) = Pr(L(x) =
3.(2)), if dist(v) is close to theith surface’s mean distance—1) = 0.5), we define two distance-related Fermi functions
(to other surfaces)dist;, then gr(dist(v)) is large and the (sigmoidal), fi,.(dist) and fs.s(dist), to be the spatially-
region termEr makes more contribution toward the surface'sarying prior. The two functions of thih surface are defined
local deformation neaw; conversely, ifdist(v) is far away in (II-F) and illustrated in Figure 3.(2).
from dist;, which means the local surface near the vertex may _
be stuck at local minima or have a leakage, the energy term fine(dist) = 1/(1 + e~ s(dist=dista)),
for distance constrainy;.: is given more power to deform Faes(dist) =1/(1+ es(distfﬂi)), (18)
the local surface to satisfy the distance constraint andegiti
into place. where s is a positive constant to control the steepness of



the step neatist;. s is set af).2 for the experiments shown basis functiong; is defined like a “tent”, such that it has a

in Figure 4.(b). The Fermi functions are used to modulapsitive value atv, and zero value at all other vertices:

the label ¢-1 or —1) prior at every voxel when estimating .

the ith surface’s object ROI. For a voxel, let its minimal i(vj) =65 = { g Z.;j. , (20)

distance value to all surfaces other than thlke one be i

dist(x). Then, if theith surface is an inner surface, we sethere~ is the positive value av;. (In practice,y controls

Pr(L(x) = +1) = fie(dist(x)) and Pr(L(x) = —1) = the smoothness of the model mesh; largeleads to higher

faes(dist(x)); otherwise, if theith surface is the outer surfaceinternal energy and smoother mesh.) And, itherow andj;th

of MSAVM, we set Pr(L(x) = +1) = faes(dist(x)) and column element;; of the matrix A is defined as:

Pr(L(x) = —1) = finc(dist(x)). When the model surfaces _ _ C .

deform and the mean distances between them change, the :{ Ja V¢Z(X)()v¢j (x)dA étgé]rvc\:irsg“v]) B

Jinc(dist) and fqe(dist) functions for each surface are then (21)

shifted accordingly to make sure the neist still corresponds o the external force vectoLy, the ith elemently,

to the centerline of these functions. corresponds to the external force on tiile vertexv; based
Comparing the above spatial prior using Fermi functions, (12), which is defined as:

with the one using the Gaussians Mixture functigngdist)

andgp(dist), we found that integrating the spatial prior using lv. = —V(®a(vi)2r(vi)) = —Pr(vi) - V@A (V). (22)

the Gauss?an Mixtures functions a_nd the additi_onal eneryy s model vertexv is far away from the ROI's boundary,

term Eg;s IS more e_ffectlve than using the Ferml functlons.q)R(v)l has a greater value. Thus, according to (22), the

We. reason that this is *??Cause the Fer.m| fun.ct|0ns are use feernal force on this vertex is stronger, which can deform

weight _the prior pr_obablllty of v_oxels being |r_1$_|de thbjector_ _ the vertex toward object boundary quicker.

non__object ar_1d if in some region, the conditional probability The linear system in (19) can be solved by using finite

derived from image information is not good enough, the eﬁeﬁiﬁerences [4]. After initializing the 3D AVM, the final

of the spatial prior in the combined posterior probabilitgm converged result can be obtained iteratively based on the
can be greatly reduced. For instance, in Figure 4.(b)()3)-(4g,0"0Wing equation:

the holes on the Fermi-based MSAVM model developed is
due to the model being stuck at a local minima caused by (VE-VY 1+ AV =Ly, (23)
noise in the posterior pr_obab|I|t3_/ map and the_estlmatedcctb_J here V-1 is the current AVM's vertex vector and is
ROI. The results obtained using the Fermi-based spatlam/ . : : : - :

. . . . e time step size. (23) can be written in a finite differences
varying prior (Figure 4.(b)) do not show marked |mprovemerfjnt . . !

. . . . .~ formulation, which yields

over the results obtained using the uniform prior (Figure
4.(c)). Therefore, in all our experiments, we use the unifor M- V=Vt 4 7Ly,
prior for obje_ct ROI prediction (Seption I1-C), and we use M = (I +7A). (24)
the GM functionsgy(dist) and gp(dist) and the additional
energy termE,;, for integrating the adaptive spatial distanceFor MSAVM, each surface is treated with an independent
constraint in MSAVM. linear system. For théth surface,

Ai -Vi= LVL' ) (25)
I11. M ODEL DYNAMIC DEFORMATION

A. The Model's Deformation where 4; is the stiffness matrix defined the same way as 3D

. , ) ) AVM, V; is the vector of vertices of th&h surface, and.y;,
Minimization of the AVM's energy function can be achieveds the corresponding external force vector. The differeinoe
by solving the following linear system AVM is that the spatial constraint is a part of the externatéo
A-V =Ly, (19) vector (17) in MSAVM. An element, of Ly, is defined as:

where matrix A is symmetric and positive definite, and its lv = = gr(dist(v)) - V(d)Mv)(I)R(\i
size equals the number of control vertic&sis the vector of — gp(dist(v)) - V((dist(v) — dist;)?).  (26)
vertices on the curve (2D) or surface (3D) of AVl is the
external force vector of the control vertices.

For 2D AVM, A is the pentadiagonal banded matrix derive
from the internal energy term, (4). The detailed derivation
and the full form of A can be found in the Appendix of B- Model Shape Optimization During Evolution
[12]. For 3D AVM, let us denote the FE triangulation mesh One of the advantages of AVM is the flexible initialization.
A as a graphG = (V,E), with verticesV and edgesE. The final converged results can be very different from the
Then A is the stiffness matrix derived from (5) by using dnitial models. However, the flexible initialization alsasineg-
continuous piecewise linear basis function. More spedijica ative effects. If the initialization is too far away from theal
given the basis functiony; at the ith vertex v; and the object, the model will deform rapidly in each iteration, wihi
number of verticegV|, the model's FE mesh is representedauses the quality of the simplex mesh to degrade sharply. In
by A(x) = Z[‘:"l v;¢;(x). The continuous piecewise linear2D, this problem can be easily solved by reparameteriziag th

Thus deforming MSAVM can be achieved by solving several
icPdependent linear systems.



TABLE |

curve, which is commonly used in 2D deformable models, 2D AVM MODEL'S PARAMETER SETTINGS

such as [39] and [34]. However, such reparameterization in

3D is more difficult since the 3D meshes’ structure and Fies a(S)sig 4) 5(5)3ig 4) Tig (124)
connectlv_lty are much more _comphgated tha_m 2D curves. Figure 6 >0 >0 0.05
The straightforward solution in 3D is adopting a stricter [Figure 18.2(a), (c)-(d) 30 30 01
smoothness control and a smaller step size. This strategy Figure 18.2(b) 25 25 0.03

can partially solve the problem but will lead to some other
problems, such as delaying the convergence time and causing
the model to get stuck at local minima. To overcome this
problem, we use Laplacian Mesh Optimization (LMO) [26],(1)
[27] to maintain the surface mesh quality after each iterati
LMO is a remeshing technique that optimizes triangle shapes
and smoothes a triangular mesh while preserving geometric
features on the mesh. It is guided by vertex Laplacians
and relocates vertices so that they approximate prescribed
Laplacians and positions in a weighted least-squares sen
Its non-iterative solution is well-defined and can be coragut .
efficiently using optimized sparse linear solvers. Using@QM @) (b) ©)

we remesh the AVM model after each iteration of deformation. _ _ _ .
I this way, the modefs mesh qualty is maintained at B, The seaneraor resue on b ©F images, (e
high level. Thus we can use a relatively weak smoothness

control and larger step size to deform the model. Based on

our experiments, AVM with LMO remeshing converges fastefalues~,,,;, and .4, we decrease andr by Joea_Jend gng

than the AVM without remeshing. Tres Tend per jteration until the iteration number reaches 25
or the model converges. If the model has not converged after
C. Steps to deform AVM 25 iterations, the lower bound valuegs,,; and .4, are used

In summary, we adopt the following steps to deform th%ntII convergence.

AVM toward matching the desired object boundary.

1) Initialize the AVM, set up matrix4 in (19) and step size ) I.V' EXPERIMENTAL RES.ULTS )
7 in (24). In this section, we present experiments of using AVM
2) Computed, in (6) based on the current model; predicg"d MSAVM for segmenting organs in images of the human
the object ROIR by applying the Bayesian Decision rulebody, evaluated the model's performance and comparedtit wit
to binarize the current estimatedjectprobability map several other segmentation models. All the experiment® wer
(Section 11-C), and compute the signed distance traniested on a PC workstation with an Intel Duo Core 3GHz
form of the ROI's boundary® . For each surface in E6850 processor.
MSAVM, updatedist based on (14) and shift distance-

related control functions according thst. A. Results of AVMs
3) Deform the model according to (24). Apply LMO mesh 1) Results of 2D AVMs:We have applied 2D AVM to
optimization to the model. extract boundaries in various medical images. We first deste

4) For 3D AVM and MSAVM, adaptively reduce thethe model by using a set of cardiac CT images. Considering
smoothness controf in (20) and decrease the step sizeghat the CT images give relatively clear contrasts, we sedec
7 in (24). For 3D AVM, update its stiffness matrid. 5 large step size. Table | gives 2D parametefs) and 53(s)
For MSAVM, update the stiffness matrices for all thgor smoothness, and for step size.
surfaces. We also used a set of ultrasound images to test the ro-
5) Repeat steps 2-4 until convergence. The convergenggtness of the model to speckles and noise. Because of the
criterion is that the maximum movement of the verticegature of ultrasound images, there is no clear contrastsedge
is less than 3 pixels/voxels. to indicate the object boundary. In this case, the regiseta
In Step 4, using a relatively strong internal smoothnegsoperties of the AVM become very important. Figure 6 shows
constraint at the very beginning helps reduce the effect 2D AVM segmentation results for several ultrasound images,
image noise on model deformation and enables the modeliiowhich there are noisy gradients and spurious edges inside
deform quickly toward object boundary. Then, by graduallthe objects of interest. In this case, the object prediction
decreasing the values of smoothness control parametéss ( represented by the ROI is the only reliable information that
and 3(s) in 2D and v in 3D) and the step size, the enabled the finding of object boundary. Figure 5 and 6 also
model can extract more details on the object boundary assfitow that model initialization can either partially overldne
gets close to convergence. This scheme to adaptively chaodgct or inside the object. The model is able to expand or
parameters is particularly useful in 3D, see Table Il. Gitlen shrink to converge to the boundary of the object that doremat
initial parameter values;., and .4, and the lower bound the initial model appearance.
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Fig. 8. Left Ventricle segmentation using a 3D AVM with 65&8ontrol
vertices. (a) The initial model, (b) the final converged teafier 21 iterations,
(c) a different view of the final result, and (d) the final comed result in a
2D slice.

Fig. 6. Segmentation results on ultrasound images. (1) Witialimodel, results of ?_’D AVM. In F|gure 9‘(2)_(_4)' we show the _mOderS
(2) the final converged result after (a) 21, (b) 35 and (c) 2Battons. segmentation results using three different parameteingsit
and in Figure 9.(a)-(c) the results using three differentaio
initializations. There exist only slight differences angotine
results. The average running time of the 9 segmentatiorscase

TABLE Il
3D AVM AND MSAVM MODELS' PARAMETER SETTINGS

~ in (20) 7 in (24) is 514 seconds. The avera@gce Similarity Coefficien(DSC)
3D AVM for Lung 40~ 15 | 0.07~ 0.015 [29] accuracy value i92.1%, and the variance of the 9 DSC
3D AVM for Left Ventricle 40 0.07~ 0.015 | i50.88%. Si th It t it ¢
3D AVM Tor Brain 60~ 15  0.06 <001 values is0.88%. Since the results are not very sensitive to
MSAVM for Tung, heart and brain| 35~ 20 | 0.07 ~ 0.01 parameter setting and model initialization, we use the gaane

rameter setting for all the lung segmentation exampleshano
parameter setting for all the heart segmentation examaies,

2) Results of 3D AVM:We tested 3D AVM to extract so on. The actual parameter settings for various 3D AVM
boundary surfaces of the lung, left ventricle, Brain Grayttéia and MSAVM experiments are listed in Table II; the adaptive
and White Matter from 3D volumetric image stacks. Sincparameter change scheme outlined in Section I1I-C is adopte
the model is robust to noise, all the image data used in threall cases.
testing are the original datasets without any preprocgssin Next, we tested 3D AVMs using more datasets: 10 volu-
e.g., smoothing and morphological operations. metric cardiac CT datasets, and 15 human lung CT datasets.

First, we used a 3D AVM model to segment the right lungn the heart datasets, 3D AVMs are used to segment the left
using chest CT data provided by McLaughlat al. [23]. ventricle, and in the lung datasets, 3D AVMs are used to
The model was initialized as an a simple Finite-Elemengsegment the left and right lungs. Figure 10 and Figure 11
Triangulated ellipsoid whose long axis is perpendicular &how the initial models and final converged results on sample
the axial image plane. Notice that the model only partiallyeart and lung segmentation cases. The average DSC value of
overlaps the predicted ROI. External forces from the aslapti heart segmentations ¥).8%, and the average DSC value of
changing ROI's boundary deform the model to finally converdeng segmentations i85.5%.
on the object boundary. Figure 7 shows the initial model and Since there are thousands of vertices on the FE triangnlatio
the final converged result. surface, an AVM model can extract very detailed information

Then we tested 3D AVM model in segmenting the lefpn object surfaces. This advantage can be seen from the human
ventricle in a CT stack. The model was again initialized asrain Gray Matter and White Matter segmentation example in
an ellipsoid and was placed in the stack after a set of ratatiigure 12. The 3D simulated MRI brain images are provided
operations so that the ellipsoid’s long axis roughly aldginehy BrainwWeb [3]. The MRI stack is off; modality, has
with the left ventricle’s long axis. Some boundary conditio 1/, slice thickness3% noise level and20% intensity non-
was also specified so that the model did not deform beyopdiformity (INU). Both models (one for Gray Matter and one
the z-range defined by the top and bottom slices of the staglyr White Matter) were initialized as ellipsoids. As the netsl
Figure 8 shows the initial model and the final converged tesujere getting closer to the approximated object boundary,

We ran an experiment to examine the effects of parametge models decreased the smoothness constraint autoltyatica
setting ¢ in (20) andr in (24)) and model initialization on the hased on the deformation strategy. Then a lot of details en th
object surfaces appeared on the models.

In terms of efficiency, the running time of 3D AVM depends
on the number of vertices on the model and the size of the
3D image volume. For the experiments shown in Figure 9.(2)-
(4), using a model with 40,962 vertices, the average running
- gral | time of one iteration is 22.3s. Finding the region of model
(b) ©) (d) interior agcording to the mesh position and computing the
Fig. 7. Right Lung segmentation using a 3D AVM with an FE tgafation mOdeI,-S distance trans-for@!A takes 7.3s (327); generating
mg.sh.cons?sting ofg32,g70 control vertiges. (a) The initialdel, (b)%he final the object ROIR and ItS distance _tranSf,ormR ta}kes 12'_2S
converged result after 27 iterations, (c) a different vidvthe final result, and  (54.7%); and the remaining steps, including solving the linear
(d) the final converged result in a 2D slice. system and remeshing of the model surface, take 2.8s%12.6
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(1)

(2)

3)

(b)

Fig. 10. Left ventricle segmentation results using 3D AVND,@62 vertices)
on 3 different 3D cardiac CT datasets. (a) The initial mod@$ the final
converged results, and (c) the final converged results inl2Bss

(4)

(5) 1)

(@) (b) (©)

Fig. 9. Segmentation results using three different paramstttings (2, 3

and 4), three different model initializations (a, b and @)d aising a mesh

with more control vertices (5). (1) Initial models with 463 vertices, (2)
parametersy in Equation (20) andr in Equation (24) are set asi = 30 (2)
and T = 0.05, (3) v = 40 and 7 = 0.09, and (4)y = 50 and7 = 0.2.

(2)-(4) Average running time i5§14s, and average DSC value ¥£.1%. (5)

The model with 163,842 vertices, = 30 andT = 0.05, the average running

time is 1124s, and average DSC value $2.8%.

In Figure 9.(5), using a model with 163,842 vertices, the
average running time of one iteration is 48.4s. Generating3)
the object ROI and computin@r takes roughly the same
amount of time as before (12.0s, 2% finding the model-
interior region and computing, take longer (25.6s, 52%); (@)

and solving the linear system and remeshing also take longgr 11 | ng segmentation results using 3D AVM (40,962 iwest) on 3
time (10.8s, 22.%). Since the models in Figure 9.(5) havalifferent 3D lung CT datasets. (a) The initial models, (8 fimal converged
more control vertices, they can recover more boundary Idetafesults, and (c) the final converged results in 2D slices.

And the average DSC value of Figure 9.(5pi&8%, slightly

higher than that of Figure 9.(2)-(4).

The memory requirement of 3D AVM depends mainly otthat the memory usage and running time will be lower if we
the image volume size, since the original image volume, th§e a smaller subvolume containing the object of interest fo
ROI binary map and its distance transform, and the modé&egmentation, instead of using the whole volumes.
interior binary map and its distance transform need to be3) Results of MSAVMWe applied MSAVM to segment
stored in the memory. The size of the model mesh and tharious coupled organ surfaces in volumetric medical ilmage
matrices in the linear system affect little the memory usag&n MSAVM s initialized as several inner AVMs in an
More specifically, given the volume sizes (Table 1V), braiouter AVM. The AVMs will deform simultaneously and in
segmentation takes around 280MB, heart and lung segmeraazoordinated way to fit the object boundaries. First, we put
tions take around 660MB. Currently all experiments use tlam MSAVM into a thorax CT stack to segment the lungs of
original whole image volumes without cropping. We exped@ lung cancer patient. The model was initialized as one outer
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Fig. 14. Distance-Color mapping of heart segmentation qus$SAVM
viewed from the right, the distance range is 2-25 voxels, each model has
(d) 65,538 vertices. (1) The inner surfaces, (2) the outer serféa) the initial

) ) ) . model, (b) the final converged result after 24 iteration¥(cjlthe initial model
Fig. 12. Brain Gray Matter and White Matter segmentatiomgiib AVM  in a 2D slice, and (2)(c) the converged result in the 2D slice.

and each model has 131,074 control vertices. (1)(a) Thalinitodel of Gray
Matter, (1)(b)-(1)(c) the final converged result after 2drations, (2)(a) the
initial model of White Matter, (2)(b)-(2)(c) the final cormged result after 21
iterations, and the final converged results of (1)(d) Grayttétaand (2)(d)
White Matter in 2D slices.

Fig. 15.  Distance-Color mapping of heart segmentation gudtSAVM
viewed from the left, the distance range is 2-25 voxels, aachenodel has
65,538 vertices. (1) The inner surfaces, (2) the outer serféa) the initial
model, (b) the final converged result after 24 iteration¥(cjlthe initial model
in a 2D slice, and (2)(c) the converged result in the 2D slice.

Fo 13 Dist Color (DC) ot . oyt ) However, deforming according to the on-line predicted obje

ig. 13. Distance-Color mapping of lung surfaces s ®n using . .

MSAVM, the distance range is 3-45 voxels, and each model 23878 boundary and spatial constraints, MSAVM Can_ overcome

vertices. (1) The inner surfaces, (2) the outer surfaceth@)initial model, the local minima and extract accurately the multiple cardia

(b) the final converged result after 21 iterations, (1)(@ ihitial model in a syrfaces.

2D slice, and (2)(c) the converged result in the 2D slice. MSAVM can also be used to segment Brain Gray Matter
and White Matter simultaneously. In Figure 16, the model

ellipsoid around the thorax and two inner ellipsoids whoséggs _|n|t|i31I|tzszaRsl (t))ne_ o_uter and on% |gn§r Be”'PS\(I)\}dE' The

long axes are perpendicular to the axial image plane. Fig isr:mu ade Eionr {2'” rl1mv&\1/get?1 prg\g r?n yin ra'f”the mwacljsl

13 shows the 3D DC mapping images during deformation, 292!N used. Figure shows the apping of the mode
geformatlon progress.

2D coronal projection view is also included in Figure 13 t0~_ .
show a cross section of the initial model and converged tesyl Figure 17 also demonstrates some results using MSAVM

Then we experimented with the model on segmenting he A I.ung gnd_ heart segmentations. Notice th".it even though
surfaces in a cardiac CT stack. The MSAVM model wad® |n|t|al|;at|oqs were far away from the desired boungdary
initialized as three ellipsoids: one for the epicardialface SAVM still reliably yielded accurate results.
of the myocardium, one for the endocardial surface of the . ]
left ventricle, and a third one for the endocardial surfad® Comparison and Evaluation
of the right ventricle. To keep the model from deforming 1) Comparison between AVM and other deformable mod-
into connected structures with similar intensitiesg(, atria), els: To evaluate the performance of 2D AVMs, we tested
we specified some boundary condition for each of the thréee model using MRl and CTA images. Figure 18 shows
model surfaces so that the surface did not deform beyond sesgmentation results for a variety of medical images. Hor al
top- and bottom-slice thresholds. Figure 14 and Figure iBe images shown in Figure 18, we presented comparison
show the deformation steps of the heart MSAVM from twhetween 2D AVM, theGradient Vector Flow(GVF) model
3D viewpoints. 2D sagittal and coronal projection views ar@9], and the level-set baseictive Contours without Edges
also provided in Figure 14.(c) and Figure 15.(c). Due to tH&ACWE) [2]. Based on the running time (to converge) in Table
structures such as papillary muscles inside the left vdatri 1ll and the segmentation results in Figure 18, 2D AVM is
it would be difficult for a single surface deformable model tonore efficient than ACWE, and achieves more accurate results
reach the desired boundary without supervised learniraygri than GVF and ACWE. 2D AVM and GVF produce smooth
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Fig. 17. Different initializations of MSAVM in lung and hdasegmentation examples. (a)-(b) Each model has 32,77@egr(c)-(f) each model has 65,538
vertices, (1) initial models and (2) final converged results

Fig. 16. Distance-Color mapping of brain segmentation gi$i8AVM, the

distance range is 2-15 voxels, and each model has 131,0%deger(1) The
Gray Matter, (2) the White Matter, (a) the initial model, {bg final converged
result after 24 iterations, (1)(c) the initial model in a 2lize, and (2)(c) the
converged result in the 2D slice.

TABLE Il
RUNNING TIME AND NUMBER OF ITERATIONS FORFIGURE 18
Model Case 1 2 3 4 5
2D AVM Ite‘l;;ggns 8.15065 29251595 373.?83 G.SOS 5.333
V1 | e | T | TS| 55 9| €
oz | Jme | Ba T T o T

boundaries directly while the ACWE result contains small
holes and islands.

Using the same initializations, we compared 3D AVM:ig. 18. 2D Segmentation results on MRI and CTA images. (aglFi
with level set based 3DBGeodesic Active Contour@GAC) converged results obtained by 2D AVM after (1) 10, (2) 26, 3) (4) 8,
1], 3D Active Contours Without EdgCWE) [2] and 3D - (39 jssters, 0) s fom et ey (on mesee (0.0,
Level Set Evolution Without ReinitializatighSEWR) [16] By  gges after (1) 1600, (2) 800, (3) 200, (4) 100 and (5) 10@itns.
measuring the running times and validating the segmenmtatio
results using expert ground truth markings. Figure 19 shows
the final triangulation surface of 3D AVM, compared with the
final converged results of GAC, ACWE and LSEWR afteaccuracy ite., DSC value) is higher. For the brain case, AVM
surface reconstruction. Table IV presents DSC values atakes longer time than ACWE and LSEWR, mainly because
running times for various experiments. One can see that 8D the need for more iterations and decreased smoothness
AVM is particularly good for segmenting heart and lungs; itparameter values in order to capture details on the GrayeMatt
running time is lower than all three level set methods wh#e iand White Matter surfaces.
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(1)

(@)

3)

(4)

Fig. 19. Comparing 3D AVM with Geodesic Active Contours (GABctive Contour without edges (ACWE) and Level Set EvalntWithout Reinitialization

(LSEWR). Results of (1) 3D AVM, (2) GAC, (3) ACWE and (4) LSEWR) Heart Left Ventricle segmentations, (b) right lung megtations, (c) left lung
segmentations, (d) Gray Matter segmentations, and (e)e/Métter segmentations. In the heart and lung cases (a3fcAVM has 40,962 vertices. In the
brain case (d)-(e), 3D AVM has 131,074 vertices.

TABLE IV
SEGMENTATION ACCURACY AND RUNNING TIME COMPARISON AMONG3D AVM, GAC, ACWE AND LSEWR
Heart Right Lung | Left Lung Brain GM [ Brain WM
Volume Size | 256 x 256 x 261 256 x 256 x 278 181 x 217 x 180

DSC Time DSC | Time DSC | Time | DSC | Time | DSC | Time
3D AVM 92.93 487s 95.62 | 512s | 94.41 | 508s | 91.5 | 1023s| 78.2 | 1068s
3D GAC 88.82 633s 87.16 | 899s | 82.53 | 832s | 85.0 | 2332s| 72.5 | 1752s

3D ACWE | 91.81 1099s 86.07 | 1845s| 86.15 | 1487s| 90.4 | 984s | 91.1 | 864s

3D LSEWR | 91.14 1370s 92.77 | 1655s| 93.01 | 1573s| 89.4 | 621s | 89.0 | 643s

Next, instead of directly using image intensity or gradiersegmentation results by these ROI-based level set modiils wi
information to deform GAC, ACWE and LSEWR, we de-the results by 3D AVM. The running time and quantitative
signed an experiment to deform these models based on the pieeuracy of these models are also compared with those of the
dicted ROIs so that we can compare 3D AVM with these leveriginal models without ROIs; the comparison is shown in
set models deforming under similar forces. First, accaydin Table V.
the GAC, ACWE, or LSEWR’s current model position, the We also designed another ROI-based parametric deformable
ROI prediction steps are followed (Section 1I-C) to estienatmodel and compared 3D AVM to it. After the model obtains
the binary object ROI. Second, the model deforms for seveitd predicted object ROI, its external forces are set in a way
iterations based on the current ROI. For GAC and LSEWRIimilar to T-Snakeg22], according to the vertices’ positions
the external forces are derived from the gradient map of thed normals. For a model vertex the external force is
ROI (i.e., non-zero gradient around ROl boundary and zero -
gradient everywhere else). For ACWE, the intensity values fert = { Ny VER o
of the ROI are used to compute the mean intensities; thus, Ny otherwise

mean foreground intensity isand mean background intensity\,\,hereﬁV is the surface normal at this vertex andt R means
is 0. By repeating the above two steps—ROI prediction anfle vertex is inside the predicted R@I Therefore, the model
model deformation, the ROI based GAC, ACWE or LSEWRypands or shrinks to match the ROI boundary. The ROI in
model can deform according to the adaptively changing RQ{§s case is also dynamically updated according to the riedel
and reach the final converged result. Figure 20 compares H?%nging position. The segmentation results of this RGeHa

(27)
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(c)
Fig. 22. Heart segmentation in a 2D slice projection. (a) Hital model,

(b) the final converged result after 24 iterations and (c)dbeverged result
of three independently-evolving AVMs after 27 iterations.

medical images.

2) Comparison Between 3D AVM and MSAVMNkince
MSAVM integrates high level spatial information, it is more
robust and allows more flexible initialization and paramete
setting when compared to the 3D AVM. As shown in Table I,
the same parameter setting was used for all the segmentation
examples of MSAVM.

Table VI provides the quantitative evaluation and running
Fig. 21. Segmentation results on a representative 2D s@stnal image. times. MSAVM took similar numbers of iterations to converge
The result gffgr)]ge;)blszéggf,w Etlh)(Psr?aDkeAl\i/k’\g'eilté(r?xaég?tg?ir iﬁ;bibll:\?gl compared with 3D AVM, but achieved improved segmentation
A () GAC. (2)(b) ACWE, (2)(©) LSEWR. and oo Accuracy. In each iteration, MSAVM needs extra time to calcu
set models of (3)(a) GAC, (3)(b) ACWE, (3)(c) LSEWR usinggioted ROIs. late the spatial distance between surfaces; this oversessly
small, however, since the distance transform of each sarfac
is readily available through the implicit model represénta

parametric model are compared to 3D AVM in Figure 20P4.
and the running time and quantitative accuracy are reported CABLE VI

in Table V. One can see that 3D AVM is more efficient than COMPARISON BETWEENMSAVM AND 3D AVM
this other parametric model with T-snake like external és;c
this is because AVM’s external forces are derived from (12)

MSAVM 3D AVYM

. . . . DSC | Time | DSC | Time
using information from the distance transform of the ROI and Cung in Figure 13| 96.2 | 1913s | 94.6 | 1847s
are long-range adaptive forces which are stronger on model Heart in Figure 14| 92.3 | 1785s| 91.2 | 1743s
points far-away from ROl boundary, while the other paraioetr GM in Figure 16 | 93.2 | 1094s | 915 | 1023s

WM in Figure 16 | 82.3 | 1126s| 78.2 | 1068s

model deforms under constant force (27).

In Figure 21, we show the lung segmentation results of h ¢ learl
Figures 19 and 20 on a representative cross-sectional iofage, 10 démonstrate the advantage of MSAVM more clearly, we

the 3D thorax CT volume. Note that the patient has lung cancaloW 2D axial projection slices from a case of 3D heart seg-
which causes part of the lung interior region to have similfentation using MSAVM in Figure 22.(a)-(b), and compared
texture as the lung exterior. Comparing the original GACNem with the converged result of using several independent
ACWE and LSEWR models (Figure 21.(2)) with the modifiegD AVMs Wlth the ;ame |n|t|aI|zat_|on_ in Flgure 22.(c). Due to
ones that deform based on the predicted ROIs (Figure 21.($jjuctures like papillary muscles inside the inner surazed
the ROI-based models give results with simplified topolog}Scure boundary of the outer surface, the 3D AVMs without
since the ROI estimation procedure (Section II-C) cleanallsm>Patial constraints either leaked to the outer-mes.(outer)
holes and islands inside and surrounding the models. Alyrface or stopped at local minime.g., papillary muscle
comparing 3D AVM with 2D AVM, 2D AVM failed to reach boundary). I_n contrast, deforming under the spatial camm_;, .
the lung boundary but stopped at a local minimum (FiguMS_AVM av0|d§d suchileakage and overcame the local minima
21.(1)(b)), while 3D AVM reached the true boundary of thé? find the desired object boundary.
lung despite the abnormality (Figure 21.(1)(a)).

Compared with GAC, ACWE and LSEWR level set models, V. CONCLUSIONS AND FUTURE WORKS
3D AVM is represented by Finite Element triangulation, thus In this paper, we proposed the novel active volume model
smooth mesh surfaces can be obtained directly by AVEhd multiple-surface active volume model, which are the
without any post-processing such as morphological operati natural extensions of parametric deformable models to- inte
and surface reconstruction. 3D AVM preserves topology dugrate object appearance and region information. The main
ing deformation. And using probabilistically estimatedesd contributions include: (1) a clean formulation integrates
ROI, 3D AVM is also good at overcoming local minima andine learning and region statistics into active contoursl an
avoiding leakage (Figures 19, 20 and 21). Thus 3D AVM isurfaces, which provides flexible initialization and rapioh-
very suitable for extracting organ boundaries from voluinet vergence, (2) the finite differences optimization framekwor
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(2)

Fig. 20. Segmentation results of 3D AVM, and GAC, ACWE, LSEWRI an intensity-based parametric deformable model teatddform under ROI-based
forces. (1) Right lung segmentation results, (2) left luegraentation results. The results using (a) 3D AVM with 4Q,9&rtices, (b) ROI-based GAC, (c)
ROIl-based ACWE, (d) ROI-based LSEWR and (e) another RO&dgmrametric deformable model with 40,962 vertices whieforins under T-snake like
external forces.

TABLE V
COMPARISON BETWEEN ORIGINAL MODELS AND MODELS THAT DEFORM ACORDING TO THE PREDICTED OBJECROIS
3D AVM GAC ACWE LSEWR Parametric Model

DSC | Time | DSC | Time | DSC | Time | DSC | Time | DSC Time

Original models on right lung | 95.62 | 512s | 87.16 | 899s | 86.07 | 1845s | 92.77 | 1655s| nla n/a
Models using ROIs on right lung 95.62 | 512s | 92.08 | 882s | 90.87 | 2246s | 93.31 | 1182s| 95.30 632s
Original models on left lung 94.41 | 508s | 82.53 | 832s | 86.15 | 1487s| 93.01 | 1573s| nla n/a
Models using ROIs on left lung| 94.41 | 508s | 93.40 | 851s | 91.22 | 1504s | 94.60 | 1356s | 94.35 574s

enables very fast gradient- and appearance-statistiosdbaspecified radius and orientation) inside or mostly overéapp
model deformations, (3) the combination of multiple sosrcevith the object. In this way, we make sure that even in
of information in a unified framework for predicting objectthe first few iterations, the current model-interior appeae
region and boundary makes the model easily extensible, {@¢)dominated by the true foreground object’s appearance.
integrating high-level geometric spatial constraints gonul- Examples where the initial models are completely inside the
taneously segmenting multiple interacting objects’ bargd objects can be seen in Figure 6. And examples where thel initia
surfaces further improves the flexibility of initializatioand models are not completely inside but are largely overlapped
speed of convergence. Using various experiments on 2D anmith the foreground objects can be seen in Figure 5.

3D medical images, we demonstrate that the AVYM model _ _ ) ) R

can perform segmentation efficiently and reliably on CT, As we discussed in Section 1lI-B, flexible initialization
MRI and Ultrasound images with flexible initialization ancfnd fast convergence could also have negative effects. Even
rapid convergence. Taking advantage of parametric defolenathough Laplacian Mesh Optimization maintains the mesh
models’ topology preserving property, AVM and MSAVM argduality, triangles on the mesh can still have different sieas

very suitable for extracting boundaries of organs, suchiag, | especially when the model deforms rapidly. Because there ar
heart and brain from medical images. not sufficient vertices in some regions of the simplex-mesh,

such as near high-curvature boundary regions or regiorts tha

One of the novelties of the AVM is that it can predict backhave expanded greatly from the initial model, it is still théor
ground appearance statistics from the current modeliamterthe model to reach very fine details of such regiang.(White
foreground appearance. The prediction procedure is engldedMatter in Figure 12 and top-right tip of the right ventricke i
in the segmentation process. In the first few iterations vithen Figure 22). Unfortunately, based on our study of this proble
model surface was still far away from the true object boupdathere is no suitable area-based isotropic remeshing tgaéni
the foreground appearance (inside the current model) what can be used directly. The typical remeshing techniques
only an approximation of the final foreground appearancare also too time-consuming. In the future, we plan to addres
Therefore, in order to avoid bias in appearance approximatithis problem by adaptively reparameterizing the model and
for cases where the initial model covers both object aratlding vertices near branches and high-curvature stestur
partial background, we require an AVM to be initialized eith since vertices in such areas are sparser than those on the mai
completely inside or largely overlapped with the foregrdunbody. The reparameterization procedure has another afyant
object. The initialization of a 2D model is by asking the usesince using it we can choose a model with fewer vertices to
to manually place a circle (or a polygon) inside or largelgtart the deformation, and then adaptively add more vertice
overlapped with the object; the initialization of a 3D model based on the model vertices’ local sparseness. In this way we
by asking the user to manually place an ellipsoid (with usetan potentially improve the efficiency of the model.



One advantage of the MSAVM spatial constraint, compare($]
to more specific constraints such as using active shape sodel|

[6], is that it does not require off-line training. One can
initialize an MSAVM with the correct topology using multgpl

simple ellipsoidal surfaces, and then the model can deform {7]
segment heart, lung, or brain surfaces, depending on thgeima

data. And if necessary, incorporating statistical shap@gimn

our AVM framework is straightforward: The prior shape modell8]
can be treated similarly to the boundary of the ROI, and an

additional energy term can be added to generate forces that

attract the AVM or MSAVM to match the prior shape model.[9]

Another future direction to improve AVMs is to usesaft
probabilistic formulation in the ROI prediction step (Sent
[I-C). In this paper, we make a hard decision based on
posterior probabilityPr(L(x)| f1, f2, -y fk, -, [n); the ROlis
represented by a binary map and its distance transfpgnis
used in the energy function. Instead of thiard formulation,

we plan to investigate representing the ROI softly using
probability map, and then apply gradient-weighted distan

transform [13] to comput® ;. We expect that th&@ com-

tHe]
[11]

&

puted by weighted distance transform of a soft probatilistil3]
ROI will likely produce forces that attract the model to grow

faster in high-probability regions therefore add to thepdida

[14]

appearance model more information sooner, which in turn

helps resolve ambiguities in low-probability regions.

Since our model can be easily extended, we will explores)
more application areas of AVMs. For example, texture and

tensor-based information can be used to predict object R

ot

which implies the models’ potential use in segmenting
images. 3D AVM and MSAVM can also be extended

to

segment and track organs’ movements by integrating tefh?]
poral information in 4D volumetric medical images. Taking

advantage of recent developments in Graphic Processing

Uisl

(GPU) technology and parallel architectures, we plan teehav

parallelized implementations of the models for real-tini2
and 4D medical image segmentation.
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