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ABSTRACT

Network structures formed by actin filaments are present in
many kinds of fluorescence microscopy images. In order to
quantify the conformations and dynamics of such actin fila-
ments, we propose a fully automated method to extract actin
networks from images and analyze network topology. The
method handles well intersecting filaments and, to some ex-
tent, overlapping filaments. First we automatically initialize
a large number of Stretching Open Active Contours (SOACs)
from ridge points detected by searching for plus-to-minus
sign changes in the gradient map of the image. These initial
SOACs then elongate simultaneously along the bright center-
lines of filaments by minimizing an energy function. During
their evolution, they may merge or stop growing, thus forming
a network that represents the topology of the filament ensem-
ble. We further detect junction points in the network and
break the SOACs at junctions to obtain “SOAC segments”.
These segments are then re-grouped using a graph-cut spec-
tral clustering method to represent the configuration of actin
filaments. The proposed approach is generally applicable to
extracting intersecting curvilinear structures in noisy images.
We demonstrate its potential using two kinds of data: (1)
actin filaments imaged by Total Internal Reflection Fluores-
cence Microscopy (TIRFM) in vitro; (2) actin cytoskeleton
networks in fission yeast imaged by spinning disk confocal
microscopy.

Index Terms— Actin Filament, Network Structures, Ac-
tive Contour Models, Normalized Cuts

1. INTRODUCTION

All eukaryotic cells have actin proteins. Actin proteins can
self-assemble into long polymers to build networks and bun-
dles of filaments that provide cellular mechanical integrity,
generate forces for cell movement, and act as tracks for
intracellular transport by motor proteins. Fluorescence mi-
croscopy is widely used to study the kinetics of single actin
filament growth in vitro [1, 2, 3], the assembly mechanism
of the contractile ring during cytokinesis [4], and the 3-D
structure of microtubules [5]. Systematic analysis of the
topology and properties of cytoskeletal structures in such im-

ages can provide significant insights into their conformations
and dynamics. Fig.1 demonstrates several kinds of micro-
scopic images in which actin networks or intersecting actin
filaments are present. Fluorescently-labeled actin filaments
imaged by Total Internal Reflection Fluorescence Microscopy
(TIRFM) grow parallel to a glass slide, and some long fila-
ments intersect with each other in the last several frames
of the TIRFM time-lapse sequence (Fig.1(a)). In the radial
projection of 3D confocal microscopy images, actin filament
bundles manifest themselves as a meshwork during mitosis
(Fig.1(b)). Actin cables inside a cell imaged by spinning-
disk confocal microscopy also form a cytoskeleton network
(Fig.1(c)). To analyze these network structures, an impor-
tant step is to accurately extract them from the microscopy
images.

(a) (b)

(c)

Fig. 1. (a) Intersecting filaments in a TIRFM experiment. (b)
Actin meshwork in a 2D radial projection of a 3D confocal
microscopy volume of a dividing cdc25-22 fission yeast cell
labeled by GFP-CHD. Vertical axis is arc length [4]. (c) One
2D confocal actin cables slice of a fission yeast cell labeled
by GFP-CHD. The cell radius is 1.73 µm.

Parametric active contour models (snakes) [6] have been
reported as an effective method to segment curvilinear struc-



Fig. 2. Ridge points detected along x or y directions are la-
beled green or blue, respectively; the ones detected in both
directions are labeled red.

tures such as actin filaments, actin cables in fission yeast, and
microtubules. Li et al. [7, 8, 9] used Stretching Open Active
Contours (SOACs) to segment and track individual filaments
in a TIRFM image sequence. Smith et al. [10] further ap-
plied this method to quantify the conformations and dynam-
ics of actin cables in 3D confocal microscopy images. Related
methods have also been utilized to trace microtubules. Nur-
galiev et al. [11] employed active contour models and Monte
Carlo simulations to locate microtubules in 3D electron to-
mography images. Hadjidemetriou et al. [12] tracked micro-
tubule tips automatically using consecutive level sets meth-
ods. Sargin et al. [13] traced microtubule bodies using second
order derivatives of Gaussian filters and iterative calculation
of geodesic paths. Saban et al. [14] automatically located mi-
crotubule tips in the first frame and tracked tips by searching
for the closest match in subsequent frames.

These methods, however, do not explicitly model the
topology of intersecting filaments and filament meshworks.
Furthermore, although SOACs demonstrate successful appli-
cation to single filament segmentation and tracking [7, 8, 9,
10], they are not directly applicable to extracting filament
meshworks or segmenting multiple intersecting filaments
simultaneously. The reason is that manual initialization is
required for each filament and the behavior between different
SOACs is not explicitly regulated.

While other methods often segment individual actin fil-
aments one by one, our automated method simultaneously
extracts and segments all the filaments in a full-field image.
Then the topology of the network structure can be further an-
alyzed and the relationship among filaments can also be re-
trieved. Previous studies have addressed the network mor-
phology and distribution of intermediate filaments [18, 19,
20]. Here, we introduce a different approach in which a large
number of SOACs [7] evolve simultaneously. Furthermore,
we explicitly regulate their behavior when they meet, cross,
and overlap with each other. When the evolution is converged,
we dissect each SOAC at the junctions of the extracted net-

Fig. 3. Initial SOACs initialized from ridge points. Green
and blue ones are initialized from vertical and horizontal ridge
points, respectively.

work and re-group these dissected “SOAC segments” to ob-
tain the configuration of actin filaments.

The main contributions of the paper are: (1) A fully auto-
mated method for initializing multiple SOACs along intensity
ridges in the image; (2) A complete set of mechanisms for
regulating SOACs’ behavior during their simultaneous evolu-
tion, so that a neat network can be extracted efficiently from
noisy images; (3) Re-organization of SOAC segments using
Normalized Cuts [17] so that the newly grouped SOACs cor-
respond to physical actin filaments.

2. METHODOLOGY

2.1. Automatic Initialization of Multiple SOACs

Since noise can induce many false positives in detected ridge
points, we first obtain the smoothed image IG by Gaussian fil-
tering with σ equal to the typical filament width (2-3 pixels).
Though more sophisticated methods, such as Hessian-based
vessel enhancement filtering [15], enhance the appearance of
filaments, Gaussian filtering is adequate as suggested by our
experiments.

Candidate points for multiple SOAC initialization are then
detected. They are ridge points with locally maximum inten-
sity along a certain direction. Since any direction in 2D can
be decomposed into x and y components, a ridge point can
be found by inspecting the plus-to-minus sign change in the
gradient field G = [Gx, Gy] of IG along x and y directions
independently [16]. A pixel at location (i, j) is a vertical ridge
point if Gx(i, j − 1) > 0 and Gx(i, j) < 0; likewise, it is a
horizontal ridge point if Gy(i, j − 1) > 0 and Gy(i, j) < 0.
In other words, the sign of Gx (or Gy) changes from positive
to negative at a ridge point. If centered difference is used to
estimateG, the ridge points detected may lie next to the pixels
with locally maximum intensity. However, this does not incur
any problem since SOACs can automatically move to the cen-
terline of a filament during their evolution. Unlike [16], we
do not detect other patterns of sign changes in G because +−



sign changes already give enough candidate points (Fig.2).
Finally we initialize each SOAC from locally connected

vertical/horizontal ridge points using 8-connected-component
analysis. Vertical and horizontal ridge points are used sepa-
rately so that the order to form a SOAC can be determined
conveniently. For example, from a connected component of
horizontal ridge points, we can initialize a horizontal SOAC
starting from the point with minimum x coordinate, up to the
one with maximum x coordinate. This automatic initializa-
tion generates short vertical (in green) and horizontal (in blue)
SOACs (Fig.3).

2.2. Simultaneous Evolution of Multiple SOACs

2.2.1. Dynamic Deformation with Stretching Energy

In the continuous domain, a stretching open active contour
model can be represented as a parametric curve, r(s) =
(x(s), y(s)), s ∈ [0, 1]. A SOAC evolves by minimizing
the contour energy E, where E = Eint + Eext. Eint is
an internal energy term, which maintains the continuity and
smoothness of the contour; Eext is an external energy term,
which pushes the contour towards salient image features,
such as bright ridges. The internal energy Eint is defined as:

Eint =

∫ 1

0

(α(s)|rs(s)|2 + β(s)|rss(s)|2)ds, (1)

where α(s) and β(s) are the relative weights between the
first-order and second-order terms. The external energy Eext

is also composed of two terms: an image term Eimg = IG
and a stretching term Estr. The definition of the external en-
ergy is:

Eext =

∫ 1

0

k · (Eimg(r(s)) + Estr(r(s)))ds, (2)

where k is a constant balancing the internal and external en-
ergy.

To make a SOAC grow along the filament, we add stretch-
ing forces to its ends [7]. The force direction is along the tan-
gential direction at the ends and its magnitude is proportional
to the image intensity IG(r(s)) at a SOAC point. The gradient
of the stretching term is defined by:

∇Estr(r(s)) =


− rs(s)
|rs(s)| · kstr · I(r(s)) if s = 0,

rs(s)
|rs(s)| · kstr · I(r(s)) if s = 1,

0 if 0 < s < 1,
(3)

where kstr is the coefficient balancing image and stretching
term. So the external force field is:

∇Eext(r(s)) = ∇IG(r(s)) +∇Estr(r(s)) (4)

Combining all terms, minimizing the contour energy E
makes SOACs grow along the bright ridges while keeping

their continuity and smoothness. Summing up all terms and
deriving the EulerLagrange equation, a SOAC at iteration i
are computed from the one at iteration i− 1 as follows:

xi = (A+ γI)−1(γxi−1 − ∂Eext(xi−1, yi−1)/∂x), (5a)

yi = (A+ γI)−1(γyi−1 − ∂Eext(xi−1, yi−1)/∂y), (5b)

where A is the pentadiagonal banded matrix containing the
internal continuity and smoothness constraints defined by (1),
I is the identity matrix and γ is the step size [6]. All SOACs
need to be re-sampled after each iteration to keep the distance
between adjacent SOAC points. The contour energyE is min-
imized at each iteration. When the internal forces and external
forces are balanced, the system enters a state of equilibrium.
If a certain SOAC’s length and position does not change after
a predefined number of iterations, it is considered converged
and it stops evolving. After all SOACs are converged, SOACs
that are too short to be a filament are deleted. The length
threshold is set to 10 pixels.

2.2.2. Merging, Deletion and Growth Termination of Multi-
ple SOACs

Because several initial SOACs may lie on the same filament,
they will partly or fully overlap as they elongate. Further-
more, a SOAC may elongate erroneously to another filament
at intersections, leading to incorrect segmentation. To solve
this problem arising from simultaneous evolution, SOACs are
merged, deleted or stopped elongating, to obtain a clear topol-
ogy of the filament ensemble. Merging and deletion also
greatly reduces the number of SOACs in action, making the
evolution more efficient.

Let us denote the set of SOACs by S, and its cardinality
by |S|. At each iteration, we do pairwise calculation on a
pair of SOACs ri and rj , i, j ∈ [1, |S|]. For each end point
ri(t), t = 0, 1 of ri, we locate the last point ri(p) close to rj
counting from ri(t), and the closest point rj(q) to ri(p) on
rj . The L2-norm distance threshold Dthresh for measuring
closeness is set to 1 pixel.
Case I: SOAC merging. If q = 0, 1 and the angle θ between
the two tangential vectors at ri(t) and rj(q) is sufficiently
close to π and greater than θthresh, we merge ri with rj by
concatenating the non-overlapping part of ri to rj and then
deleting ri (Fig.4(a)). We set θthresh = 2π/3.
Case II: SOAC deletion. If t = 0, p = 1 or t = 1, p = 0,
indicating that ri is completely covered by rj , we delete ri
(Fig.4(b)).
Case III: SOAC growth termination. If 0 < q < 1 and
the length of the overlapping part of ri exceeds a predefined
threshold Othresh (Fig.4(c)), we delete the overlapping part
and attach the end of ri(t) to rj(q) (Fig.4(d)). When an end
is fixed, we also set the stretching coefficient kstr at that end
to zero.

Other than the above three cases, we do not interrupt the
SOACs’ evolution.
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Fig. 4. Illustration of cases for SOAC merging, deletion, and growth termination. (a) ri merges with rj . (b) ri is deleted. (c) &
(d) ri stops growing at ri(t). We attach ri(t) to rj(q) when the overlapping region exceeds a predefined threshold Othresh.

2.3. Dissecting SOACs and Re-Grouping SOAC Segments

2.3.1. Dissecting SOACs

Even though we regulate SOACs’ behavior in the evolution
process, we still cannot guarantee that each converged SOAC
corresponds to an actual filament. This is because a SOAC
may evolve to represent different filaments, or one filament
is represented by several different SOACs. This situation is
illustrated in Fig.5, where green and blue indicate different
SOACs.

To analyze the topology of the extracted filament network
represented by the SOACs, we first dissect each SOAC at
junction points into “SOAC segments”. Junction points are
those SOAC points having one or more neighboring SOAC
points that belong to another SOAC. Fig.6 (a) shows an ex-
ample of detected junctions in the network.

2.3.2. Grouping the SOAC Segments

After obtaining the SOAC segments, we can examine which
SOAC segments correspond to the same actin filament. Be-
fore grouping, we need to detect “common segments” in all
the SOAC segments. A common segment is a segment where
two or more filaments overlap. The observation for detect-
ing a common segment is that its two ends are both junctions
and its average intensity is the highest among all the segments
sharing these two junctions. After that, we can form “group-
ing subsets” of SOAC segments: a grouping subset consists of
SOAC segments sharing a junction or sharing a common seg-
ment. We then use Normalized Cuts [17] to group segments
in each grouping subset. Normalized Cuts is a graph parti-
tioning algorithm for data clustering. It minimizes the global

criterion which measures both the total dissimilarity between
different subgroups of a graph as well as the total similarity
within the subgroups.

Under the graph partitioning framework, a grouping sub-
set can be represented as a small complete weighted undi-
rected graph Gk = (Vk, Ek), k = 1, ...,K, where K is the
number of grouping subsets. Each SOAC segment in the
grouping subset Gk is a node in Vk and the edge weight wij

specifies the junction continuity, which is defined by the local
orientations at the end points of segments. Because the actin
filaments are smooth linear structures, two segments sharing a
junction are more likely to belong to the same filament if they
are continuous and smooth across the junction. So we use this
prior information to construct the affinity matrix W = {wij},
which is an N × N symmetric matrix and N is the number
of segments in the grouping subset (i.e. number of nodes in
the subset’s graph Gk). Usually N equals 3 or 4. To compute
wij , we use the normalized angle between every two tangen-
tial vectors at the end points of the segments. According to
the results of filament curvature distribution analysis [10], we
use a sample distance of 20 pixels to estimate the direction of
tangent vectors at end points.

We specify the number of groups as 2 for a grouping sub-
set if N = 3, 4. Occasionally N can be 5 or 6, in which case
we let the number of groups be 3.

At the final step, we successively merge the resulting
groups if they share segments until all the groups are disjoint.
Fig.6(b) illustrates an example of grouping results. Note that
the common segment belongs to both groups adjoining it.
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Fig. 5. (top) Three intersecting filaments. (bottom) Con-
verged SOACs do not correspond to the actual filaments.
Green and blue ones are different SOACs.

3. APPLICATION TO EXPERIMENTAL DATA

3.1. Experimental Image Data

We use TIRFM image sequences from [3] for validation. In
the experiment, polymerization of muscle Mg-ADP-actin is
monitored in the presence of inorganic phosphate (Pi) and
actin monomers. The pixel size is 0.17 µm. To evaluate our
method, we use the last frames of the sequences where the
filaments are more crowded and have more intersections than
previous frames. A test image is shown in Fig.1(a). Note that
its non-uniform illumination makes the magnitude of stretch-
ing force inconsistent across the image. We correct this prob-
lem by subtracting the non-uniform background estimated by
a gray-scale opening morphological operation.

We also tested our method using a 2D radial projection of
a 3D confocal microscopy image of actin in a dividing fission
yeast labeled by GFP-CHD [4] (Fig.1(b)) as well as one 2D
confocal slice showing actin cables (Fig.1(c)). Radial projec-
tions are obtained from stacks of images of cells expressing
GFP-CHD by radially projecting image data onto a 2D strip
which corresponds to the membrane unfolded longitudinally
from the middle of the cell. These images of cdc25-22 fis-
sion yeast cells reveal an intricate dynamic actin meshwork
establishing connections among myosin nodes.
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Fig. 6. (top) Detected junctions shown in red points. (bottom)
SOAC segment grouping results; the segments covering the
same filament are in the same color; the blue arrow indicates
an overlapping common segment that is grouped to both the
green and red groups.

3.2. Segmentation Examples and Evaluation

We select 55 filaments from one of the last frames of TIRFM
sequences to measure the segmentation error of our method.
For each filament, a SOAC generated by [10] and subse-
quently modified by a human expert serves as the ground
truth. The body distance d(rc, rt) between our computed
SOAC rc and the corresponding ground truth SOAC rt is
defined as:

d(rc, rt) = max
i
{min

j
d{rc(i), rt(j)}} (6)

where rc(i) and rt(j) is the ith and jth points of SOAC rc and
rt, respectively. Since the tip location is important, we also
compute the L2 distance between locations of the two end
points of our computed SOAC and those of the ground truth
SOAC. Fig.7 shows the segmentation results of our method,
compared with the ground truth. Table 1 shows the segmen-
tation error statistics of our method. Fig.8 illustrates a typi-
cal case in which the SOAC segments whose orientations are
more consistent are grouped together into one filament during
the Normalized Cuts grouping step. Application to confocal
microscopy images are shown in Fig.9.
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Fig. 8. (left) Two converged SOACs. (right) Re-grouped SOAC segments at that junction. The top part of the left filament (left)
is correctly re-grouped with the right filament (right) based on local orientation continuity using Normalized Cuts.

Mean Maximum Standard Deviation
Body 2.7312 8.3775 2.0266
Tip1 2.3645 11.2704 2.2668
Tip2 2.1377 8.3775 1.7210

Table 1. Body and tip segmentation error statistics of 55 fila-
ments. (Unit: pixel)

4. CONCLUSION

In this paper, we proposed an automated method to simulta-
neously segment intersecting filaments that form a network
structure. We further analyze the topology of the filament
network and re-organize the SOACs to represent the physical
actin filaments. Experimental and validation results demon-
strate the performance of this method. One advantage of our
method is that it can overcome the disconnectivity problems
induced by intensity gaps or faint filaments in the image when
extracting actin networks by thinning. One limitation of our
current method is that it cannot distinguish a filament from
an overlapping filament if the two filaments overlapping part
covers an end point of one of the filaments. In the future we
plan to employ SOAC width and intensity information to bet-
ter identify overlapping parts of filaments.
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