
12 SUPPLEMENT ABOUT THE AGENT
12.1 More about the probabilistic policy
Our goal with the probabilistic policy was to prevent games from being deterministic. In particular,
during training, the probabilistic property can be used for exploration, but in many applications
after training would be replaced with a regular arg_max operator. However, doing this in our
setting would mean that once the user chose a pair of agents, every game between them would play
out the same. To avoid this, we trained our agents using a Gumbel_softmax13 with a temperature
parameter, which does not change the ordering of the perceived action quality—just the sampling
probabilities. We scheduled the temperature to start at 20 and end at 0.1—and continued to use the
same 0.1 temperature after training. Our team chose the temperature ranges empirically, running
softmax tests directly on hypothetical scoring output instead of using the neural network. The
criterion for which we were looking was a sparse action probability matrix, where just a few actions
received all the probability mass. To illustrate the importance of sparsity, suppose 35x poor actions
have 2% action probability while a single excellent action has all the rest of the probability mass;
that would only be 30%!

12.2 Achieving a more optimal agent
Our goal was not to solve the domain, but to get a su�ciently strong agent that we could mutate
that agent and see if participants could detect the change. Thus, we employed a simpli�ed version
of the architecture outlined in AlphaZero14, but modi�ed for explanation generation. While our
agent is clearly suboptimal, it begs the question of whether its poor performance is the fault of the
architecture, the training process, our simpli�cations, etc. A CNN model should be able to perfectly
solve this domain, since the game structure is highly local, grid based, and fully described by a
single game snapshot. The architecture of our CNN should have su�cient capacity.
Probably the weakest link in the current structure is the target formation. Currently, we use a

procedure best described as “Pure Monte Carlo game search” (PMCGS, described by Russel and
Norvig15 in Chapter 5): For each square on the current board, play random games to the end while
recording results. Pack the results into a tensor of outcome probabilities (e.g. if it wins 7 of the 10
games, 0.7 would be the win outcome target value). One simple improvement would be to replace
the random games with games played by having both players follow the agent’s policy. However, the
downside of policy rollouts is that training takes longer. In fact, the capability to do so is currently
in our source, but commented out. One of the downstream consequences of using random rollouts
is that the agent does not defend very well. This is because if the agent exposes itself to a kill shot,
PMCGS targets can underestimate the threat because both players are treated as random, and thus
unlikely to take the winning square.
The other obvious weak link is the loss function. We attempted to use the simple, o�-the-shelf

components where possible, and so did not de�ne our own loss function, but it should be possible to
improve upon L1Loss. In particular, when using L1Loss, it is just as important to accurately estimate
an illegal move, a coin �ip move, and the winning move; but it is actually far more important to get
the last one right. This is not desirable, because e.g., large errors for terrible moves are tolerable
without harming the action selection. Conversely, accurate predictions for the best actions seem
much more important than the others if the action selection is to pick them. To do so, one could

13https://pytorch.org/docs/stable/generated/torch.nn.functional.gumbel_softmax.html#torch.nn.functional.gumbel_
softmax
14David Silver, et al. 2018. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.
Science 362, 6419 (2018), 1140–1144. https://doi.org/10.1126/science.aar6404
15Stuart J. Russell and Peter Norvig. 2003. Arti�cial Intelligence: A Modern Approach (2 ed.). Pearson Education.

https://pytorch.org/docs/stable/generated/torch.nn.functional.gumbel_softmax.html#torch.nn.functional.gumbel_softmax
https://pytorch.org/docs/stable/generated/torch.nn.functional.gumbel_softmax.html#torch.nn.functional.gumbel_softmax
https://doi.org/10.1126/science.aar6404


de�ne a custom loss function assigning weight as an increasing function of win probabilities in the
target tensor.
The last idea that bears mention is to make the agent model-based. Currently, our agent does

not get the game model or learn the game model, and so it is essentially model-free. Performing
MCTS on the search tree from a model-based agent would likely improve performance, and might
be necessary for extending this work into some other domains—but should not be necessary to
optimally solve MNK games. However, explaining with this kind of search tree (which explicitly
encodes an overwhelming amount of information about the sequential environment) remains an
interesting and sparsely explored research area.

To summarize the ideas we suggest trying:
• Use a transformer
• Add an LSTM
• Train longer
• Improve the target formation
• De�ne a better loss function
• Use a model-based agent


	Abstract
	1 Introduction
	2 Background
	2.1 Explanations and Users' Mental Models
	2.2 Explaining in Sequential Domains
	2.3 ``Testing'' AI
	2.4 Humans Assessing AI, Qualitatively

	3 The Explanations; and the Agents that Generate Them
	3.1 The Agent
	3.2 Explanation 1: Scores Through-Time (StTime)
	3.3 Explanation 2: Scores On-the-Board (OnBoard)
	3.4 Explanation 3: Scores Best-to-Worst (BtoW)

	4 Methodology
	4.1 The Domain
	4.2 Manipulating agent ``quality'': Mutant Agent Generation
	4.3 Procedure

	5 Results RQ1: How well did participants rank the agents?
	6 Results RQ2: Which Explanation Type(s)?
	6.1 Participants' Explanation Diets
	6.2 Which explanation types?
	6.3 Implications for Interactive XAI and for XAI Empirical Methods

	7 Results RQ3: Which agents to assess, and how?
	7.1 Keeping Agent Pairs Synchronized
	7.2 Sampling Uniformly vs Focusing on the King of the Hill
	7.3 ``Build-your-own'' visuals
	7.4 Implications for Interactive AI

	8 Results RQ4: How did participants invest their time while ranking?
	8.1 Invest in Many Games
	8.2 Invest Thoroughly in Games
	8.3 Implications for XAI research

	9 Discussion
	9.1 What Good Is the Ranking Task?
	9.2 The Ranking Task as an instance of ``The Coaches' Problem''?
	9.3 The Ranking Task vs. AutoML
	9.4 Why Mutant Agent Generation?

	10 Threats to Validity
	11 Conclusion
	References
	12 Supplement about the Agent
	12.1 More about the probabilistic policy
	12.2 Achieving a more optimal agent


