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Abstract— Objective: Ultrahigh-resolution optical coherence 

microscopy (OCM) has recently demonstrated its potential for 
accurate diagnosis of human cervical diseases. One major 
challenge for clinical adoption, however, is the steep learning 
curve clinicians need to overcome to interpret OCM images. 
Developing an intelligent technique for computer-aided diagnosis 
(CADx) to accurately interpret OCM images will facilitate clinical 
adoption of the technology and improve patient care. Methods: 497 
high-resolution 3-D OCM volumes (600 cross-sectional images 
each) were collected from 159 ex vivo specimens of 92 female 
patients. OCM image features were extracted using a 
convolutional neural network (CNN) model, concatenated with 
patient information (e.g., age and HPV results), and classified 
using a support vector machine classifier. Ten-fold cross-
validations were utilized to test the performance of the CADx 
method in a five-class classification task and a binary classification 
task.  Results: An 88.3±4.9% classification accuracy was achieved 
for five fine-grained classes of cervical tissue, namely normal, 
ectropion, low-grade and high-grade squamous intraepithelial 
lesions (LSIL and HSIL), and cancer. In the binary classification 
task (low-risk [normal, ectropion and LSIL] vs. high-risk [HSIL 
and cancer]), the CADx method achieved an area-under-the-curve 
(AUC) value of 0.959 with an 86.7±11.4% sensitivity and 93.5±3.8% 
specificity. Conclusion: The proposed deep-learning based CADx 
method outperformed four human experts. It was also able to 
identify morphological characteristics in OCM images that were 
consistent with histopathological interpretations. Significance: 
Label-free OCM imaging, combined with deep-learning based 
CADx methods, hold a great promise to be used in clinical settings 
for the effective screening and diagnosis of cervical diseases.   
 

Index Terms—Cervical cancer, optical coherence tomography, 
optical coherence microscopy, deep learning, computer-aided 
diagnosis. 
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I. INTRODUCTION 
ERVICAL cancer is one of the most common cancers 
among women worldwide, especially in developing 

nations, and it has relatively high incidence and mortality rates 
[1]. Fortunately, cervical cancer is mostly preventable with 
active screening and detection techniques. For example, 
preventive screening and early detection can decrease the 
morbidity of cervical cancer by about 70% in the United States 
[2]. Nowadays, there are a few frequently-used cervical cancer 
screening techniques, such as high-risk human papillomavirus 
(HPV) testing, Pap smear cytology testing, colposcopy, and 
visual inspection of the cervix with acetic acid (VIA), each of 
which has its advantages and disadvantages. 

Although HPV and Pap tests are widely used in women aged 
25 and older to identify high-risk types of HPV that are most 
likely to cause cervical cancer [3] and abnormal cells, they 
cannot provide test results in real-time and are unable to localize 
cervical lesions. Instead, a VIA test allows clinicians to observe 
lesions and other changes in a patient’s cervix directly, but it 
has lower sensitivity and specificity compared with HPV and 
Pap tests [4]. As the gold standard for diagnosing cervical 
cancer, colposcopy-directed biopsy with histopathological 
confirmation [5] is invasive and time-consuming and may cause 
complications to patients, such as bleeding, infection, and 
anxiety. Therefore, developing a non-invasive, efficient, and 
intelligent screening technique with relatively high sensitivity 
and specificity can significantly improve patient care. 

Optical coherence tomography (OCT) [6] is an emerging 
biomedical imaging technique that utilizes light to obtain 
micrometer-resolution, cross-sectional images of biological 
tissue. By using high-resolution, high-speed OCT systems that 
can image cellular features of tissue samples up to 2 mm in 
depth in real-time [7], OCT has shown great potential as a non-
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invasive “optical biopsy” method [8], [9]. Previous studies have 
demonstrated the feasibility of using OCT for identification of 
morphological characteristics of the cervix, such as squamous 
epithelium, basement membrane, cervical stroma, low-grade 
and high-grade squamous intraepithelial lesions (LSIL and 
HSIL), and cervical cancers [10]–[15], which makes it possible 
to use OCT as a diagnostic tool adjunctive to colposcopy for 
cervical disease screening and detection [16].  

Optical coherence microscopy (OCM) [17], known as a 
combination of the coherent detection method of OCT and 
confocal microscopy, can provide better axial and lateral 
resolution than OCT. Moreover, ultrahigh-resolution OCM has 
recently shown the ability to reveal details of ex vivo cervical 
tissue similar to histology at the cellular level [18], significantly 
improving the diagnostic accuracy for cervical diseases. For 
example, in a recent blind test on 297 3-D OCM volumes [18], 
three human experts achieved an average sensitivity of 80% (95% 
confidence interval, CI, 72%–86%) and an average specificity 
of 89% (95% CI, 84%–93%) for identifying high-risk lesions 
(including HSIL and invasive lesions) using label-free OCM 
images. The inter-observer agreement value of 0.627 suggests 
high diagnostic consistency among the three experts. 

However, OCM images are foreign to gynecologists and 
pathologists due to the limited use of the OCM technology in 
clinics. Clinicians would need to undergo rigorous training, 
possibly involving viewing thousands of OCM images with 
different pathologies, to familiarize and recognize diagnostic 
features in OCM images. This training, however, can be time-
consuming and may not be well-received by clinicians due to 
their busy clinical schedules. Since OCM images are different 
from those of traditional colposcopy and histological images, 
the training may create difficulty in clinical acceptance and 
adoption of this new technology for the screening and diagnosis 
of cervical diseases. Therefore, a computer-aided diagnosis 
(CADx) approach to effectively extract diagnostic imaging 
features and classify OCM images accurately would be highly 
desirable and can help facilitate broader adoption of the OCM 
imaging technology for clinical use. 

In the past decade, deep learning [19] technologies utilizing 
deep neural networks have made remarkable progress in 
computer vision [20] and medical image analysis [21] for their 
capability to learn implicit or latent features from vast amounts 
of images and videos. More specifically, Convolutional Neural 
Networks (CNNs), a popular class of deep neural networks, 
have been widely used in image classification [22] and object 
detection [23]. Some recent studies suggest that deep CNNs can 
obtain results with accuracy comparable to and in some cases 
better than human experts for tasks such as image-based cancer 
(or rare disease) detection [24]–[27]. 

The purpose of this study is to develop a deep learning-based 
CADx method to evaluate cervical tissue samples using multi-
modal feature information extracted from ultrahigh-resolution 
OCM imagery and routine medical exams such as the HPV test. 
We strive to accurately classify 3-D OCM images from ex vivo 
cervical specimens into “low-risk” and “high-risk” classes, 
which would pave the way for in vivo, real-time, and intelligent 
cervical diseases screening and diagnosis. Furthermore, we 

attempt to classify cervical lesions and provide their 
histopathological correlation with OCM imaging features in 
order to assist clinicians in understanding and interpreting 
OCM images. 

 

II. MATERIALS AND METHODS 

A. Data Collection 
The experimental dataset used in this study contains 141,467 

grayscale cervical tissue images collected from the Third 
Affiliated Hospital of Zhengzhou University, China, using a 
custom-developed ultrahigh-resolution OCM system [18]. 
Experimental protocol was approved by the Institutional 
Review Board of the Medical Faculty, Zhengzhou University. 
All the patients consented to the data collection. There were 159 
fresh cervical specimens from 92 female patients obtained from 
colposcopic biopsy (n = 79), conization (n = 26), and 
hysterectomy (n = 54). For conization and hysterectomy 
specimens, cervical tissue was sectioned into multiple (up to 12) 
~3-4 mm slices. Before imaging, the cervical specimens were 
rinsed with saline or fresh water and placed on a thin, wet 
sponge to keep the surface of the tissue flat and moist. OCM 
imaging was performed within ~1-2 hours of excision. On 
average, ~3.1 3-D OCM imaging scans were acquired per 
specimen. Each OCM scan covers ~800 µm x 800 µm area on 
the specimen. As described in detail in [18], each of the 497 3-
D OCM volumes has a point-specific histology-confirmed 
diagnosis. Each OCM volume was annotated with a unique 
class label (see Section II.B). Table I describes the statistics of 
the experimental dataset. Note that there were 21 squamous cell 
carcinoma (SCC) specimens with 134 3-D OCM volumes and 
only one adenocarcinoma specimen with four 3-D OCM 
volumes. In addition to 3-D OCM volumes, patient information 
such as age and HPV test results were also collected, which 
have been clinically proved to be helpful when making a 
diagnosis for cervical lesions. 

B. Taxonomy of OCM Image Labels 
The taxonomy of cervical OCM image labels consist mainly 

of five fine-grained classes: normal, ectropion, LSIL (CIN1), 
HSIL (CIN2&3), and cancer (including SCC and 
adenocarcinoma). This taxonomy takes cervical ectropion (or 
cervical eversion) into consideration since it is often 
indistinguishable from early cervical cancer. However, cervical 
ectropion is a non-cancerous condition that occurs when the 
endocervix turns outward, exposing the columnar epithelium to 
the vaginal milieu [28]. As with our previous work [18], we also 
adopt two distinct general classes, i.e., “low risk” and “high 
risk.” The general class “low risk” includes normal, ectropion, 

TABLE I 
STATISTICS OF THE EXPERIMENTAL DATASET 

 Normal Ectropion LSIL HSIL Cancer Total 
Patients 44 25 11 13 9 92 

Specimens 71 32 16 18 22 159 
3-D volumes 197 79 28 55 138 497 
2-D images 55,070 23,150 7,714 16,500 39,033 141,467 
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and LSIL, while the “high risk” class includes HSIL and cancer. 

C. Data Preparation  
Each 3-D OCM image volume (~300 megabytes) contained 

a total of 600 2-D cross-sectional frames, each of which has 901 
x 600 (height x width) pixels. The quality of OCM images 
played a vital role in training deep learning-based classification 
models (also called classifiers). We removed those 2-D cross-
sectional frames that appeared to be “saturated” (i.e. too bright), 
too dark, or blurry from the original 3-D OCM volumes. 
According to Table I, the experimental dataset retained 141,467 
high-quality cross-sectional 2-D OCM images. A 3 x 3 median 
filter was used to remove speckle noise from each 2-D OCM 
image. A single center crop with the size of 600 x 600 pixels 
was applied to each input image, and then the image was resized 
to 224 x 224 pixels while maintaining the original aspect ratio. 
Each 3-D OCM volume was zero-centered by subtracting the 
average intensity value from all the 2-D cross-sectional images 
within the volume.  

Other patient data that are not images were processed using 
a text feature extractor. The patient age was converted from text 
and normalized using a min-max scaling, defined as follows.  

𝑥𝑥∗ = 𝑥𝑥−𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚

,                                (1) 

where x denotes a patient’s age, min and max represent the 
minimum value and the maximum value, respectively, of all 
patients’ ages. Besides, HPV test results were defined by a 
Boolean datatype in this study. More specifically, “0” stands for 
a negative result, “1” for a positive result.  

D. Image Feature Extraction 
We used VGG-16 (Visual Geometry Group 16-layer) [29], 

one of the most common CNNs, to train our image feature 
extractor. VGG-16 has 16 layers and it reduces the number of 
parameters in such a deep network using small (3 x 3) filters in 
convolutional layers. We modified the input image dimensions 
(224 x 224 x 3) for VGG-16 to ensure that the image feature 
extractor can process grayscale images (224 x 224 x 1). Also, 
instead of having the last fully-connected, softmax layer of 
VGG-16 output a vector of 1,000 categories, we replaced that 
with a fully connected layer that outputs a vector of 5 categories 
(see FC3 in Fig. 1) to make it suitable for the specific five-class 
classification task based on the taxonomy defined in Section 
II.B. Another reason for adding the FC3 layer following the 
4,096-D fully-connected layer (see FC2 in Fig. 1) was that our 
approach could achieve a better balance between the 
dimensionality of image features and the dimensionality of non-
image features (i.e., age and HPV test results). 

Because a few previous studies have reported that transfer 
learning using pre-trained models on the ImageNet dataset [30] 
is helpful to fine-tune CNN-based classifiers for medical 
grayscale images [31], [32], we also used pre-trained weights 
on a subset of the ImageNet dataset to fine-tune the image 
feature extractor for the sake of efficiency. In addition to the 
FC3 layer, we re-trained the first convolutional layer using 
OCM images and the last three convolutional layers (that is, 
conv5_1, conv5_2, and conv5_3) that capture task-specific 
features. All the hidden layers mentioned above were fine-tuned 
using the same global learning rate of 0.002. Moreover, we took 
advantage of the Adam (short for Adaptive Moment Estimation) 
optimization algorithm [33], with β1 = 0.9, β2 = 0.999, and a 
decay of 0.0002. 

 We trained, validated, and tested the image feature extractor 
using Keras (https://keras.io) and Google’s TensorFlow 

 
Fig. 1.  The overall architecture of our CADx approach. First, we use VGG-16 to train an image feature extractor for ultrahigh-resolution OCM images. In 
particular, we append a new fully-connected layer (FC3) to the second fully-connected (FC2) layer. The FC3 layer outputs a 5-D feature vector representing the 
input image. Meanwhile, we build a text feature extractor to process patient information in medical records. Note that only age and HPV test results are available 
for this study. Second, we take advantage of a 7-D feature vector that concatenates the image and text features obtained to train an SVM-based classifier. Third, 
for a given OCM image, the SVM-based classifier outputs a predicted label of the five fine-grained classes. Besides, we evaluate the CADx method over two 
general classes, “low risk” (normal, ectropion, and LSIL) and “high risk” (HSIL and cancer), by inferring the probabilities of the corresponding fine-grained 
classes. The CADx method makes a decision of classification for each 3-D OCM image volume according to the mechanism of voting based on the majority rule. 
 

C
oncatenation

OCM images

SVM

…

FC1Conv1
Conv2

Conv3 Conv4 Conv5

FC2

…

4096 4096

FC3

5

224*224 Image feature extractor

Medical records

Text feature extractor

92

Age
HPV test

data cleaning normalization

Classification

Normal Ectropion LSIL

HSIL Cancer

Low risk

High risk



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4 

(https://www.tensorflow.org) deep learning framework on a 
computer equipped with Intel Core i7 7200HQ processor, 64 
GB RAM (Random-access Memory), and an NVIDIA GeForce 
GTX 1080 GPU (Graphics Processing Unit). The operating 
system was 64-bit Microsoft Windows 10. 

E. Classification Algorithm 
Since support vector machines (SVMs) [34] can efficiently 

perform linear classification and non-linear classification tasks, 
they are helpful in text categorization and image classification. 
In this study, we developed an SVM-based classifier that 
utilized the multi-modal feature information (see Fig. 1). As 
stated above, we trained a CNN-based model to extract a 5-D 
feature vector from each OCM image. At the same time, we 
processed the age and HPV test results to obtain a 2-D non-
image feature vector. The concatenation of the two types of 
features, which are 7-D feature vectors, are used as the input for 
the SVM-based classifier. The classifier outputs the probability 
of a given test sample (including an OCM image and its 
corresponding patient information) belonging to each of the 
five fine-grained classes. Note that the SVM-based classifier we 
utilized is based on an open-source tool called scikit-learn 
(http://scikit-learn.org), with default settings. 

Recall that each 3-D OCM volume contains many 2-D cross 
sectional images, thus in order to obtain a probability 
distribution of a given 3-D OCM volume y over the five fine-
grained classes, we calculate the probability using the following 
equation. 

𝑃𝑃(𝐲𝐲 = 𝑗𝑗) = 1
|𝐲𝐲|
∑ 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑗𝑗),|𝐲𝐲|
𝑖𝑖=1                     (2) 

where y denotes the whole OCM volume consisting of a set of 
2D cross-sectional images, |y| is the total number of 2-D images, 
j represents the class label ranging between 0 and 4, and yi is 
the class label predicted by the SVM-based classifier for the ith 
2-D image included in y. Here, I(x) is an indicator function 
defined as below. 

𝐼𝐼(𝑥𝑥) = �1  if 𝑥𝑥 is TRUE, 
0  if 𝑥𝑥 is FALSE.                        (3) 

After calculating the probability that a given 3-D OCM 
volume belongs to a specific fine-grained class, we then infer 
the likelihood that it belongs to a general class by summing up 
the probabilities over all the subclasses of the general class. 

𝑃𝑃(𝑚𝑚) = ∑ 𝑃𝑃(𝑛𝑛),𝑛𝑛∈𝑆𝑆(𝑚𝑚)                           (4) 

where m is a general class in the taxonomy mentioned above 
(i.e., “low risk” or “high risk”), n is a fine-grained class, and the 
function S(m) returns all the subclasses of m. Note that, in both 
fine-grained five-class and general two-class classification 
tasks, the SVM-based classifier made decisions according to the 
mechanism of voting based on the majority rule. 

We evaluated the performance of the CADx method using 
ten-fold cross-validation. More specifically, we partitioned the 
experimental dataset into ten subsets of equal size, one of which 
was retained as the validation data for testing the CADx method 
and the other nine subsets were used as training data. This cross-
validation process was repeated ten times, with each of the ten 

subsets used only once as the validation data, and the final 
evaluation was the average of the ten results. When partitioning 
experimental data into a training set and a test set for each 
iteration of the cross-validation process, all the OCM images 
from the same specimen were placed wholly into either the 
training set or the test set, to ensure that the two sets were 
mutually exclusive.  This strategy helped prevent overfitting in 
the CADx method. 

F. Blind Test for Human Experts 
To compare the difference between human and machine in 

classification result, two experienced OCM researchers 
(Investigators 1 and 2) and two experienced pathologists 
(Investigators 3 and 4) from different institutes participated in 
this study. By using a three-step method including training, pre-
testing, and blinded-testing [18], the four experts evaluated 297 
3-D OCM volumes (i.e., a subset of the experimental dataset) 
separately and independently. Patient age and HPV results were 
provided to the human experts and taken into consideration 
when the diagnosis were made. For the three-step training and 
testing, each investigator carefully reviewed the same training 
dataset that comprised 100 3-D OCM volumes and 
corresponding hematoxylin and eosin (H&E) histological slides 
in digital form. Next, each investigator made a diagnosis for 
each of the 100 3-D OCM volumes in the pre-testing dataset. 
After the diagnosis was recorded, feedback was provided to 
each investigator to allow them to review correctly diagnosed 
and misdiagnosed samples in order to provide additional 
training. At last, the remaining 297 3-D OCM volumes were 
presented to each investigator to perform the final test. Details 
of the three-step training and testing method were reported in 
[18]. 

G. Evaluation Metrics 
Accuracy (or Trueness) is a descriptor of systematic errors, 

also known as a measure of statistical bias. Sensitivity (also 
called the true positive rate) measures the proportion of actual 
positives that are identified as such correctly, while specificity 
(also called the true negative rate) measures the percentage of 
actual negatives identified as such correctly. The following 
equations formulate their respective definitions in a binary 
classification task. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

 ,                    (5) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 ,                         (6) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 ,                          (7) 

where TP, TN, FP, and FN represent the numbers of true 
positives, true negatives, false positives, and false negatives, 
respectively. 

We used the estimated probability and actual class label to 
calculate the sensitivity and specificity of “low-risk” and “high-
risk” diagnosis. In this study, a “low-risk” diagnosis includes 
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normal, ectropion and LSIL, while a “high-risk” diagnosis 
includes HSIL and cancer. A 3-D OCM image is classified as 
“positive” if its estimated probability of being “high-risk” is 
larger than a given probability threshold t, and “negative” if the 
estimated probability is below the threshold. We then plotted 
the receiver operating characteristic (ROC) curve for the two 
general classes when varying the threshold value between 0 and 
1. The area under the ROC curve (AUC) was also used to 
measure how well the CADx method performed in the binary 
classification task. 

H. Classification Performance Visualization 
A confusion matrix, also known as an error matrix [35], is 

used to visualize the performance of a classification algorithm. 
Each row of a confusion matrix denotes the instances (or class 
labels) of an actual class while each column indicates the cases 
of a predicted class, or vice versa. In this study, confusion 
matrices were used to show the misclassifications made by the 
CADx method and the four investigators on different (fine-
grained or general) classes in two classification tasks. Each cell 
(i, j) in these confusion matrices represents the empirical 
probability of predicting class j given that the actual class label 
is i. The darker the color are off-diagonal elements, the higher 
the error rate. Therefore, a darker off-diagonal element 

indicated that the CADx method or the human expert under 
discussion had trouble distinguishing between the two given 
classes. 

I. Image Feature Visualization 
We utilized two commonly-used feature maps to interpret 

how pixel-level image features “perceived” by the CNN-based 
image feature extractor differ among the five fine-grained 
classes. Springenberg et al. [37] proposed a method of guided 
backpropagation (GB). In this method, all the neurons (or called 
nodes in an artificial neural network) act like detectors of 
particular image features, thus explicitly visualizing diagnostic 
OCM image features for different classes. We also used a 
saliency map [38] to highlight visually dominant pixels based 
on the unique quality of each pixel, such as gray level intensity 
and image texture, etc. 

III. RESULTS  

A. Comparison between Human Experts and Machine on 
Five-Class classification 

As shown in Table II, in the five-class classification task, the 
CADx method achieved 88.3 ± 4.9% (mean ± s.d.) overall 
accuracy on the whole experimental dataset, while the four 

 
Fig. 2.  Performance comparisons between the CADx method and four human experts. (a) Confusion matrices for the five-class classification task. “0,” “1,” “2,” 
“3,” and “4” represent normal, ectropion, LSIL, HSIL, and cancer, respectively. (b) Confusion matrices for the binary classification task. “L” and “H” represent 
low-risk and high-risk diagnosis, respectively.  
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TABLE II 
PERFORMANCE COMPARISON BETWEEN OUR CADX METHOD AND FOUR HUMAN EXPERTS 

 Accuracy Sensitivity Specificity 
Five classes L/H L/H CI L/H CI 

Investigator 1 0.808 0.889 0.922 0.857~0.964 0.868 0.810~0.914 
Investigator 2 0.832 0.906 0.878 0.804~0.932 0.923 0.874~0.957 
Investigator 3 0.721 0.828 0.652 0.558~0.739 0.940 0.894~0.969 
Investigator 4 0.700 0.845 0.817 0.735~0.883 0.863 0.804~0.909 

Average (95% CI) 0.765 0.867 0.817 0.739~0.880 0.899 0.846~0.937 
CADx method 0.883(±0.049) 0.913(±0.051) 0.867(±0.114) / 0.935(±0.038) / 

Five classes: normal, ectropion, LSIL, HSIL, and Cancer; L/H: low risk and high risk; CI: confidence interval. Confidence intervals for sensitivity and specificity 
are “exact” Clopper-Pearson confidence intervals [36] at the 95% confidence level. The classification results of the first, third, and fourth investigators are cited 
from [18]. 
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human experts obtained 80.8%, 83.2%, 72.1%, and 70.0% 
accuracy, respectively, on a subset of the experimental dataset, 
including 297 3-D OCM volumes.  

In general, the four human experts and the machine learning 
classifier can differentiate normal cervix (see class 0 in Fig. 2a) 
from the other four cervical diseases. The CADx method only 
had a classification error rate of 2.0% for normal cervical tissue, 
comparable to that of the best human investigator (that was, 
0.9%). Besides, it has less misclassification error in cervical 
cancer (see class 4 in Fig. 2a) than the four human experts. The 
classification error rates of the CADx method and the best 
human expert were 4.3% and 8.5%, respectively on cancer 
detection. Although cervical ectropion (see class 1 in Fig. 2a) is 
not an abnormality, the four human experts each misclassified 
a few 3-D OCM volumes of this class into LSIL (see class 2 in 
Fig. 2a), HSIL (see class 3 in Fig. 2a), or cancer, with 
classification error rates of 31.9%, 17.0%, 36.2%, and 40.4%, 
respectively. Instead, the CADx method’s classification error 
rate for ectropion was only 10.1%, much less than that of human 
experts. Because ~21% of misclassifications made by the four 
human experts occurred between ectropion and cancer, the 
above result indicated that the CADx method had a greater 
ability to distinguish between these two classes’ irregular 
features in OCM images.  

B. Comparison between Human Experts and Machine on 
Binary Classification 

Fig. 2b presents the confusion matrices of the CADx method 
and the four human experts over the two general classes, 
showing that they can identify low-risk and high-risk 3-D OCM 
volumes with low misclassification rate. For example, the 
classification error rate of the CADx method for “low risk” was 
6.9%, which was very close to that of the best human expert 
(that was, 6.0%). As shown in Table II, the CADx method 
achieved 91.3 ± 5.1% overall accuracy, while the four human 
experts obtained 88.9%, 90.6%, 82.8%, and 84.5% accuracy, 
respectively, in the binary classification task. The inter-
observer agreement for the four investigators, characterized by 

a Fleiss’ kappa [39] value of 0.633, suggested a substantial 
agreement. However, the sensitivity values varied from person 
to person. This may be due to the differences among individual 
experts in skills, experience, and working state. For example, 
Fig. 2b shows that the first expert (an OCM researcher) 
appeared to be good at discerning high-risk 3-D OCM images 
and tended to misclassify those uncertain test samples into 
“high risk,” and the third expert (a pathologist) appeared to be 
quite the opposite. Consequently, the former had a high false 
positive rate of 13.2%, and the latter had a high false negative 
rate of 34.8%.  

Fig. 3 depicts a ROC curve of the CADx method in the binary 
classification task. It was evident from Fig. 3 that the CADx 
method outperformed the four human experts who were 
denoted by solid (red) circles lying below the (blue) ROC curve 
in this binary classification task. As a result, the (green) 
rhombus, which represents the average of the four human 
experts, was also below the ROC curve. The AUC value of the 
SVM-based classifier reached 0.959, with a sensitivity of 86.7 
± 11.4% and a specificity of 93.5 ± 3.8%, indicating that it 
performed well overall and could provide diagnoses like 
experts.  

Furthermore, unsurprisingly, the CADx method was far more 
efficient than human experts in both the binary and multi-class 
classification tasks. It took the CADx method ~4.8 milliseconds 
on average to complete diagnosis of a cross-sectional OCM 
image, and ~3 seconds to make a diagnosis of a 3-D OCM 
volume containing 600 2-D cross-sectional images. In contrast, 
it took a human expert several minutes to finish viewing a 3-D 
OCM volume and record a diagnosis. 

C. Visualization of High-Level Representations of OCM 
Images 

As shown in Fig. 1, the FC2 layer of the CNN-based image 
feature extractor outputs a 4,096-D feature vector for each input 

 
Fig. 4.  Visualization of high-level representations of OCM images for the five 
fine-grained classes. Here, we illustrate 4,096-D feature vectors learned by the 
CNN-based image feature extractor for 2,500 randomly-selected OCM images 
in a Cartesian plane using PCA, a commonly-used dimension reduction method. 
Each colored point cloud represents a fine-grained class. Insets show images 
corresponding to various points in the point clouds. PCA embeds high-
dimensional features in a low-dimensional space while preserving the pairwise 
distances of all the points that belong to different classes. 
  

Ectropion

Normal

HSIL

LSIL

Cancer

 
Fig. 3. ROC curve for the binary classification task. The X-axis stands for the 
false positive rate (1 − specificity), while the Y-axis represents the true positive 
rate (sensitivity). The (blue) ROC curve indicates the performance of the CADx 
method, each solid (red) circle denotes the performance of a human expert, and 
the (green) rhombus represents the average level of the four human experts. 
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OCM image. We visualized this high-dimension feature of 
OCM images using principal component analysis (PCA) [40] in 
Fig. 4. Colored point clouds denote the five fine-grained classes, 
showing how the CADx method groups 2,500 randomly-
selected OCM images into different classes (or clusters). OCM 
data in the same class are represented with the same color and 
clustered close to each other than to data from other classes. A 
3-D view of the data clouds is shown in Video S1. 

Generally speaking, the high-level representations obtained 
were semantic and had high intra-class similarity and apparent 
inter-class difference, which indeed facilitated the accurate 
classification of OCM images. Take the classification of 
cervical ectropion and cervical cancer samples as an example. 
Although it was not an easy task for the four investigators to 
differentiate cervical ectropion from cervical cancer in OCM 

image features (see the result introduced in Section III.A), the 
CADx method was able to detect distinct differences in the 
high-level feature space, with some minor overlaps between the 
two clusters (see Fig. 4). Thus, the CADx method only 
misclassified 2.5% of cervical ectropion samples as cervical 
cancer and grouped 4.3% cervical cancer samples into cervical 
ectropion incorrectly. This result was much better compared to 
those of the four human experts. 

D. Visualization of Pixel-Level Morphological Features in 
OCM Images 

Since deep learning is often considered as a “black box” [41], 
another major challenge in the development of the CADx 
method was to extract feature representations from OCM 
images and associate them with established morphological 

 
Fig. 5.  Visualization of pixel-level morphological characteristics in OCM images extracted by our CADx method for three types of cervical tissue. (a) Normal 
tissue. (b) Cervical ectropion. (c&d) Cervical cancer: squamous cell carcinoma (SCC). (e) Cervical cancer: adenocarcinoma. The four panels in each row correspond 
to the H&E histologic section, OCM image, GB map, and saliency map for each specimen, respectively. GB and saliency maps highlight pixel-level morphological 
representations learned by the CNN-based image feature extractor. EP: squamous epithelium; BM: the basal membrane; PS: the papillary structure with 
interpapillary ridges; T: Tumor. Scale bars: 200 µm. 
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characteristics in histology. In Fig. 5, we utilized GB and 
saliency maps to visualize and highlight characteristic OCM 
image features for normal cervical tissue, cervical ectropion, 
and cervical cancers. In addition to the original OCM image, 
we also presented the corresponding H&E histologic section to 
correlate features observed from OCM images. 

As shown in Fig. 5a, the OCM image of a normal cervical 
tissue sample showed a layered architecture of stratified 
squamous cells (EP) and the stroma, separated by the basement 
membrane (BM). These features matched well with the 
corresponding H&E image. Both the GB map and the saliency 
map highlighted the mesh-like epithelial cells and the layered 
structure with a clear and smooth interface between the basal 
layer of the epithelium and the stromal layer, which was one of 
the most striking morphological characteristics recognized in 
previous studies [11], [13], [18]. 

The OCM image in Fig. 5b demonstrated an example of 
cervical ectropion. The layered architecture of the epithelium 
was lost, and papillary structures with hyper-scattering 
boundaries were formed. The hyper-scattering boundaries of 
the papillary structures and interpapillary ridges were 
visualized in the OCM image as well as in the GB and saliency 
maps.  

Fig. 5c and 5d present two examples of invasive cervical 
cancer (more specifically, SCC). In Fig. 5c, the GB and saliency 
maps captured a common morphological characteristic of SCC. 
The epithelium became unstructured and disorganized, and the 
basement membrane was no longer observed, thus leading to a 
complete lack of architectural polarity. Besides, the two maps 
identified some sheets/nests of heterogeneous regions 
composed of epithelial cells and tumor cells. In Fig. 5d, the GB 
and saliency maps highlighted another common diagnostic 
feature of SCC, that is, the microstructure of the cervical tumor 
sample disappeared, and oval-shaped clusters of homogeneous 
regions composed of nests of tumor cells were observed. 

Although cervical adenocarcinoma is much less common 
than SCC, its incidence has been increasing in the past two to 
three decades. Fig. 5e presents an example of adenocarcinoma 
featuring destructive stromal invasion. Glandular structures 

with different sized lumens and intraluminal infoldings were 
observed in the H&E image in Fig. 5e. These glandular lumens, 
which scattered in a disorderly manner, displayed a clear hypo-
scattering feature in the corresponding OCM image and thus 
looked like dense, round to oval cavities. The GB and saliency 
maps highlighted a characteristic vacuole appearance with a 
smooth contour, which is a marked morphological feature of 
adenocarcinoma. 

IV. DISCUSSION 
In this paper, we applied a deep-learning based CADx 

method to diagnose cervical diseases based on label-free and 
non-destructive OCM images. The CADx method was trained 
to combine multi-modal feature information extracted from 
OCM imagery and patient information such as age and HPV 
test results to make a diagnosis. Moreover, it worked similarly 
to pathologists who often make a diagnosis based on the 
histology slides of biopsy specimens, taking into consideration 
of patient information. Since it usually takes two or three days 
to get a pathology report, we argue that the proposed OCM 
imaging and CADx method may simplify the workflow for 
cervical disease screening and generate diagnostic reports in a 
timely fashion.  

Previously, Kang et al. developed a CADx algorithm to 
classify OCT images of the human cervix using a linear 
discriminant analysis [42]. Nevertheless, it depended heavily on 
handcrafted image features, for example, the thickness of the 
epithelium and the contrast between the epithelium and the 
stroma, leading to a low average sensitivity of 51% (95% CI, 
36%–67%) on a small-scale dataset including 152 cross-
sectional OCT images. In this study, we validated the 
effectiveness of the CADx method in two classification tasks 
using ten-fold cross-validation. Compared with four human 
experts, the CADx method achieved higher overall accuracy (> 
88%) in both the two-class and five-class classification tasks. 
Besides, in the binary classification task, the CADx method 
achieved an AUC value of 0.959 with 86.7 ± 11.4% sensitivity 
and 93.5 ± 3.8% specificity, showing its impressive 

 
Fig. 6.  Two confusing examples that were misclassified by the CADx method. (a) LSIL. (b) HSIL. The four panels in each row correspond to the H&E histologic 
section, OCM image, GB map, and saliency map for each specimen, respectively. EP: squamous epithelium; BM: the basal membrane. Scale bars: 200 µm. 
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performance in classifying 3-D OCM volumes of human 
cervical tissue. Compared with the traditional CADx algorithm 
[42], our method had a greater ability to effectively extract 
diagnostic imaging features from ultrahigh resolution OCM 
images.  

The proposed CADx method still has room for improvement, 
especially in distinguishing between LSIL and HSIL. Even for 
expert pathologists, it was not an easy task to distinguish LSIL 
and HSIL from OCT images [12], [15]. Fig. 6 illustrates two 
examples misclassified by the CADx method. The low-grade 
lesion (see Fig. 6a) was incorrectly classified as HSIL, while 
the high-grade lesion (see Fig. 6b) was misclassified as LSIL. 
In Fig. 6a, the OCM image presented a layered architecture, 
including the superficial layer of the epithelium, a lesion of 
LSIL (at about the lower third of the epithelium), and the stroma. 
Moreover, the low-grade lesion displayed a hypo-scattering 
(poorer scattering) feature in the OCM image. According to 
[15], [18], one of the most common optical feature of HSIL 
lesions on OCM was that more than one-third of the epithelium 
became irregular and thicker (for example, the OCM image in 
Fig. 6b). Sometimes, such a cervical lesion may span about two-
thirds of the epithelium, and the basement membrane may not 
be visible. Unfortunately, the saliency and GB maps in Fig. 6 
showed that the CNN-based image feature extractor, which was 
trained with limited samples of LSIL and HSIL, failed to 
capture the morphological features mentioned above that are 
meaningful to human experts. As a result, the CADx method 
produced similar probabilities for LSIL and HSIL. Hence, our 
CADx method had a limited ability to differentiate HSIL from 
LSIL (also see the overlap between the clusters of LSIL and 
HSIL in Fig. 4) at the moment due to limited samples (for 
example, only 28 LSIL and 55 HSIL 3-D OCM image volumes 
were included in the current study). Similarly, the diagnostic 
performance of the CADx method for adenocarcinoma 
remained to be determined due to limited OCM data sets 
available from adenocarcinoma specimens. 

Our future work is to tackle the above problem from two 
aspects. On the one hand, we will collect more LSIL, HSIL and 
cancer (both SCC and adenocarcinoma) specimens to train a 
better image feature extractor. Furthermore, we will take 
advantage of en face OCM images obtained from the 3-D OCM 
volume when training the image feature extractor. Our previous 
study has showed that cervical ectropion had very different 
image features compared to invasive lesions in an en face OCM 
image [18]. On the other hand, we plan to enhance the learning 
ability of the image feature extractor using deep reinforcement 
learning [43] in combination with human knowledge and skills 
as well as instant feedback. 

The clinic niche for the CADx method is to objectively 
provide in vivo diagnosis of cervical diseases in real-time. To 
achieve this goal, we are developing an endoscopic OCM probe 
suitable for imaging the human cervix in vivo. Potential 
complications, such as motion artifacts, bleeding, and abnormal 
vaginal secretion, associated with in vivo experiments will be 
taken into consideration when design the hardware and 
software system. The CADx method will be further optimized 
in term of speed and accuracy and integrated with the OCM 

image acquisition software for in vivo applications. In addition 
to tissue classification, an improved version of the CADx 
method will be able to rapidly flag suspicious disease regions 
on the cervix. This function will be helpful in guiding biopsies 
under colposcopy examination. Finally, since OCM is a new 
imaging technology for gynecologists and pathologists, clinical 
utilities of the OCM imaging and CADx methods for cervical 
disease diagnosis will need to be carefully evaluated through a 
multi-center clinical trial in order to facilitate the adoption of 
the new methods in clinical practice. 

V. CONCLUSION 
In summary, we developed a deep-learning based CADx 

method and applied it to diagnose cervical diseases based on 3-
D OCM image volumes and patient information. The CADx 
method was shown to be effective in binary and multi-class 
classification tasks, demonstrating classification accuracies 
better than four human experts. Using guided backpropagation 
and saliency maps, we further identified morphological 
characteristics in OCM imagery to provide histopathological 
correlation of OCM image features. With the assistance of the 
CADx method, ultrahigh resolution OCM technology holds the 
potential to become a promising complement to existing 
technologies for non-invasive, label-free and real-time 
screening and diagnosis of human cervical diseases.  
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