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Abstract—In this paper, we propose a novel predictive model,
Active Volume Model (AVM), for object boundary extraction.
It is a dynamic “object” model whose manifestation includesa
deformable curve or surface representing a shape, a volumetric
interior carrying appearance statistics, and an embedded clas-
sifier that separates object from background based on current
feature information. The model focuses on an accurate repre-
sentation of the foreground object’s attributes, and does not
explicitly represent the background. As we will show, however,
the model is capable of reasoning about the background statistics
thus can detect when is change sufficient to invoke a boundary
decision. When applied to object segmentation, the model al-
ternates between two basic operations: (1) deforming according
to current Region of Interest (ROI), which is a binary mask
representing the object region predicted by the current model,
and (2) predicting ROI according to current appearance statistics
of the model. To further improve robustness and accuracy when
segmenting multiple objects or an object with multiple parts, we
also propose Multiple-Surface Active Volume Model (MSAVM),
which consists of several single-surface AVM models subject to
high-level geometric spatial constraints. An AVM’s deformation
is derived from a linear system based on Finite Element Method
(FEM). To keep the model’s surface triangulation optimized,
surface remeshing is derived from another linear system based
on Laplacian Mesh Optimization (LMO) [26], [27]. Thus efficient
optimization and fast convergence of the model are achieved
by solving two linear systems. Segmentation, validation and
comparison results are presented from experiments on a variety
of 2D and 3D medical images.

Index Terms—Segmentation, Deformable Models, Active Vol-
ume Models, Multiple Surface Models.

I. I NTRODUCTION

Image segmentation is an important task in medical image
analysis. The main challenge is to retrieve high-level informa-
tion from low-level image signals while minimizing the effect
of noise, intensity inhomogeneity, and other factors. However,
because of the variety and complexity of images, the design
of robust and efficient segmentation algorithm is still a very
challenging research topic. To address the challenges, model-
based methods have been widely used with considerable
success. Most noticeable are two types of models: deformable
models [1], [2], [12], [21], [36], [39], [43], and statistical
shape and appearance models [5], [6], [15]. Compared to
local edge-based methods, deformable models have smooth
curves or surfaces represent object boundary, which can bridge
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over boundary gaps. The image region inside or outside a
model surface can be obtained based on the model’s shape
and position, so region analysis strategies have been proposed
to assist in evolving the model. To further take advantage of
prior knowledge, statistical priors can be learned from training
examples to capture variations in the shape and appearance of
an object of interest.

In this paper, we propose a new deformable model based
approach to object boundary extraction. The new model,
Active Volume Model (AVM), can integrate constraints from
multiple sources, including but not limited to edges, region
information, statistical priors, and geometric/spatial priors. We
investigate not static priors but dynamic ones learned on-line
during model deformation.

In the remainder of the Introduction section, we will review
deformable models and previous works that utilize deformable
models for segmentation by integrating various image-based
or prior constraints. Then we discuss in more detail the novel
aspects and contribution of AVM and its multiple-surface
extension, MSAVM.

A. Shape-based Deformable Models

Since the introduction of Snakes [12] by Kasset al. in
1988, active contours have been applied to various problems
in image processing, such as segmentation, feature extraction,
shape modeling, and visual tracking. Representing the model
boundary parametrically,v(s) = (x(s), y(s)), the snake mod-
els are splines with smoothness constraints and influenced by
image forces. The original snake model was formulated to
minimize the energy function

E(C) =

∫ 1

0

(α|vs(s)|
2 + β|vss(s)|

2 + λP (C(s)))ds, (1)

whereα, β and λ are real positive constants to weight the
smoothness constraints and image forces, andP (C(s)) is a
potential which is based on some image features, such as
intensity, gradient and edges. Other parametric deformable
models were proposed to incorporate overall shape constraints
[24], [36] and to increase the attraction range of the original
Snakes byGradient Vector Flow(GVF) [39].

Another class of deformable models is level set based
geometric models [8], [21]. This approach represents curves
and surfaces implicitly as the level set of a higher-dimensional
scalar function. The evolution of these implicit models is based
on the theory of curve evolution, with speed function specif-
ically designed to incorporate image gradient information.
Because these models do not need explicit parameterization,
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they can handle topology changes very naturally. Hence the
level-set approach is commonly used in segmenting multiple
objects [10] and achieves good results in tubular structureseg-
mentation [37]. Coupled surface constraints and the dual-front
implementation of level set active contours [17] also provide
the flexibility of capturing variable degrees of localness in
optimization.

One of the geometric models most closely related to the
original Snake model is theGeodesic Active Contourmodel
[1], whose level set function is

E(C) =

∫ 1

0

g(|∇I(C(s))|)|C
′

(s)|ds,

whereg(|∇I|) =
1

1 + |∇I|2
, (2)

whereC represents the front (zero level set) curve of the
evolving level set function. When minimizing the level set
function, the front curve deforms along its normal direction
C

′′

, and this speed is controlled by the speed functiong(|∇I|).
The speed function depends on the image gradient∇I, and
it is positive in homogeneous regions and close to zero at
edges. Hence the curve deforms at a velocity proportional to
its curvature in homogeneous areas and stops at strong edges.

B. Integrating More Constraints in Deformable Models

1) Region information: Both the original Snake and
geodesic active contours rely on image gradient information
to deform, so they are sensitive to noise and spurious edges.
Both of them are prone to stop at undesirable local minima in
their corresponding energy functions. Thus initialization must
be chosen very carefully. Typically, the models are initialized
close to the object boundary to avoid getting stuck in such
local minima. In order to address the limitations and develop
more robust models for boundary extraction, region-based
parametric and geometric deformable models are proposed and
have become increasingly popular.

The basic idea is to deform an active contour using the
region statistics information from the interior and exterior of
the contour. Compared to edge-based models, region-based
models are promising since the region information can help
the model overcome many local minima and converge at
the desired object boundary. Furthermore, because region-
based approaches incorporate image region statistics, which
can be considered as global image information, they are less
constrained by the initial position, and less sensitive to noise.

A well-known example for the region modeling cost func-
tion is the Mumford-Shah functional [25]. The segmentation
problem, as formulated by Mumford and Shah, can be defined
as follows: given an observed imageu0, find a decomposition
Ωi of Ω, whereΩ ⊂ R2, such that the new “segmented”
imageu varies smoothly within eachΩi, and discontinuously
across the boundaries ofΩi. The simplified case is obtained
by restricting the segmented imageu to be piecewise-constant
(i.e.,u = constantci inside each componentΩi) or piecewise-
smooth functions. The problem is often called the “minimal
partition problem”. In the recent few years, solutions for
several simplified cases of the Mumford-Shah functional have

been proposed in the level set framework. In [2], the piecewise-
constant function is minimized within the level set framework
by Chan and Vese:

E(C) = λ1

∫∫

Ri

|I(p)− c1|dp+ λ2

∫∫

Ro

|I(p)− c2|dp

+µLength(C) + νArea(Ri), (3)

whereλ1, λ2, µ andν are positive constants to balance the
contribution of each term,Ri andRo correspond to the interior
foreground and exterior background regions of the contourC,
c1 andc2 represent the mean intensities of interior and exterior
regions respectively, andI(p) refers to the image intensity
value at pixelp.

Another approach in [41] is able to segment images that
consist of several regions, each characterizable by given statis-
tics such as the mean intensity and variance. The approach
in [30] applies a multi-phase level set representation to seg-
mentation assuming piecewise-constant intensity within one
region. It is considered as solving a classification problem
because it assumes the mean intensities of all region classes
are knowna priori, and only the set of boundaries between
regions is unknown. In [38], piecewise-smooth approximations
of the Mumford-Shah functional are derived for multiphase
cases in a variational level set framework. The optimization
of the framework is based on an iterative algorithm that
approximates the region mean intensities and level set shape in
separate steps.Geodesic Active Region[28] is another method
that integrates edge and region based modules in a level set
framework. In summary of the above approaches, they all as-
sume the distributions within regions to be piecewise-constant,
piecewise-smooth, Gaussian, or Mixture-of-Gaussian, which
may limit their effectiveness in segmenting objects whose in-
teriors have textured appearance and/or complex multi-modal
intensity distributions.

2) Statistical priors: Statistical modeling approaches can
add constraints from prior off-line learning. Cooteset al. pro-
posed methods for buildingactive shape models[6] andactive
appearance models[5], by learning patterns of variability
from a training set of annotated images. Integrating high-level
knowledge, these models deform in ways constrained by the
training data and are often more robust in image interpretation.
Image interpretation based on a shape-appearance joint prior
model can be conducted through image search [6], or by
maximizing posterior likelihood of the model given image
information in a Bayesian framework [40]. The shape prior
knowledge can also be used in an active contour’s framework.
The approach in [15] estimates the maximum a posteriori
(MAP) position and shape of the object in the image being
segmented, based on prior shape information and image in-
formation in each step of the level set evolution. Another
approach in [9] utilizes kernel principal component analysis
(KPCA) and encodes shape priors and image information
into two energy functionals entirely described in terms of
shapes. In medical imaging, shape priors particularly have
been introduced to cardiac segmentation [14], [44], and to
deformable models for constrained segmentation of bladder
and prostate [7]. One limitation of the statistical models is in
the laborious training data collection and annotation process.
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3) Spatial constraints: Furthermore, in many medical
imaging applications, we are interested in simultaneously
extracting several boundary surfaces that are coupled in such
a way that their relative positions are known and the distances
between them are within a specific range. Clearly, integrating
this high-level spatial constraint into the segmentation model
will further improve accuracy and robustness. A 2D method
[35] segments left ventricular Epi- and Endocardial borders
using coupled active contours but needs a precise manual
initialization. In 3D, Zenget al. [42] incorporated spatial
constraints about brain’s gray matter and white matter into
a level set framework which greatly improved cortex segmen-
tation accuracy. In [18], a graph-theoretic approach detects
multiple interacting surfaces by transforming the problem
into computing a minimum s-t cut. Deformation of multiple
surfaces in [20] has intersurface proximity constraints, which
allows each surface to guide other surfaces into place. All
of the three 3D methods [18], [20], [42] require manually
specifying the expected thickness between surfaces as model-
based constraint.

C. Active Volume Models

In this paper, we propose a novel volumetric de-
formable model which we term the Active Volume Mod-
els (AVM). Compared with active contours [12] and active
shape/appearance models [6], the AVM is a generative object
model that does not require off-line training but generates
useful appearance priors about the object. Using nonparametric
statistics of its volumetric interior to represent the foreground
object’s appearance, the model focuses on an accurate model-
ing of the foreground object’s attributes and embodies object
feature statistics learned adaptively as the model deforms
toward object boundary. With additional information aboutthe
overall image feature statistics, the model also estimatesthe
background statistics so that a Bayes classifier can be applied
to predict dynamically the object region (Section II-C). Inits
object-region prediction framework, the model is capable of
probabilistically integrating constraints from multiplevisual
cues.

The AVM model’s shape is represented by a parametric
spline curve in 2D [34] or a simplex mesh (or finite-element
triangulation) in 3D [33]. Its volumetric interior carriesthe
various visual appearance feature statistics. An advantage of
the AVM formulation is that it allows the forces generated
from the predicted object region to naturally become part of
a linear system (Section III-A), the solution of which gives
the deformation of the model to minimize an energy function
designed to deform the model toward object boundary. In
3D, to keep the quality of the AVM’s surface triangulation
from degenerating during deformation, we utilize a surface
remeshing technique based on Laplacian Mesh Optimization
(LMO) [26], [27].

We further propose the Multiple-Surface AVMs (MSAVM)
[32] to segment multiple coupled objects simultaneously. In-
stead of setting up fixed inter-surface distance constraints dur-
ing initialization, MSAVM dynamically updates the distance
constraints between the interacting surfaces based on current

model surfaces’ spatial interrelations. Integrating the dynamic
distance constraint strategy with other energy terms basedon
object region information, MSAVMs are less sensitive to initial
positions and yield more accurate segmentation results.

Being a parametric model fitting approach, the AVM’s
convergence is fast, typically taking no more than 30 iterations.
Several factors contribute to this efficiency: (1) AVM focuses
on modeling the foreground object and then reasons about the
background, instead of modeling the background explicitly,
(2) the model’s deformations can be solved in a linear system,
and (3) multiple external constraints are combined in a proba-
bilistic framework and together contribute to long-range forces
coming directly from the predicted object region’s boundary.

Compared to traditional parametric deformable models [4],
[12], [36], [39], AVM is unique in its ability to probabilistically
and adaptively predict the object region, even when the model
is still far-away from the object boundary. The predicted
object region of interest (ROI) is used to derive effective
long-range forces that make the model evolve quickly and
overcome local minima caused by noise. As we will show in
our experimental results (Table V), the estimated ROI is not
only applicable to AVM but useful to other parametric models
and level set models. Using the ROI, another parametric model
deforming underT-Snake[22] like forces converges quickly
and accurately; and a level set model, such asGeodesic Active
Contours (GAC) [1] or 3D Active Contours Without Edge
(ACWE) [2], also gives more accurate segmentation results.

Although the estimated ROI can be integrated in a level
set framework, we choose to couple it with a parametric
finite element (FE) triangulation model because of efficiency
and accuracy concerns. In our experimental evaluation using
various noisy medical images (Section IV-B), AVM deforms
faster than level set methods such asGeodesic Active Contours
(GAC) [1] andActive contours without edges[2]. Even though
there are thousands of vertices (or nodes) on the surface of a
3D AVM, the model’s deformation speed is still less than 30
seconds per iteration. Further, the converged 3D AVM model
is directly a smooth mesh representing the segmented object
surface. Therefore it does not need any post-processing step
such as surface reconstruction, as required by level set; it
also preserves topology thus does not produce small holes or
islands inside, while level set methods often do give results
with spurious holes/islands.

The remainder of the paper is organized as follows. In
Section II, we introduce the model’s representation, the object-
region prediction module of AVM, and the dynamic spatial
constraint integrated in MSAVM. In Section III, we present
how to deform the model, and in 3D how to maintain the
mesh’s quality when deforming. In Section IV, experimental
results of 2D and 3D medical image segmentation using AVM
and MSAVM are presented, and the models are compared to
other parametric model and non-parametric level set models.
Then we conclude the paper and discuss future work in Section
V.

II. T HE ACTIVE VOLUME MODELS

An AVM is a deforming solid that minimizes internal and
external energies [33], [34]. The internal constraint ensures the
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(1)

(2)

(a) (b)

Fig. 1. Comparing heart Left Ventricle segmentation by tessellation and by
triangulation models. (1) A tessellation model with 400×120 vertices. Notice
that the two poles exert very strong forces to drag other vertices which causes
the incorrect result. (2) A Finite Element Triangulation model with 40,962
vertices. (a)-(b) Two different views.

model has smooth boundary surface. The external constraints
come from image data, prior, and user defined features. In
this section, we introduce the representations of AVM, and
introduce the novel object boundary prediction module of
AVM.

A. Explicit Shape Representation of AVM

The shape of a 2D AVM is defined similarly to active
contours [12], as a spline curve that has associated elasticity
and rigidity. Representing the model boundary parametrically,
v(s) = (x(s), y(s)), the internal energy term of 2D AVM is
defined similarly to Active Contour Models.

Eint =

∫ 1

0

(α(s)|vs(s)|
2 + β(s)|vss(s)|

2)ds. (4)

In [4], Cohenet al. used tessellation to build a 3D finite
element method (FEM) surface for 3D deformable model
representation. The tessellation can be either a cylinder or
an ellipsoid. The model works well in the cylinder case, but
fails using an ellipsoid. The problem is that the distribution
of vertices on the ellipsoid is in quite an irregular manner.
The vertices near the two poles exert strong internal forces
to drag other vertices, which causes incorrect results. Figure 1
shows the disadvantage of using a tessellated ellipsoid—strong
internal forces generated near the poles adversely affect the
model’s deformation.

In order to solve the above problem in tessellated FEM
meshes and enable the model to match closely object bound-
ary, 3D AVM adopts a polyhedron mesh as the model repre-
sentation which places vertices regularly on the model. More
specifically, a 3D AVM is considered as an elastic solid and
defined as a finite element triangulationΛ, which can consist
of tetrahedrons, octahedrons or icosahedrons. Using the finite
element method, the internal energy function can be written
compactly as:

Eint =
1

2

∫

Λ

(Bv)TD(Bv)dΛ, (5)

whereB is the differential operator for the model verticesv
on the mesh andD is the stress matrix (or constitutive matrix).
A more detailed explanation can be found in [19].

B. Implicit Shape Representation of AVM

The implicit shape representation using level set [21] makes
a model’s shape an “image”, which greatly facilitates the
integration of boundary and region information [11]. We
compute the implicit representation of AVM model’s shape to
be used in region-based external energy terms. The Euclidean
distance transform is applied to embed implicitly an evolving
model’s surface in a higher dimensional distance function.
Let Φ : Ω → R+ be a Lipschitz function that refers to the
distance transform for the model shapeΛ. By definitionΩ is
bounded since it refers to the image domain. The shape defines
a partition of domain: the region that is enclosed byΛ, [RΛ],
the background[Ω−RΛ], and on the model,[Λ]. Given these
definitions, the implicit shape representation is considered:

ΦΛ(x) =





0, x ∈ Λ
+ED(x,Λ) > 0, x ∈ RΛ

−ED(x,Λ) < 0, x ∈ [Ω−RΛ]
, (6)

whereED(x,Λ) refers to the minimum Euclidean distance
between the image pixel/voxel locationx and the model
surfaceΛ.

C. AVM Model’s Object Boundary Prediction Module

Different from most deformable models, one of the novel
features of AVM is its adaptive object boundary prediction
scheme. The model alternates between two operations: de-
forming according to the current object boundary prediction,
and predicting object boundary according to current appear-
ance statistics of the model. Using this on-line prediction
mechanism, the expected object information updates automati-
cally while the model deforms. And long-range external forces
are generated from the predicted object boundary to effectively
attract the model to deform toward the boundary.

External constraints from any sources can be accounted by
probabilistic integration. Let us consider that each constraint
corresponds to a probabilistic boundary prediction module,
and it generates a confidence-rated probability map to indicate
the likelihood of a pixel being:+1 (object class), or−1
(non object class). Suppose we haven independent external
constraints derived from image information, the feature used
in thekth constraint isfk. L(x) denotes the label of a pixelx.
Our approach of combining the multiple independent modules
is applying the Bayes rule in order to evaluate the final
confidence rate:

Pr(L(x)|f1, f2, ..., fn) =

(Pr(f1, f2, ..., fn|L(x))Pr(L(x))/(Pr(f1 , f2, ..., fn))

∝Pr(f1|L(x))Pr(f2|L(x))...P r(fn|L(x))Pr(L(x)). (7)

For each module, the class-dependent probability
Pr(fk|L(x)) is estimated based on the AVM model’s
current statistics about featurefk as well as the overall
feature statistics in the image. The derivation is as follows.

Pr(fk(x)) = Pr(fk(x), L(x) = +1) + Pr(fk(x), L(x) = −1)

= Pr(fk(x)|L(x) = +1)Pr(L(x) = +1)

+Pr(fk(x)|L(x) = −1)Pr(L(x) = −1), (8)
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wherePr(fk(x)) is the overall probability of observingfk(x)
at pixel/voxel locationx for the kth feature.Pr(fk(x)) is
known since it can be estimated using thekth feature’s over-
all probability distribution in the entire image. Furthermore,
assuming the current AVM model is either completely inside
or largely overlapped with the foreground object, the model-
interior appearance reflects foreground object appearance.
Thus, we can approximate the probability of featurefk in
the foreground,Pr(fk(x)|L(x) = +1), using the feature’s
distribution in the current AVM model. Both probability
density functions,Pr(fk(x)|L(x) = +1) and Pr(fk(x)),
are estimated using a nonparametric kernel-based density
estimation method [11]. They are defined as:

Pr(fk(x)|L(x) = +1) =
1

|RΛ|

∫∫

RΛ

K(
fk(x) − fk(r)

h
)dr,

P r(fk(x)) =
1

|Ω|

∫∫

Ω

K(
fk(x)− fk(r)

h
)dr, (9)

whereRΛ is the AVM’s model-interior region,Ω is the whole
image domain,r represents a pixel/voxel in the domain of
integration,K is the kernel density function, andh is the
kernel size. In this paper, we defineK as a uniform box and
the kernel size as2. The p.d.fs thus estimated can represent
complex multi-modal distributions.

For the pixel/voxelx, given the known overall feature
distribution, Pr(fk(x)), and the approximated foreground
feature distribution, Pr(fk(x)|L(x) = +1), we can now reason
about the feature distribution in the background,

Pr(fk(x)|L(x) = −1) =

Pr(fk(x)) − Pr(fk(x)|L(x) = +1)Pr(L(x) = +1)

Pr(L(x) = −1)
.(10)

The prior independent of image features,Pr(L(x)), in (7)
and (10) can be assumed uniform:Pr(L(x) = +1) = 0.5 and
Pr(L(x) = −1) = 0.5. Alternatively, spatially-varying prior
is another choice. At the end of Section II-F, we define a
spatially-varying prior using two distance-related Fermifunc-
tions in (II-F) to control the prior values ofPr(L(x) = +1)
andPr(L(x) = −1). In Figure 4.(2) and (3), we show the
segmentation results with and without the spatially-varying
prior, respectively.

In this paper, we show that by considering the pixel intensity
i(x) feature, the above framework generates reasonable esti-
mates of background feature statistics (10) and consistently
gives good estimations of the object region on a variety of
medical images.

Once the posterior probabilitiesPr(L(x)|f1, f2, ..., fn) are
estimated, we apply the Bayesian decision rule to obtain
a binary mapPB whose foreground represents the ob-
ject region. That is,PB(x) = 1 (x belongs to the ob-
ject) if Pr(L(x) = +1|f1, f2, ..., fn) ≥ Pr(L(x) =
−1|f1, f2, ..., fn), andPB(x) = 0, otherwise. The probability
of error for the decision at pixelx is min(Pr(L(x) =
+1|f1, f2, ..., fn), P r(L(x) = −1|f1, f2, ..., fn)).

After obtaining the binary mapPB, we apply a connected
component analysis algorithm onPB to retrieve the connected
component that overlaps the current model. This connected

(1)

(2)

(3)

(4)

(a) (b) (c) (d)

Fig. 2. Left Ventricle endocardium segmentation using a 2D active volume
model. (1) The model drawn on the original heart image, (2) the binary map
PB estimated by the boundary prediction module using intensity feature,
(3) distance transform of the ROI boundary,ΦR, (4) the binary edge map
estimated by the boundary prediction module using gradientmagnitude
feature, (a) the initial model, (b) the model after 8 iterations, (c) the model
after 18 iterations, and (d) the final converged result after26 iterations.

region is considered as the current object ROI,R, and its
boundary represents the predicted object boundary. Due to
noise, there might be small holes that need to be filled before
extracting the boundary ofR.

The progressive ROI updating can be clearly seen from a 2D
AVM example in Figure 2. In the example, the ROI (Figure
2.(2)) evolves according to the changing object appearance
statistics (estimated by current model’s volumetric interior
statistics). And the image forces generated by the ROI region
energy term (12) deform the model to converge to the object
boundary.

Besides intensity featurei(x), other features such as image
gradient and texture can also be used in our framework. Take
image gradient as an example. Since in most applications
both object and background regions have similar gradient
distributions but object boundaries have a different gradient
distribution, following the estimation method above, we can
obtain a probability (and binary) map of the object boundary.
In Figure 2.(4), we show the predicted object boundary map
using gradient magnitude as feature. In our previous work
[33], [34], we did allow the integration of the boundary
map estimated using image gradient in our model’s energy
function. However, due to image noise, small spurious edges
or gaps exist in the predicted boundary (e.g., Figure 2.(4)).
And we found that in many medical image segmentation
experiments, having the gradient-based boundary information
in our framework did not improve performance. Thus, in this
paper, we use only the image intensity feature and its predicted
object ROI to derive image forces that deform AVM.

The initialization of an AVM model is very flexible. In 2D,
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initialization is done by asking a user to manually place a
simple shape, such as a circle with specified center and radius
or a polygon defined by a set of user-input points. And in 3D,
a user can either initialize the model with a simple shape, for
instance an ellipsoid with user-specified radius and orientation,
or initialize it with a standard atlas that has similar structure
as the object to be segmented. In order for the initial model’s
appearance to be a good approximation of the foreground
object’s appearance, the initial model should be placed either
completely inside or largely overlapped with the object.

D. Definition of Energy Functions

In order to fit to the boundary of an object, the AVM model
is driven by the internal smoothness term, and the region
data term which is derived from image information (i.e., the
estimated ROI). The overall energy function is defined as:

E = Eint + Eext = Eint + ER, (11)

whereEint is defined in (4) for 2D and (5) for 3D. The weight
factor betweenEint andEext is implicitly embedded inEint

(α(s) andβ(s) in (4) for 2D andγ in (20) for 3D).
Given the current model, a Region of Interest (ROI)R

representing the predicted object region can be computed
by the prediction module introduced in Section II-C. Let us
denote the signed distance transform of the ROI boundary
shape asΦR. CombiningΦR and the current model’s implicit
shape representationΦΛ in (6), the region-based external
energy term is defined as:

ER =

∫

Λ

ΦΛ(v)ΦR(v)dΛ. (12)

The multiplicative term provides two-way balloon forces
that deform the model toward the predicted ROI boundary.
This allows flexible model initializations either overlapping
the object or inside the object.

E. Topology

Being a parametric model that deforms toward the estimated
object region boundary, AVM preserves topology during defor-
mation. However, as we will show in the next Section II-F and
in experiments, segmenting an object of arbitrary topologycan
be handled by initializing multiple AVMs coupled together,
one for each structure in the object. Therefore, in this frame-
work, we assume the correct topology of the object is known
and then initialize AVMs with that topology to segment the
object. We argue that, when segmenting organs with known
topology in medical images, this strategy can be more reliable
than using models that can freely change topology.

F. Multiple-Surface Active Volume Models

In some medical images, there may not be enough infor-
mation (e.g., contrast) that can be derived from the images
to clearly distinguish the object boundaries of interest. This
could be due to neighboring objects having very similar tissue
types, or due to limitations in medical imaging technology.
Therefore, a single surface based deformable model may stop

at local minima or leak out to incorrectly converge at a nearby
object’s boundary. Often such mistakes can be avoided by
considering spatial constraints between multiple objects– for
instance, by integrating the spatial constraints in a multiple-
surface based deformable model framework [7], [32], [42] and
deforming all interacting surfaces simultaneously to extract the
object boundaries with better accuracy.

A MSAVM is initialized as several AVMs inside an outer
AVM 1. And each AVM has its own predicted ROI. We
introduce a novel adaptive spatial constraint to constrainthe
multiple model surfaces’ deformation. To do that, we add into
the energy function a new energy term,Edist, which is derived
from the spatial distance constraint. Then the energy function
for the ith surface of MSAVM is defined as:

E = Eint + ER + Edist, (13)

whereEint is the same as the internal energy in (11).ER

is the external energy term derived from the predicted object
ROI, which we will define in (17).

We construct two distance-related Gaussian Mixtures func-
tions, gR(dist) and gD(dist), to control the weights ofER

andEdist, respectively. The functions are defined based on the
distance value between surfaces. Leti, j be surface indices,
the mean distance value of theith surface to other surfaces is
defined as:

disti =

∫
Λi

dist(v)dΛi∫
Λi

dΛi
,where

dist(v) = min
∀j,j 6=i

(|ΦΛj
(v)|), (14)

wherev is a vertex on theith surfaceΛi, andΦΛj
is the

implicit representation (i.e., signed distance transform) of the
jth surfaceΛj .

The two distance-related Gaussian Mixtures functions of the
ith surface are defined in (15) and illustrated in Figure 3.(1).

gR(dist) =
(e−(dist−disti)

2/2σ2

1 + αe−(dist−disti)
2/2σ2

2 )

(1 + α)
,

gD(dist) = κ · (1− gR(dist)). (15)

In the above definitions, a greaterα means thatgR(dist) has
a higher lower bound andgD(dist) has a lower upper bound.κ
is a constant used to control the relative weight of the distance
constraint term. In all our experiments,α and κ are set as
0.5 and 1.0, respectively.σ1 and σ2 (σ1 < σ2) are standard
deviations of the two Gaussians, which are empirically set as
0.15× disti and1.5× disti for all the experiments.

Using the distance-constrained weight functions,gR(dist)
and gD(dist), the energy termsER and Edist in (13) are
defined as:

ER =

∫

Λ

gR(dist(v))ΦΛ(v)ΦR(v)dΛ, (16)

Edist =

∫

Λ

gD(dist(v))(dist(v) − disti)
2dΛ. (17)

1The outer AVM is required because of an assumption in our spatial
distance constraint—that the distances of a surface’s points to other surfaces
follow a unimodal distribution with mode at the mean distance.
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(1)

dist dist

gD(dist)

dist dist

gR(dist)

(2)
0

0.5

1

dist dist

finc(dist)

0

0.5

1

dist dist

fdes(dist)

Fig. 3. Functions to control the spatial constraints. (1) Distance-related
Gaussian Mixtures functions to balance the contributions of the region term
and the spatial constraint term, and (2) distance-related Fermi functions to
embed spatial constraints into the ROI boundary predictionmodules.

(1)

(2)

(3)

(4)

(a) (b) (c) (d)

Fig. 4. (a) Results of distance-related Gaussian Mixtures functions, (b) results
of distance-related Fermi functions, (c) results without spatial constraint, (d)
the color bar used to map the distance information, (1)-(2) Distance-Color
(DC) mapping of Gray Matter segmentation, the range for distance between
Gray Matter and White Matter is 2∼15 voxels, and (3)-(4) DC mapping of
heart segmentation, the distance range is 2∼25 voxels.

Given a vertexv on theith surface, its minimum distance
value to all the other surfacesdist(v) can be calculated based
on (14). According togR(dist(v)) and gD(dist(v)) (Figure
3.(1)), if dist(v) is close to theith surface’s mean distance
(to other surfaces),disti, then gR(dist(v)) is large and the
region termER makes more contribution toward the surface’s
local deformation nearv; conversely, ifdist(v) is far away
from disti, which means the local surface near the vertex may
be stuck at local minima or have a leakage, the energy term
for distance constraintEdist is given more power to deform
the local surface to satisfy the distance constraint and guide it
into place.

MSAVM maintains the fast convergence and flexible ini-
tialization properties of AVM. Instead of setting a static
spatial constraint manually or empirically, after each iteration,
MSAVM updates each surface’s mean distance valuedist
based on the spatial relationship among its current model sur-
faces. ThegR(dist) andgD(dist) functions for each surface
are then shifted accordingly to make sure the newdist still
corresponds to the centerline of these functions. This unsuper-
vised strategy for online learning of spatial distance constraints
between MSAVM’s multiple surfaces, coupled with its AVMs’
online learning of region appearance statistics, make MSAVM
possess both adaptive spatial constraints and adaptive region-
based constraints. These properties allow MSAVM to often
have even more flexible initialization and faster convergence
than the original AVM, as we will show in our experiments
(Table VI and Figure 22).

In MSAVM, by designing the weight functions,gR(dist)
andgD(dist), and constraining a vertex’s deformation so that
its smallest distance to other surfaces is close to its surface’s
mean distance, we implicitly make the assumption that the
distances (to other surfaces) of a surface’s vertices follow a
unimodal distribution whose mode is at the mean distance.
However, instead of a static unimodal distance distribution,
MSAVM adaptively modifies its distance constraint as the
mean distances between surfaces change along with model de-
formation. Thus, the mode (i.e., mean distance) of a surface’s
distribution changes as the model deforms, and the modes
of different surfaces’ distributions are separately kept and are
usually different from each other. Compared with the distance
constraint function in [42], which assumes constant distance
between surfaces thus only works well in the case of brain
segmentation because of a nearly constant thickness of the
cortical layer, the MSAVM’s adaptive distance constraint is
more general. It can not only be used to segment brain gray
matter and white matter, but also has very good performance
in extracting ventricles from heart and lungs in the thorax,
even though distances between these coupled ventricular sur-
faces vary greatly. In a heart (or lung) segmentation case,
an MSAVM is always initialized with the correct topology,
with the outer AVM representing the epicardial (or thorax)
surface and the inner AVMs representing the endocardial (or
left and right lung) surfaces. Figure 4 shows two segmentation
results by Distance-Color (DC) mapping the spatial distance
information into color space.

Next, we discuss an alternative way of integrating the
spatial constraint in MSAVM, by modifying the pixel label
prior Pr(L(x) = +1) and Pr(L(x) = −1) in the object
ROI estimation module (Section II-C, (7 and 10)). Instead of
assuming a uniform prior (i.e.,Pr(L(x) = +1) = Pr(L(x) =
−1) = 0.5), we define two distance-related Fermi functions
(sigmoidal), finc(dist) and fdes(dist), to be the spatially-
varying prior. The two functions of theith surface are defined
in (II-F) and illustrated in Figure 3.(2).

finc(dist) = 1/(1 + e−s(dist−disti)),

fdes(dist) = 1/(1 + es(dist−disti)), (18)

where s is a positive constant to control the steepness of
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the step neardisti. s is set as0.2 for the experiments shown
in Figure 4.(b). The Fermi functions are used to modulate
the label (+1 or −1) prior at every voxel when estimating
the ith surface’s object ROI. For a voxelx, let its minimal
distance value to all surfaces other than theith one be
dist(x). Then, if theith surface is an inner surface, we set
Pr(L(x) = +1) = finc(dist(x)) and Pr(L(x) = −1) =
fdes(dist(x)); otherwise, if theith surface is the outer surface
of MSAVM, we set Pr(L(x) = +1) = fdes(dist(x)) and
Pr(L(x) = −1) = finc(dist(x)). When the model surfaces
deform and the mean distances between them change, the
finc(dist) andfdes(dist) functions for each surface are then
shifted accordingly to make sure the newdist still corresponds
to the centerline of these functions.

Comparing the above spatial prior using Fermi functions
with the one using the Gaussians Mixture functionsgR(dist)
andgD(dist), we found that integrating the spatial prior using
the Gaussian Mixtures functions and the additional energy
term Edist is more effective than using the Fermi functions.
We reason that this is because the Fermi functions are used to
weight the prior probability of voxels being inside theobjector
non object, and if in some region, the conditional probability
derived from image information is not good enough, the effect
of the spatial prior in the combined posterior probability map
can be greatly reduced. For instance, in Figure 4.(b)(3)-(4),
the holes on the Fermi-based MSAVM model developed is
due to the model being stuck at a local minima caused by
noise in the posterior probability map and the estimated object
ROI. The results obtained using the Fermi-based spatially
varying prior (Figure 4.(b)) do not show marked improvement
over the results obtained using the uniform prior (Figure
4.(c)). Therefore, in all our experiments, we use the uniform
prior for object ROI prediction (Section II-C), and we use
the GM functionsgR(dist) and gD(dist) and the additional
energy termEdist for integrating the adaptive spatial distance
constraint in MSAVM.

III. M ODEL DYNAMIC DEFORMATION

A. The Model’s Deformation

Minimization of the AVM’s energy function can be achieved
by solving the following linear system

A · V = LV , (19)

where matrixA is symmetric and positive definite, and its
size equals the number of control vertices.V is the vector of
vertices on the curve (2D) or surface (3D) of AVM.LV is the
external force vector of the control vertices.

For 2D AVM, A is the pentadiagonal banded matrix derived
from the internal energy term, (4). The detailed derivation
and the full form ofA can be found in the Appendix of
[12]. For 3D AVM, let us denote the FE triangulation mesh
Λ as a graphG = (V,E), with verticesV and edgesE.
Then A is the stiffness matrix derived from (5) by using a
continuous piecewise linear basis function. More specifically,
given the basis functionφi at the ith vertex vi and the
number of vertices|V|, the model’s FE mesh is represented
by Λ(x) =

∑|V|
i=1 viφi(x). The continuous piecewise linear

basis functionφi is defined like a “tent”, such that it has a
positive value atvi and zero value at all other vertices:

φi(vj) = δij ≡

{
γ i = j
0 i 6= j

, (20)

whereγ is the positive value atvi. (In practice,γ controls
the smoothness of the model mesh; largerγ leads to higher
internal energy and smoother mesh.) And, theith row andjth
column elementaij of the matrixA is defined as:

aij =

{ ∫
Λ
∇φi(x)∇φj(x)dΛ i = j or (vi,vj) ∈ E

0 otherwise
.

(21)
For the external force vectorLV , the ith element lvi

corresponds to the external force on theith vertexvi based
on (12), which is defined as:

lvi
= −∇(ΦΛ(vi)ΦR(vi)) = −ΦR(vi) · ∇ΦΛ(vi). (22)

If a model vertexv is far away from the ROI’s boundary,
|ΦR(v)| has a greater value. Thus, according to (22), the
external force on this vertex is stronger, which can deform
the vertex toward object boundary quicker.

The linear system in (19) can be solved by using finite
differences [4]. After initializing the 3D AVM, the final
converged result can be obtained iteratively based on the
following equation:

(V t − V t−1)/τ +A · V t = LV t−1 , (23)

where V t−1 is the current AVM’s vertex vector andτ is
the time step size. (23) can be written in a finite differences
formulation, which yields

M · V t = V t−1 + τLV t−1 ,

M = (I + τA). (24)

For MSAVM, each surface is treated with an independent
linear system. For theith surface,

Ai · Vi = LVi
, (25)

whereAi is the stiffness matrix defined the same way as 3D
AVM, Vi is the vector of vertices of theith surface, andLVi

is the corresponding external force vector. The differencefrom
AVM is that the spatial constraint is a part of the external force
vector (17) in MSAVM. An elementlv of LVi

is defined as:

lv =− gR(dist(v)) · ∇(ΦΛ(v)ΦR(v))

− gD(dist(v)) · ∇((dist(v) − disti)
2). (26)

Thus deforming MSAVM can be achieved by solving several
independent linear systems.

B. Model Shape Optimization During Evolution

One of the advantages of AVM is the flexible initialization.
The final converged results can be very different from the
initial models. However, the flexible initialization also has neg-
ative effects. If the initialization is too far away from thereal
object, the model will deform rapidly in each iteration, which
causes the quality of the simplex mesh to degrade sharply. In
2D, this problem can be easily solved by reparameterizing the
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curve, which is commonly used in 2D deformable models,
such as [39] and [34]. However, such reparameterization in
3D is more difficult since the 3D meshes’ structure and
connectivity are much more complicated than 2D curves.
The straightforward solution in 3D is adopting a stricter
smoothness control and a smaller step size. This strategy
can partially solve the problem but will lead to some other
problems, such as delaying the convergence time and causing
the model to get stuck at local minima. To overcome this
problem, we use Laplacian Mesh Optimization (LMO) [26],
[27] to maintain the surface mesh quality after each iteration.
LMO is a remeshing technique that optimizes triangle shapes
and smoothes a triangular mesh while preserving geometric
features on the mesh. It is guided by vertex Laplacians
and relocates vertices so that they approximate prescribed
Laplacians and positions in a weighted least-squares sense.
Its non-iterative solution is well-defined and can be computed
efficiently using optimized sparse linear solvers. Using LMO,
we remesh the AVM model after each iteration of deformation.
In this way, the model’s mesh quality is maintained at a
high level. Thus we can use a relatively weak smoothness
control and larger step size to deform the model. Based on
our experiments, AVM with LMO remeshing converges faster
than the AVM without remeshing.

C. Steps to deform AVM

In summary, we adopt the following steps to deform the
AVM toward matching the desired object boundary.

1) Initialize the AVM, set up matrixA in (19) and step size
τ in (24).

2) ComputeΦΛ in (6) based on the current model; predict
the object ROIR by applying the Bayesian Decision rule
to binarize the current estimatedobjectprobability map
(Section II-C), and compute the signed distance trans-
form of the ROI’s boundary,ΦR. For each surface in
MSAVM, updatedist based on (14) and shift distance-
related control functions according todist.

3) Deform the model according to (24). Apply LMO mesh
optimization to the model.

4) For 3D AVM and MSAVM, adaptively reduce the
smoothness controlγ in (20) and decrease the step size
τ in (24). For 3D AVM, update its stiffness matrixA.
For MSAVM, update the stiffness matrices for all the
surfaces.

5) Repeat steps 2-4 until convergence. The convergence
criterion is that the maximum movement of the vertices
is less than 3 pixels/voxels.

In Step 4, using a relatively strong internal smoothness
constraint at the very beginning helps reduce the effect of
image noise on model deformation and enables the model to
deform quickly toward object boundary. Then, by gradually
decreasing the values of smoothness control parameters (α(s)
and β(s) in 2D and γ in 3D) and the step sizeτ , the
model can extract more details on the object boundary as it
gets close to convergence. This scheme to adaptively change
parameters is particularly useful in 3D, see Table II. Giventhe
initial parameter valuesγbeg and τbeg, and the lower bound

TABLE I
2D AVM MODEL’ S PARAMETER SETTINGS.

α(s) in (4) β(s) in (4) τ in (24)
Figure 5 30 30 0.1
Figure 6 20 20 0.05

Figure 18.2(a), (c)-(d) 30 30 0.1
Figure 18.2(b) 25 25 0.03

(1)

(2)

(a) (b) (c)

Fig. 5. The segmentation results on cardiac CT images. (1) The initial
models, (2) the final converged results after (a) 7, (b) 5 and (c) 6 iterations.

valuesγend andτend, we decreaseγ andτ by γbeg−γend

25 and
τbeg−τend

25 per iteration until the iteration number reaches 25
or the model converges. If the model has not converged after
25 iterations, the lower bound values,γend andτend, are used
until convergence.

IV. EXPERIMENTAL RESULTS

In this section, we present experiments of using AVM
and MSAVM for segmenting organs in images of the human
body, evaluated the model’s performance and compared it with
several other segmentation models. All the experiments were
tested on a PC workstation with an Intel Duo Core 3GHz
E6850 processor.

A. Results of AVMs

1) Results of 2D AVMs:We have applied 2D AVM to
extract boundaries in various medical images. We first tested
the model by using a set of cardiac CT images. Considering
that the CT images give relatively clear contrasts, we selected
a large step size. Table I gives 2D parametersα(s) andβ(s)
for smoothness, andτ for step size.

We also used a set of ultrasound images to test the ro-
bustness of the model to speckles and noise. Because of the
nature of ultrasound images, there is no clear contrast edges
to indicate the object boundary. In this case, the region-based
properties of the AVM become very important. Figure 6 shows
2D AVM segmentation results for several ultrasound images,
in which there are noisy gradients and spurious edges inside
the objects of interest. In this case, the object prediction
represented by the ROI is the only reliable information that
enabled the finding of object boundary. Figure 5 and 6 also
show that model initialization can either partially overlap the
object or inside the object. The model is able to expand or
shrink to converge to the boundary of the object that dominates
the initial model appearance.
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(1)

(2)

(a) (b) (c)

Fig. 6. Segmentation results on ultrasound images. (1) The initial model,
(2) the final converged result after (a) 21, (b) 35 and (c) 23 iterations.

TABLE II
3D AVM AND MSAVM MODELS’ PARAMETER SETTINGS.

γ in (20) τ in (24)
3D AVM for Lung 40 ∼ 15 0.07∼ 0.015

3D AVM for Left Ventricle 40 0.07∼ 0.015
3D AVM for Brain 60 ∼ 15 0.06∼ 0.01

MSAVM for lung, heart and brain 35 ∼ 20 0.07∼ 0.01

2) Results of 3D AVM:We tested 3D AVM to extract
boundary surfaces of the lung, left ventricle, Brain Gray Matter
and White Matter from 3D volumetric image stacks. Since
the model is robust to noise, all the image data used in the
testing are the original datasets without any preprocessing,
e.g.,, smoothing and morphological operations.

First, we used a 3D AVM model to segment the right lung
using chest CT data provided by McLaughlinet al. [23].
The model was initialized as an a simple Finite-Element-
Triangulated ellipsoid whose long axis is perpendicular to
the axial image plane. Notice that the model only partially
overlaps the predicted ROI. External forces from the adaptively
changing ROI’s boundary deform the model to finally converge
on the object boundary. Figure 7 shows the initial model and
the final converged result.

Then we tested 3D AVM model in segmenting the left
ventricle in a CT stack. The model was again initialized as
an ellipsoid and was placed in the stack after a set of rotation
operations so that the ellipsoid’s long axis roughly aligned
with the left ventricle’s long axis. Some boundary condition
was also specified so that the model did not deform beyond
the z-range defined by the top and bottom slices of the stack.
Figure 8 shows the initial model and the final converged result.

We ran an experiment to examine the effects of parameter
setting (γ in (20) andτ in (24)) and model initialization on the

(a) (b) (c) (d)

Fig. 7. Right Lung segmentation using a 3D AVM with an FE triangulation
mesh consisting of 32,770 control vertices. (a) The initialmodel, (b) the final
converged result after 27 iterations, (c) a different view of the final result, and
(d) the final converged result in a 2D slice.

(a) (b) (c) (d)

Fig. 8. Left Ventricle segmentation using a 3D AVM with 65,538 control
vertices. (a) The initial model, (b) the final converged result after 21 iterations,
(c) a different view of the final result, and (d) the final converged result in a
2D slice.

results of 3D AVM. In Figure 9.(2)-(4), we show the model’s
segmentation results using three different parameter settings,
and in Figure 9.(a)-(c) the results using three different model
initializations. There exist only slight differences among the
results. The average running time of the 9 segmentation cases
is 514 seconds. The averageDice Similarity Coefficient(DSC)
[29] accuracy value is92.1%, and the variance of the 9 DSC
values is0.88%. Since the results are not very sensitive to
parameter setting and model initialization, we use the samepa-
rameter setting for all the lung segmentation examples, another
parameter setting for all the heart segmentation examples,and
so on. The actual parameter settings for various 3D AVM
and MSAVM experiments are listed in Table II; the adaptive
parameter change scheme outlined in Section III-C is adopted
in all cases.

Next, we tested 3D AVMs using more datasets: 10 volu-
metric cardiac CT datasets, and 15 human lung CT datasets.
In the heart datasets, 3D AVMs are used to segment the left
ventricle, and in the lung datasets, 3D AVMs are used to
segment the left and right lungs. Figure 10 and Figure 11
show the initial models and final converged results on sample
heart and lung segmentation cases. The average DSC value of
heart segmentations is90.8%, and the average DSC value of
lung segmentations is95.5%.

Since there are thousands of vertices on the FE triangulation
surface, an AVM model can extract very detailed information
on object surfaces. This advantage can be seen from the human
brain Gray Matter and White Matter segmentation example in
Figure 12. The 3D simulated MRI brain images are provided
by BrainWeb [3]. The MRI stack is ofT1 modality, has
1mm slice thickness,3% noise level and20% intensity non-
uniformity (INU). Both models (one for Gray Matter and one
for White Matter) were initialized as ellipsoids. As the models
were getting closer to the approximated object boundary,
the models decreased the smoothness constraint automatically
based on the deformation strategy. Then a lot of details on the
object surfaces appeared on the models.

In terms of efficiency, the running time of 3D AVM depends
on the number of vertices on the model and the size of the
3D image volume. For the experiments shown in Figure 9.(2)-
(4), using a model with 40,962 vertices, the average running
time of one iteration is 22.3s. Finding the region of model
interior according to the mesh position and computing the
model’s distance transformΦΛ takes 7.3s (32.7%); generating
the object ROIR and its distance transformΦR takes 12.2s
(54.7%); and the remaining steps, including solving the linear
system and remeshing of the model surface, take 2.8s (12.6%).
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(1)

(2)

(3)

(4)

(5)

(a) (b) (c)

Fig. 9. Segmentation results using three different parameter settings (2, 3
and 4), three different model initializations (a, b and c), and using a mesh
with more control vertices (5). (1) Initial models with 40,962 vertices, (2)
parametersγ in Equation (20) andτ in Equation (24) are set as:γ = 30
and τ = 0.05, (3) γ = 40 and τ = 0.09, and (4)γ = 50 and τ = 0.2.
(2)-(4) Average running time is514s, and average DSC value is92.1%. (5)
The model with 163,842 vertices,γ = 30 andτ = 0.05, the average running
time is 1124s, and average DSC value is92.8%.

In Figure 9.(5), using a model with 163,842 vertices, the
average running time of one iteration is 48.4s. Generating
the object ROI and computingΦR takes roughly the same
amount of time as before (12.0s, 24.8%); finding the model-
interior region and computingΦΛ take longer (25.6s, 52.9%);
and solving the linear system and remeshing also take longer
time (10.8s, 22.3%). Since the models in Figure 9.(5) have
more control vertices, they can recover more boundary details.
And the average DSC value of Figure 9.(5) is92.8%, slightly
higher than that of Figure 9.(2)-(4).

The memory requirement of 3D AVM depends mainly on
the image volume size, since the original image volume, the
ROI binary map and its distance transform, and the model-
interior binary map and its distance transform need to be
stored in the memory. The size of the model mesh and the
matrices in the linear system affect little the memory usage.
More specifically, given the volume sizes (Table IV), brain
segmentation takes around 280MB, heart and lung segmenta-
tions take around 660MB. Currently all experiments use the
original whole image volumes without cropping. We expect

(1)

(2)

(3)

(a) (b) (c)

Fig. 10. Left ventricle segmentation results using 3D AVM (40,962 vertices)
on 3 different 3D cardiac CT datasets. (a) The initial models, (b) the final
converged results, and (c) the final converged results in 2D slices.

(1)

(2)

(3)

(a) (b) (c)

Fig. 11. Lung segmentation results using 3D AVM (40,962 vertices) on 3
different 3D lung CT datasets. (a) The initial models, (b) the final converged
results, and (c) the final converged results in 2D slices.

that the memory usage and running time will be lower if we
use a smaller subvolume containing the object of interest for
segmentation, instead of using the whole volumes.

3) Results of MSAVM:We applied MSAVM to segment
various coupled organ surfaces in volumetric medical images.
An MSAVM is initialized as several inner AVMs in an
outer AVM. The AVMs will deform simultaneously and in
a coordinated way to fit the object boundaries. First, we put
an MSAVM into a thorax CT stack to segment the lungs of
a lung cancer patient. The model was initialized as one outer
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(1)

(2)

(a) (b) (c) (d)

Fig. 12. Brain Gray Matter and White Matter segmentation using 3D AVM
and each model has 131,074 control vertices. (1)(a) The initial model of Gray
Matter, (1)(b)-(1)(c) the final converged result after 24 iterations, (2)(a) the
initial model of White Matter, (2)(b)-(2)(c) the final converged result after 21
iterations, and the final converged results of (1)(d) Gray Matter and (2)(d)
White Matter in 2D slices.

(1)

(2)

(a) (b) (c)

Fig. 13. Distance-Color (DC) mapping of lung surfaces segmentation using
MSAVM, the distance range is 3-45 voxels, and each model has 32,770
vertices. (1) The inner surfaces, (2) the outer surface, (a)the initial model,
(b) the final converged result after 21 iterations, (1)(c) the initial model in a
2D slice, and (2)(c) the converged result in the 2D slice.

ellipsoid around the thorax and two inner ellipsoids whose
long axes are perpendicular to the axial image plane. Figure
13 shows the 3D DC mapping images during deformation. A
2D coronal projection view is also included in Figure 13 to
show a cross section of the initial model and converged result.

Then we experimented with the model on segmenting heart
surfaces in a cardiac CT stack. The MSAVM model was
initialized as three ellipsoids: one for the epicardial surface
of the myocardium, one for the endocardial surface of the
left ventricle, and a third one for the endocardial surface
of the right ventricle. To keep the model from deforming
into connected structures with similar intensities (e.g.,atria),
we specified some boundary condition for each of the three
model surfaces so that the surface did not deform beyond its
top- and bottom-slice thresholds. Figure 14 and Figure 15
show the deformation steps of the heart MSAVM from two
3D viewpoints. 2D sagittal and coronal projection views are
also provided in Figure 14.(c) and Figure 15.(c). Due to the
structures such as papillary muscles inside the left ventricle,
it would be difficult for a single surface deformable model to
reach the desired boundary without supervised learning priors.

(1)

(2)

(a) (b) (c)

Fig. 14. Distance-Color mapping of heart segmentation using MSAVM
viewed from the right, the distance range is 2-25 voxels, andeach model has
65,538 vertices. (1) The inner surfaces, (2) the outer surface, (a) the initial
model, (b) the final converged result after 24 iterations, (1)(c) the initial model
in a 2D slice, and (2)(c) the converged result in the 2D slice.

(1)

(2)

(a) (b) (c)

Fig. 15. Distance-Color mapping of heart segmentation using MSAVM
viewed from the left, the distance range is 2-25 voxels, and each model has
65,538 vertices. (1) The inner surfaces, (2) the outer surface, (a) the initial
model, (b) the final converged result after 24 iterations, (1)(c) the initial model
in a 2D slice, and (2)(c) the converged result in the 2D slice.

However, deforming according to the on-line predicted object
boundary and spatial constraints, MSAVM can overcome
the local minima and extract accurately the multiple cardiac
surfaces.

MSAVM can also be used to segment Brain Gray Matter
and White Matter simultaneously. In Figure 16, the model
was initialized as one outer and one inner ellipsoids. The
3D simulated MRI brain images provided by BrainWeb was
again used. Figure 16 shows the DC mapping of the model
deformation progress.

Figure 17 also demonstrates some results using MSAVM
for lung and heart segmentations. Notice that even though
the initializations were far away from the desired boundary,
MSAVM still reliably yielded accurate results.

B. Comparison and Evaluation

1) Comparison between AVM and other deformable mod-
els: To evaluate the performance of 2D AVMs, we tested
the model using MRI and CTA images. Figure 18 shows
segmentation results for a variety of medical images. For all
the images shown in Figure 18, we presented comparison
between 2D AVM, theGradient Vector Flow(GVF) model
[39], and the level-set basedActive Contours without Edges
(ACWE) [2]. Based on the running time (to converge) in Table
III and the segmentation results in Figure 18, 2D AVM is
more efficient than ACWE, and achieves more accurate results
than GVF and ACWE. 2D AVM and GVF produce smooth
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(1)

(2)

(a) (b) (c) (d) (e) (f)

Fig. 17. Different initializations of MSAVM in lung and heart segmentation examples. (a)-(b) Each model has 32,770 vertices, (c)-(f) each model has 65,538
vertices, (1) initial models and (2) final converged results.

(1)

(2)

(a) (b) (c)

Fig. 16. Distance-Color mapping of brain segmentation using MSAVM, the
distance range is 2-15 voxels, and each model has 131,074 vertices. (1) The
Gray Matter, (2) the White Matter, (a) the initial model, (b)the final converged
result after 24 iterations, (1)(c) the initial model in a 2D slice, and (2)(c) the
converged result in the 2D slice.

TABLE III
RUNNING TIME AND NUMBER OF ITERATIONS FORFIGURE 18

Model Case 1 2 3 4 5

Time 8.56s 29.19s 37.88s 6.60s 5.33s
2D AVM

Iterations 10 26 31 8 9
Time 7.84s 18.41s 5.32s 9.17s 6.49s

GVF [39]
Iterations 80 40 30 70 15

Time 253.5s 185.8s 15.1s 16.5s 12.9s
ACWE [2]

Iterations 1600 800 200 100 100

boundaries directly while the ACWE result contains small
holes and islands.

Using the same initializations, we compared 3D AVM
with level set based 3DGeodesic Active Contours(GAC)
[1], 3D Active Contours Without Edge(ACWE) [2] and 3D
Level Set Evolution Without Reinitialization(LSEWR) [16] by
measuring the running times and validating the segmentation
results using expert ground truth markings. Figure 19 shows
the final triangulation surface of 3D AVM, compared with the
final converged results of GAC, ACWE and LSEWR after
surface reconstruction. Table IV presents DSC values and
running times for various experiments. One can see that 3D
AVM is particularly good for segmenting heart and lungs; its
running time is lower than all three level set methods while its

(1)

(2)

(3)

(4)

(5)

(a) (b) (c)

Fig. 18. 2D Segmentation results on MRI and CTA images. (a) Final
converged results obtained by 2D AVM after (1) 10, (2) 26, (3)31, (4) 8,
(5) 9 iterations, (b) results from Gradient Vector Flow model after (1) 80, (2)
40, (3) 30, (4) 70, (5) 15 iterations, (c) results from ActiveContours Without
Edges after (1) 1600, (2) 800, (3) 200, (4) 100 and (5) 100 iterations.

accuracy (i.e., DSC value) is higher. For the brain case, AVM
takes longer time than ACWE and LSEWR, mainly because
of the need for more iterations and decreased smoothness
parameter values in order to capture details on the Gray Matter
and White Matter surfaces.



14

(1)

(2)

(3)

(4)

(a) (b) (c) (d) (e)

Fig. 19. Comparing 3D AVM with Geodesic Active Contours (GAC), Active Contour without edges (ACWE) and Level Set Evolution Without Reinitialization
(LSEWR). Results of (1) 3D AVM, (2) GAC, (3) ACWE and (4) LSEWR. (a) Heart Left Ventricle segmentations, (b) right lung segmentations, (c) left lung
segmentations, (d) Gray Matter segmentations, and (e) White Matter segmentations. In the heart and lung cases (a)-(c),3D AVM has 40,962 vertices. In the
brain case (d)-(e), 3D AVM has 131,074 vertices.

TABLE IV
SEGMENTATION ACCURACY AND RUNNING TIME COMPARISON AMONG3D AVM, GAC, ACWE AND LSEWR

Heart Right Lung Left Lung Brain GM Brain WM
Volume Size 256 × 256 × 261 256 × 256 × 278 181× 217× 180

DSC Time DSC Time DSC Time DSC Time DSC Time
3D AVM 92.93 487s 95.62 512s 94.41 508s 91.5 1023s 78.2 1068s
3D GAC 88.82 633s 87.16 899s 82.53 832s 85.0 2332s 72.5 1752s

3D ACWE 91.81 1099s 86.07 1845s 86.15 1487s 90.4 984s 91.1 864s
3D LSEWR 91.14 1370s 92.77 1655s 93.01 1573s 89.4 621s 89.0 643s

Next, instead of directly using image intensity or gradient
information to deform GAC, ACWE and LSEWR, we de-
signed an experiment to deform these models based on the pre-
dicted ROIs so that we can compare 3D AVM with these level
set models deforming under similar forces. First, according to
the GAC, ACWE, or LSEWR’s current model position, the
ROI prediction steps are followed (Section II-C) to estimate
the binary object ROI. Second, the model deforms for several
iterations based on the current ROI. For GAC and LSEWR,
the external forces are derived from the gradient map of the
ROI (i.e., non-zero gradient around ROI boundary and zero
gradient everywhere else). For ACWE, the intensity values
of the ROI are used to compute the mean intensities; thus,
mean foreground intensity is1 and mean background intensity
is 0. By repeating the above two steps—ROI prediction and
model deformation, the ROI based GAC, ACWE or LSEWR
model can deform according to the adaptively changing ROIs
and reach the final converged result. Figure 20 compares the

segmentation results by these ROI-based level set models with
the results by 3D AVM. The running time and quantitative
accuracy of these models are also compared with those of the
original models without ROIs; the comparison is shown in
Table V.

We also designed another ROI-based parametric deformable
model and compared 3D AVM to it. After the model obtains
its predicted object ROI, its external forces are set in a way
similar to T-Snakes[22], according to the vertices’ positions
and normals. For a model vertexv, the external force is

fext
v

=

{
η · n̂v v ∈ R
−η · n̂v otherwise

, (27)

wheren̂v is the surface normal at this vertex andv ∈ R means
the vertex is inside the predicted ROIR. Therefore, the model
expands or shrinks to match the ROI boundary. The ROI in
this case is also dynamically updated according to the model’s
changing position. The segmentation results of this ROI-based
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(1)

(2)

(3)

(a) (b) (c)

Fig. 21. Segmentation results on a representative 2D cross-sectional image.
The result of (1)(a) 3D AVM, (1)(b) 2D AVM, (1)(c) another ROI-based
parametric deformable model with T-snake like external forces. Original level
set models of (2)(a) GAC, (2)(b) ACWE, (2)(c) LSEWR, and modified level
set models of (3)(a) GAC, (3)(b) ACWE, (3)(c) LSEWR using predicted ROIs.

parametric model are compared to 3D AVM in Figure 20,
and the running time and quantitative accuracy are reported
in Table V. One can see that 3D AVM is more efficient than
this other parametric model with T-snake like external forces;
this is because AVM’s external forces are derived from (12)
using information from the distance transform of the ROI and
are long-range adaptive forces which are stronger on model
points far-away from ROI boundary, while the other parametric
model deforms under constant force (27).

In Figure 21, we show the lung segmentation results of
Figures 19 and 20 on a representative cross-sectional imageof
the 3D thorax CT volume. Note that the patient has lung cancer
which causes part of the lung interior region to have similar
texture as the lung exterior. Comparing the original GAC,
ACWE and LSEWR models (Figure 21.(2)) with the modified
ones that deform based on the predicted ROIs (Figure 21.(3)),
the ROI-based models give results with simplified topology
since the ROI estimation procedure (Section II-C) cleans small
holes and islands inside and surrounding the models. Also,
comparing 3D AVM with 2D AVM, 2D AVM failed to reach
the lung boundary but stopped at a local minimum (Figure
21.(1)(b)), while 3D AVM reached the true boundary of the
lung despite the abnormality (Figure 21.(1)(a)).

Compared with GAC, ACWE and LSEWR level set models,
3D AVM is represented by Finite Element triangulation, thus
smooth mesh surfaces can be obtained directly by AVM
without any post-processing such as morphological operations
and surface reconstruction. 3D AVM preserves topology dur-
ing deformation. And using probabilistically estimated object
ROI, 3D AVM is also good at overcoming local minima and
avoiding leakage (Figures 19, 20 and 21). Thus 3D AVM is
very suitable for extracting organ boundaries from volumetric

(a) (b) (c)

Fig. 22. Heart segmentation in a 2D slice projection. (a) Theinitial model,
(b) the final converged result after 24 iterations and (c) theconverged result
of three independently-evolving AVMs after 27 iterations.

medical images.
2) Comparison Between 3D AVM and MSAVM:Since

MSAVM integrates high level spatial information, it is more
robust and allows more flexible initialization and parameter
setting when compared to the 3D AVM. As shown in Table II,
the same parameter setting was used for all the segmentation
examples of MSAVM.

Table VI provides the quantitative evaluation and running
times. MSAVM took similar numbers of iterations to converge
compared with 3D AVM, but achieved improved segmentation
accuracy. In each iteration, MSAVM needs extra time to calcu-
late the spatial distance between surfaces; this overhead is very
small, however, since the distance transform of each surface
is readily available through the implicit model representation
ΦΛ.

TABLE VI
COMPARISON BETWEENMSAVM AND 3D AVM

MSAVM 3D AVM
DSC Time DSC Time

Lung in Figure 13 96.2 1913s 94.6 1847s
Heart in Figure 14 92.3 1785s 91.2 1743s
GM in Figure 16 93.2 1094s 91.5 1023s
WM in Figure 16 82.3 1126s 78.2 1068s

To demonstrate the advantage of MSAVM more clearly, we
show 2D axial projection slices from a case of 3D heart seg-
mentation using MSAVM in Figure 22.(a)-(b), and compared
them with the converged result of using several independent
3D AVMs with the same initialization in Figure 22.(c). Due to
structures like papillary muscles inside the inner surfaces and
obscure boundary of the outer surface, the 3D AVMs without
spatial constraints either leaked to the outer-most (e.g.,outer)
surface or stopped at local minima (e.g., papillary muscle
boundary). In contrast, deforming under the spatial constraints,
MSAVM avoided such leakage and overcame the local minima
to find the desired object boundary.

V. CONCLUSIONS ANDFUTURE WORKS

In this paper, we proposed the novel active volume model
and multiple-surface active volume model, which are the
natural extensions of parametric deformable models to inte-
grate object appearance and region information. The main
contributions include: (1) a clean formulation integrateson-
line learning and region statistics into active contours and
surfaces, which provides flexible initialization and rapidcon-
vergence, (2) the finite differences optimization framework
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(1)

(2)

(a) (b) (c) (d) (e)

Fig. 20. Segmentation results of 3D AVM, and GAC, ACWE, LSEWRand an intensity-based parametric deformable model that also deform under ROI-based
forces. (1) Right lung segmentation results, (2) left lung segmentation results. The results using (a) 3D AVM with 40,962 vertices, (b) ROI-based GAC, (c)
ROI-based ACWE, (d) ROI-based LSEWR and (e) another ROI-based parametric deformable model with 40,962 vertices which deforms under T-snake like
external forces.

TABLE V
COMPARISON BETWEEN ORIGINAL MODELS AND MODELS THAT DEFORM ACCORDING TO THE PREDICTED OBJECTROIS

3D AVM GAC ACWE LSEWR Parametric Model
DSC Time DSC Time DSC Time DSC Time DSC Time

Original models on right lung 95.62 512s 87.16 899s 86.07 1845s 92.77 1655s n/a n/a
Models using ROIs on right lung 95.62 512s 92.08 882s 90.87 2246s 93.31 1182s 95.30 632s

Original models on left lung 94.41 508s 82.53 832s 86.15 1487s 93.01 1573s n/a n/a
Models using ROIs on left lung 94.41 508s 93.40 851s 91.22 1504s 94.60 1356s 94.35 574s

enables very fast gradient- and appearance-statistics based
model deformations, (3) the combination of multiple sources
of information in a unified framework for predicting object
region and boundary makes the model easily extensible, (4)
integrating high-level geometric spatial constraints forsimul-
taneously segmenting multiple interacting objects’ boundary
surfaces further improves the flexibility of initialization and
speed of convergence. Using various experiments on 2D and
3D medical images, we demonstrate that the AVM model
can perform segmentation efficiently and reliably on CT,
MRI and Ultrasound images with flexible initialization and
rapid convergence. Taking advantage of parametric deformable
models’ topology preserving property, AVM and MSAVM are
very suitable for extracting boundaries of organs, such as lung,
heart and brain from medical images.

One of the novelties of the AVM is that it can predict back-
ground appearance statistics from the current model-interior
foreground appearance. The prediction procedure is embedded
in the segmentation process. In the first few iterations whenthe
model surface was still far away from the true object boundary,
the foreground appearance (inside the current model) was
only an approximation of the final foreground appearance.
Therefore, in order to avoid bias in appearance approximation
for cases where the initial model covers both object and
partial background, we require an AVM to be initialized either
completely inside or largely overlapped with the foreground
object. The initialization of a 2D model is by asking the user
to manually place a circle (or a polygon) inside or largely
overlapped with the object; the initialization of a 3D modelis
by asking the user to manually place an ellipsoid (with user-

specified radius and orientation) inside or mostly overlapped
with the object. In this way, we make sure that even in
the first few iterations, the current model-interior appearance
is dominated by the true foreground object’s appearance.
Examples where the initial models are completely inside the
objects can be seen in Figure 6. And examples where the initial
models are not completely inside but are largely overlapped
with the foreground objects can be seen in Figure 5.

As we discussed in Section III-B, flexible initialization
and fast convergence could also have negative effects. Even
though Laplacian Mesh Optimization maintains the mesh
quality, triangles on the mesh can still have different areasizes
especially when the model deforms rapidly. Because there are
not sufficient vertices in some regions of the simplex-mesh,
such as near high-curvature boundary regions or regions that
have expanded greatly from the initial model, it is still hard for
the model to reach very fine details of such regions (e.g.,White
Matter in Figure 12 and top-right tip of the right ventricle in
Figure 22). Unfortunately, based on our study of this problem,
there is no suitable area-based isotropic remeshing technique
that can be used directly. The typical remeshing techniques
are also too time-consuming. In the future, we plan to address
this problem by adaptively reparameterizing the model and
adding vertices near branches and high-curvature structures
since vertices in such areas are sparser than those on the main
body. The reparameterization procedure has another advantage
since using it we can choose a model with fewer vertices to
start the deformation, and then adaptively add more vertices
based on the model vertices’ local sparseness. In this way we
can potentially improve the efficiency of the model.
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One advantage of the MSAVM spatial constraint, compared
to more specific constraints such as using active shape models
[6], is that it does not require off-line training. One can
initialize an MSAVM with the correct topology using multiple
simple ellipsoidal surfaces, and then the model can deform to
segment heart, lung, or brain surfaces, depending on the image
data. And if necessary, incorporating statistical shape priors in
our AVM framework is straightforward: The prior shape model
can be treated similarly to the boundary of the ROI, and an
additional energy term can be added to generate forces that
attract the AVM or MSAVM to match the prior shape model.

Another future direction to improve AVMs is to use asoft
probabilistic formulation in the ROI prediction step (Section
II-C). In this paper, we make a hard decision based on the
posterior probabilityPr(L(x)|f1, f2, ..., fk, ..., fn); the ROI is
represented by a binary map and its distance transformΦR is
used in the energy function. Instead of thishard formulation,
we plan to investigate representing the ROI softly using a
probability map, and then apply gradient-weighted distance
transform [13] to computeΦR. We expect that theΦR com-
puted by weighted distance transform of a soft probabilistic
ROI will likely produce forces that attract the model to grow
faster in high-probability regions therefore add to the adaptive
appearance model more information sooner, which in turn
helps resolve ambiguities in low-probability regions.

Since our model can be easily extended, we will explore
more application areas of AVMs. For example, texture and
tensor-based information can be used to predict object ROIs,
which implies the models’ potential use in segmenting DTI
images. 3D AVM and MSAVM can also be extended to
segment and track organs’ movements by integrating tem-
poral information in 4D volumetric medical images. Taking
advantage of recent developments in Graphic Processing Unit
(GPU) technology and parallel architectures, we plan to have
parallelized implementations of the models for real-time 3D
and 4D medical image segmentation.
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