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Abstract. We introduce a novel algorithm for actin filament segmen-
tation in 2D TIRFM image sequences. This problem is difficult because
actin filaments dynamically change shapes during their growth, and the
TIRFM images are usually noisy. We ask a user to specify the two tips of
a filament of interest in the first frame. We then model the segmentation
problem in an image sequence as a temporal chain, where its states are tip
locations; given candidate tip locations, actin filaments’ body points are
inferred by a dynamic programming method, which adaptively generates
candidate solutions. Combining candidate tip locations and their inferred
body points, the temporal chain model is efficiently optimized using an-
other dynamic programming method. Evaluation on noisy TIRFM image
sequences demonstrates the accuracy and robustness of this approach.

1 Introduction

Actin is one of the most abundant proteins in cells. It has the ability to polymer-
ize into long filaments out of monomers (single proteins). These filaments form a
fibrous network within cells called the “cytoskeleton”, which provides cells with
mechanical integrity and shape. Through the fast assembly and disassembly of
the cytoskeleton fibers, cells can change shape, move and divide. One way to
study the cytoskeleton is to analyze actin filaments’ polymerization in vitro us-
ing Total Internal Reflection Fluorescence Microscopy (TIRFM) [1], [2] (see Fig.
1.(a-b)). Biologists are interested in measuring actin filaments’ elongation rates
(by measuring their length differences between frames) and rigidity (by measur-
ing the curvature along them). Therefore, actin filaments need to be segmented
before the analysis.

There has been related work on tracking or segmentation of filamentous and
microtubule (MT) structures in biological images. Hadjidemetriou et al. [3] de-
veloped a method to automatically track microtubules which are characterized
locally using consecutive level sets segments. In [4], after MT tips are detected
in the first frame, they are tracked by looking for the closest ones in the sub-
sequent frames. Active contours are then used to extract MT bodies based on
obtained tip locations. In [5], MT tips are located using second order derivative
of Gaussian filtering. Geodesic paths are then iteratively calculated to segment
MT bodies. In [6], Stretching Open Active Contour (SOAC) is used to segment
and track actin filaments in TIRFM images frame by frame. In the above meth-
ods, movements of the structures are assumed small, which is not always valid
in our TIRFM images.
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Fig. 1. (a-b) Two frames in a TIRFM sequence. (c-d) It is difficult to judge which
points at time i+1 should be the temporal correspondences of the red point at time i.

More complex movement models can be taken into consideration in Baysian
tracking frameworks. In [7] and [8], Particle Filters (PF) are used to track the
locations of tip parts of MT. The MT bodies can then be segmented in a sub-
sequent step using obtained tip locations [7]. Li et al. [9] combined the SOAC
and PF to simplify the modeling of PF in a one-dimensional state space while
integrating filament body constraints into tip estimation. However, biological
sequences are usually taken prior to data analysis and therefore do not need real
time performance. The above methods only consider temporal information up to
the current frame and thus ignore all available information after it. In [10], a 2D
time-lapse image sequence is treated as a 3D image volume, and a spatiotempo-
ral active surface model is proposed to segment an actin filament in all frames
simultaneously. The assumption of this method is that an actin filament’s body
remains static across time. However, this assumption does not apply to general
actin filament data, where an actin filament may grow, drift, and change shape
at the same time (see Fig. 1).

In this paper, we propose a novel method to segment actin filaments in the
general data while fully utilizing all available temporal information. We treat the
segmentation of an actin filament across time as a 1D temporal chain model. Tip
locations are used as the state of each temporal node because tips are usually
blurry in the images, and their localization is most difficult. The temporal chain
can be globally optimized using dynamic programming. Filament bodies are in-
ferred in the same process using another dynamic programming method, which
adaptively generates candidate solutions. Dynamic programming has been used
to optimize tree models in [11] or chain models in [12]. Compared with existing
methods [9],[10], which have some strong assumptions and constraints, our pro-
posed method is more flexible. Every constraint in the framework can be freely
modified or deleted, and new constraints can be easily added in.

2 Methodology

2.1 Problem Formulation

The problem of actin filament segmentation in a single image can be viewed as
optimizing a 1D spatial chain model as shown in Fig. 2.(a), where each node’s
state represents the position of a point on the actin filament [6]. Compared with
other pixel-wise segmentation methods, one major advantage of the 1D chain
model is that it has clear topology. Its results are ready for further biological
analysis, while other methods need post-processing to reconstruct the topology.
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Fig. 2. (a) Illustration of the 1D spatial chain in a single frame. (b) Illustration of
a series of spatial chains. (c) Illustration of the temporal chain model. Tip nodes of
spatial chains are marked in red and blue. Spatial relations are shown as solid lines.
Temporal relations are shown as green arrows.

If segmenting an actin filament in a time-lapse sequence, temporal informa-
tion would be helpful, for example, to recover information on an intermediate
frame that is unclear. The problem of actin filament segmentation in a time-lapse
sequence can then be defined as optimizing a series of 1D spatial chain models
while considering their temporal relations between each other. Fig. 2.(b) illus-
trates the segmentation model for a time-lapse sequence. However, formulating
this model is challenging on three aspects. (i) The number of nodes in each 1D
chain is different. To represent different actin filaments with the same resolu-
tion, the number of points on a chain should be proportional to its length. (ii)
Each node’s temporal correspondences are difficult to define because an actin
filament may move its entire body during its growing process (see Fig. 1.(c-d)).
(iii) The desired energy functions measuring how well a 1D spatial chain repre-
sents an actin filament (likelihood terms) or how well two chains are temporally
constrained (pairwise terms) may have very complex forms.

To address the difficulties, we partially bypass the second difficulty because
there is no convincing way to establish temporal correspondences between nodes
at two chains (see Fig. 1(c-d)). By focusing on addressing the first and third
difficulties, we are able to propose a simplified model aiming at jointly recovering
the best tip points in all time frames while considering inferred filament body
points’ temporal relations. The entire segmentation problem is modeled as a 1D
temporal chain as shown in Fig. 2.(c), where the ith node’s state represents the
starting (red) and ending (blue) points of the actin filament in the ith frame.
Jointly using image information in all time frames and temporal information
between every two frames, we locate the best tip points, {r̂1, r̂2, · · · , r̂N}, in the
image domain Ω by minimizing the following energy function:

f(r1, r2, · · · , rN ) =

(

N
∑

i=2

l(ri) +

N−1
∑

i=1

p(ri, ri+1)

)

, (1)

where N is the number of frames in the input sequence, ri = [ri,1, ri,2]
T ∈ Ω×Ω

is the state of the ith node (i.e., the locations of the two tip points, ri,1 and ri,2,
in the ith frame). For instance, if ri,1 has two candidate locations {v1, v2}, and



ri,2 has two candidate locations {v3, v4}, ri’s candidate states would then include
[v1, v3]

T , [v1, v4]
T , [v2, v3]

T , and [v2, v4]
T . l(ri) is the likelihood term measuring

how well the 1D spatial chain inferred by the two tip points, ri, represents an
actin filament, and p(ri, ri+1) is the pairwise term measuring how well the ith
and i+1th spatial chains inferred by the tip points, ri and ri+1, follow the given
temporal constraints. The objective function does not calculate the likelihood
cost in the 1st frame, l(r1), because the user was asked to specify the correct tip
locations of the actin filament of interest in the 1st frame. The choices of l(·) and
p(·) are very flexible. We introduce our implementation in Section 3. However,
they can be freely modified and deleted to fit any new constraints.

2.2 Efficient Optimization of the Temporal Chain Using Dynamic
Programming

Taking advantages of the 1D structure of the temporal chain, the objective func-
tion (1) can be efficiently optimized using dynamic programming if the solution
set is discrete. We restrict tip points to only be on image pixel locations. The dy-
namic programming algorithm involves generating a sequence of “optimal-value”
functions of one discrete variable, {si}N−1

i=1 . To obtain each si, a minimization is
performed over a single variable. (1) can then be iteratively optimized as follows:

s1(r2) = p(r1, r2) + l(r2), (2)

s2(r3) = min
r2

[s1(r2) + p(r2, r3)] + l(r3), (3)

...

sN−1(rN ) = min
rN−1

[sN−2(rN−1) + p(rN−1, rN )] + l(rN ), (4)

min
r1,r2,··· ,rN

f(r1, r2, · · · , rN ) = min
rN

sN−1(rN ). (5)

In the 1st iteration, for every possible r2, the algorithm calculates p(r1, r2)+l(r2)
and assign this value to the function s1(r2). No minimization is performed in this
iteration since r1 is fixed. In the 2nd iteration, for every possible r3, the algorithm
searches for a r2 that minimizes s1(r2) + p(r2, r3). Then all such (r3, r2) pairs
are stored in a table, and the function values of (3) are assigned to s2(r3); The
remaining iterations are performed similarly. As shown in (5), the minimum of
f(r1, r2, · · · , rN ) can be obtained as the minimal element in the table sN−1(rN ).
The optimal tip locations in all frames are then recovered by back-tracking the
minimization-correspondence tables from the last one to the first.

If there are m possible pairs of starting and ending points in each frame,
the overall time complexity of the above dynamic programming algorithm is
O(Nm2) (see Section 3.5 for actual computation time).

2.3 Inference of Actin Filament Body Points

The calculation of both the likelihood terms, {l(ri)}Ni=2, and the pairwise terms,

{p(ri, ri+1})N−1

i=1 , requires body points to be efficiently and accurately inferred by
given tip points {ri}Ni=1, i.e., optimizing the 1D spatial chain model in Fig. 2.(a).
The problem can be viewed as a shortest path problem with given starting and



ending points. We propose a novel algorithm to efficiently solve for the shortest
path, {v̂1, v̂2, · · · , v̂n}, by minimizing an active contour model energy function:

E(v1, v2, · · · , vn) = α

n−1
∑

j=1

|vj+1 − vj |2 + β

n−1
∑

j=2

|vj+1 − 2vj + vj−1|2 +
n
∑

j=1

Eext(vj),

(6)

where vj ∈ Ω denotes the location of the jth point’s on the path, n is the number
of points on the path, α and β are the weights of the first-order and second-order
smoothness terms. The first two internal energy terms keep the path smooth.
The last external energy term, Eext(·), makes the path fit the bright ridges in
the image. The smaller Eext(vj) is, the better vj represents a point on bright
ridges. If n is given and {vj}nj=1 are constrained to only be on pixel locations,
(6) can be efficiently minimized by dynamic programming [12]:

e1(v2, v3) =α|v2 − v1|2 + β|v3 − 2v2 + v1|2 + Eext(v2),

e2(v3, v4) =min
v2

[

e1(v2, v3) + α|v3 − v2|2 + β|v4 − 2v3 + v2|2
]

+ Eext(v3),

...

en−2(vn−1, vn) = min
vn−2

[en−3(vn−2, vn−1) + α|vn−1 − vn−2|2 + β|vn − 2vn−1 + vn−2|2]

+ Eext(vn−1),

en−1(vn) = min
vn−1

[

en−2(vn−1, vn) + α|vn − vn−1|2
]

,

min
v1,v2,··· ,vn

E(v1, v2, · · · , vn) = en−1(vn), (7)

The above equations have similar meanings as those of (2)–(5) except that the
optimal-value functions {ej}n−1

j=1 now have two discrete variables. This is because
the calculation of second-order smoothness terms involves three neighboring spa-
tial nodes. Minimizations in the first and last iterations are not needed because
the starting and ending points are given. The time complexity of this algorithm
is O(nk4) if every point can take k different locations. We further improve the
above algorithm by proposing a scheme to adaptively generate candidate loca-
tions, and by decreasing minimization-search range for each candidate point.

In the first iteration, our method generates candidate locations of v2 as 8
neighbors of the starting point on the image grid. Candidate locations of v3 are
generated as neighbors of v2 with some path constraints (see the next paragraph).
Similarly, candidate locations of vj are generated as the 8-connection neighbors
of vj−1 on the image grid. 3 iterations of our method are illustrated in Fig. 3.

To decrease the number of candidate locations in every iteration, we do not
allow any consecutive path segments to have turning angles greater than 90
degrees. In Fig. 3, all possible paths are shown as colored lines. When calculating
ej(vj+1, vj+2), our method only searches for vj that does not generate sharp
turns on any path vj → vj+1 → vj+2. Obviously, for any ej(vj+1, vj+2) entry,
the algorithm searches for at most three locations of vj . In this way, we are able
to decrease the time complexity of each iteration from O(k4) to O(k2).
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Fig. 3. (a) Generating candidate locations of v2. (b) Generating candidate locations of
v3. (c) Generating candidate locations of v4. Red and blue dots represent the starting
point (v1) and the ending point (vn) of a path. Colored lines represent possible paths.

To prevent too many loops on a path, we let any grid location can only
be used as a candidate location for at most nv times. To exclude oblivious
short-cuts and wrong paths, our method stops continuing a path if a consecutive
nthres of points on the path have intensity below Ithres. This operation explicitly
excludes possible short-cuts and further improves the efficiency of our method.
The algorithm terminates the iterations if (i) the ending point is visited for
more than 10nv times or (ii) the maximum iteration number, nmax is reached.
We empirically set nmax = 200 in our application, since no actin filament is
longer than 200 pixel-long in our dataset. During the iterations, all paths ended
with the given ending point are recorded. After the iterations terminate, the
path with the smallest energy value per node is chosen as the best one. In other
words, the proposed method does not penalize length and therefore would not
favor “short-cuts”.

Compared with other shortest path methods, such as the global minimal path
method [13] and the graph-based method, our method has three advantages.
(i) It avoids the common short-cut problems. Two operations, excluding paths
with too many consecutive points with low intensity and choosing the path with
minimal unit energy value, contribute to this advantage. Fig. 4 shows comparison
results with other methods using real TIRFM images and a synthetic image. (ii)
This method is efficient. Our MATLAB MEX implementation takes less than
0.02s to optimize a 200 pixel-long path with a complex external energy term (9)
on an Intel E6850 3.0GHz CPU. (iii) Our method is able to take the second-order
smoothness terms into consideration and therefore is more versatile to different
applications, while other methods only consider first-order smoothness terms.
Fig. 4 illustrates paths with different β settings.

3 Implementation

3.1 Image Preprocessing

The input TIRFM images are usually noisy and sometimes have biased intensity
fields. We use the Frangi vessel enhancement filter [14] to enhance filamentous
structures and to suppress noises. Let IF and IF,i represent the vessel-enhanced
results of a general image and the ith frame of a sequence, respectively. I(v)
represents the intensity value of image I at position v ∈ Ω. If v falls between
pixel grid locations, its intensity is obtained by bilinear interpolation.



90

100

110

120

130

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. (Left) Comparison between our proposed method, the global minimal path
method [13], and the shortest-path-on-the-graph method. (a) Original images. (b) Re-
sults of our proposed method with α = 1, β = 0.1. (c) Results of the global minimal
path method with weight equaling 1. (d) Results of the shortest-path-on-the-graph
method. (Right) The influence of the second-order smoothness term. (e) The original
image. (f) α = 1, β = 0.1. (g) α = 1, β = 0.5.

3.2 Implementation of The External Energy Eext in (6)

The smaller Eext(vj) is, the better vj represents a point on an actin filament.
In [14], the Gaussian-second-order-derivative kernel shows its effectiveness in
detecting vessel-like structures. The 1D kernel with scale σ, G′′

σ(x), measures
the contrast between the regions inside and outside the range (−σ, σ) in the
direction of the derivative:

G′′

σ(x) =
(x2 − σ2)√

2πσ5
e−

x2

2σ2 (8)

We adopt this 1D kernel and calculate Eext(vj) as its correlation with the image
at location vj . This 1D correlation has the lowest response if the filter’s direction
is perpendicular to the path’s direction at location vj . To calculate the path’s
direction at vj , the external energy term needs three neighboring points, vj−1,
vj , and vj+1, we re-define the external energy term as

Ẽext(vj−1, vj , vj+1) =

4σ̃
∑

x=−4σ̃

IF (vj + xd) ·G′′

σ̃(x) (9)

where d⊥
(

vj+1 − vj
2||vj+1 − vj ||2

+
vj − vj−1

2||vj − vj−1||2

)

, ||d||2 = 1.

⊥ denotes that the unit vector d is perpendicular to the path’s direction at vj ,
and σ̃ = 1.5, which is half of the width of actin filaments. Consequently, the
optimal-value functions {ej}n−1

j=2 in (7) should be re-defined as

ej(vj+1, vj+2) =min
vj

[ ej−1(vj , vj+1) + α|vj+1 − vj |2 + β|vj+2 − 2vj+1 + vj |2

+ Ẽext(vj , vj+1, vj+2) ], (10)



3.3 Implementation of The Likelihood Term l(ri) in (1)

Given a pair of starting and ending points, ri, in the ith frame, a spatial chain
{vi,1, · · · , vi,ni

} is optimized to represent the best location of the actin filament
with ri as its tip points. The likelihood of this spatial chain representing an
actual actin filament, l(ri), is defined as a summation of a tip likelihood term,
lt(ri), and a body likelihood term, lb(ri):

l(ri) = λt lt(ri) + λb lb(ri), (11)

where λt and λb are the weights of the two likelihood terms. The tip likelihood
term is calculated as correlations between a 9 × 9 template tip patch It with
the rotated enhanced image IF,i at tip locations vi,1 and vi,ni

. The template tip
patch is the mean of 50 manually labeled actin filament tip patches. The rotation
directions are the two directions di,1 and di,ni

pointing outward the resulting
spatial chain from the two tip points, vi,1 and vi,ni

, respectively:

di,1 =
vi,1 − vi,5

||vi,1 − vi,5||2
, di,ni

=
vi,ni

− vi,ni−4

||vi,ni
− vi,ni−4||2

. (12)

The tip likelihood term is defined as

lt(ri) =
1

81

4
∑

s=−4

4
∑

t=−4

It(s, t) ·
[

1/2 IF,i(vi,1 + sdi,1 + td⊥

i,1)

+1/2 IF,i(vi,ni
+ sdi,ni

+ td⊥

i,ni
)
]

, (13)

where d⊥

i,1 and d⊥

i,ni
are unit vectors perpendicular to di,1 and di,ni

, respectively.
The body likelihood term is calculated as the average intensity value on the path:

lb(ri) =
1

ni

ni
∑

j=1

IF,i(vi,j). (14)

3.4 Implementation of the Pairwise Term p(ri, ri+1) in (1)

We consider the pairwise relation of two adjacent spatial chains, {vi,1, · · · , vi,ni
}

and {vi+1,1, · · · , vi+1,ni+1
}, which are inferred by ri and ri+1, respectively. The

relation is constrained by the desired growing speed and differences of tip direc-
tions, i.e.,

p(ri, ri+1) = λg pg(ri, ri+1) + λd pd(ri, ri+1), (15)

where λg and λd weight the growing speed term pg(·) and the tip direction
difference term pd(·). The growing speed term is defined as

pg(ri, ri+1) =

{

0 |L(ri+1)− L(ri)− 5| < 3,

||L(ri+1)− L(ri)− 5| − 3|2 otherwise,
(16)

where L(ri) =
∑ni

j=2
||vi,j − vi,j−1||2 is length of the spatial chain inferred by

ri. pg(·) does not penalize growing length in the range [2, 8] pixel-long (around
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Fig. 5. (a) The best tip locations (red and blue) calculated on the i−1th frame based on
the first i−1th frames, r̃i−1 = argminri−1

si−2(ri−1). The dashed-line boxes represent
the range specified byD = 20 for the ith frame. (b) The solution set of ri. Red and blue
points represent the candidate locations of the two tip points. (c) One snake calculated
for all starting (red) and ending (blue) points.

[0.24, 1.36] µm). Note that this range is set according to our data at hand and
can be changed for data with other growing speed priors. pd(·) is calculated as
the differences between the pair of spatial chains’ tip directions at the two tips:

pd(ri, ri+1) = 1/2 ‖di+1,1 − di,1‖2 + 1/2
∥

∥di+1,ni+1
− di,ni

∥

∥

2
. (17)

3.5 Generating the Solution Set of ri and Body Points Inference
from ri

The dynamic programming algorithm (2)-(5) guarantees a global minimum on a
discrete solution set. If the starting and ending points in the ith frame, ri, can be
set to any grid location in that image, the size of solution set for each ri would
be tremendous but also unnecessary. We threshold the vessel-enhanced image
IF,i and perform the skeleton morphological operation to obtain the candidate
locations for ri. In our application, we set the threshold to 0.2. We further
constrain ri within the domain [r̃i−1,1 −D, r̃i−1,1+D]× [r̃i−1,2−D, r̃i−1,2 +D],
where [r̃i−1,1, r̃i−1,2] = r̃i−1 = argminri−1

si−2(ri−1). r̃i−1 represents the best
tip locations on the i− 1th frame based on the information of only the first i− 1
frames (see Fig. 5.(a) and 5.(b)). Note that it may not equal the final optimized
result r̂i−1. In this way, we usually obtain no more than 30 candidate points
for each tip point with D = 20. Therefore, the size of the solution set for ri is
usually no more than 30× 30 = 900.

Each iteration of (2)-(5) takes most time on inferring body points given m
pairs of different ri. Although an exhaustive calculation usually takes no longer
than 0.02s× 900 = 18s, it can be further shortened by calculating only several
paths. Given candidate tip points, inferred bodies usually coincide each other.
Therefore, we calculate the path inferred by the tip pair with farthest distance
first, and pairs with smaller distance later. In details, given two tip points v1 and
vn, let {v1, · · · , vi, · · · , vj , · · · , vn} represent its inferred body points. If [vi, vj ]

T

is or close to a possible solution of ri, we use the path {vi, · · · , vj} as the inferred
body points of that possible solution. In this way, we usually calculate no more
than 40 paths for each ri. An example is shown in Fig. 5.(c), where only one
path is calculated for all possible tip locations.



Sequence # of Selected Mean Maximum Standard # of

Filaments Deviation Mis-segmentation

I 8 1.2845 3.3642 0.8968 6 out of 135
II 7 1.0931 3.8613 1.0961 0 out of 108
III 14 1.0273 4.4414 0.8194 4 out of 212
IV 6 1.1092 5.7203 1.0658 12 out of 108
V 13 1.5557 3.4653 0.6634 4 out of 321
VI 5 1.7516 6.4418 1.3195 2 out of 100
VII 9 0.7515 1.8070 0.5781 9 out of 120

Table 1. Tip tracking error statistics of successful segmentation cases and the number
of mis-segmentation cases. (Unit: pixel)

4 Experiments

We used 7 TIRFM image sequences from [2]. In these experiments, polymer-
ization of muscle Mg-ADP-actin was monitored in the presence of varying con-
centrations of inorganic phosphate (Pi) and actin monomers. 30% of the actin
was labeled on lysine side chains with Alexa green. Methylcellulose was used to
suppress lateral Brownian movements of the actin filaments. Images were cap-
tured with 500 ms exposure time using a 488-nm laser on an Olympus IX71
microscope. Photobleaching is minimal in these sequences. The resolution was
0.17 µm/pixel. There were 15-25 frames in each sequence. The time interval
between frames was 10 sec or 30 sec.

For the spatial chains, we set α = 1, β = 0.1, nv = 10, nthres = 5, Ithres =
0.15. For the temporal chain, we set λt = 1, λb = 0.5, λg = 0.5, D = 20 for all
sequences and empirically chose λd from {0.1, 0.5, 1.5} for each sequence. These
parameters are empirically set according to experiments on a small set of 10
randomly sampled filaments. The errors of our segmentation method are among
two types: (i) tips being inaccurately located, and (ii) body points being wrongly
inferred to include several actin filaments. A biologist selected 62 actin filaments
of interest in the 7 sequences (which consist of 1104 individual 2D segmentation
cases), and marked the actin filaments’ correct tip locations in each frame as
ground truth. We evaluated our algorithm’s performance by calculating the L2

distances between the ground truth and our method’s results, and by counting
how many times several actin filaments are mis-segmented as one. The statistics
of our method is recorded in Table 1. The two previous methods [6] and [9]
assumes a filament’s body mostly remains static across time. However, in the
general actin filament data that we tested, the actin filaments drift, grow, and
change shapes at the same time. The previous methods failed in at least 1/3 of
the cases because they require a part of the filament remain static over time for
successful initialization.

We analyzed the proposed method’s segmentation results and found two
factors contribute most to large errors: (i) the Frangi filter enhances filaments’
bodies robustly but may generate large artifacts around tip locations if the image
has heavy noises. Such artifacts degenerate the performance of the tip likelihood
term and result in most inaccurate tip localizations. To alleviate this factor, pre-
processing filter need to be re-designed to generate less artifacts around tip parts.
A more robust likelihood term also need to be considered. (ii) Our shortest-path



Fig. 6. Six example results of our proposed method. Each row shows segmentation
results of one actin filament polymerizing in a period of time.

method may infer a path across several actin filaments’ bodies mostly if several
filaments are tangled together in the image. This problem may be solved by
jointly segmenting all actin filaments of interest in a sequence simultaneously. In
this way, a temporal chain can exchange information from others and thus has
better knowledge to avoid segmenting several actin filaments together.

5 Conclusion

In this paper, we proposed a novel algorithm to segment actin filaments in time-
lapse sequences. The overall problem is modeled as a 1D temporal chain model
which is efficiently optimized using dynamic programming. All available tempo-
ral information is integrated in this model. The body points are inferred in the
process using another dynamic programming method which adaptively generates
candidate solutions. Each likelihood term or pairwise term can be freely modi-
fied or deleted, and new terms representing new constraints can easily be added



into this framework. Therefore, the proposed method is very flexible. Exten-
sive experiments demonstrated the effectiveness and robustness of our proposed
method.
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